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ASSESSMENT OF THE STATIC ANALYZERS USAGE FITNESS FOR  
SOFTWARE VULNERABILITIES IDENTIFICATION 

 
Source code analysis (SCA) tools are allowed to analyze source code and/or compiled version of code in order to 
help find security flaws. Most SCA tools are capable of finding multiple types of  flaws,  but  the  capabilities  of  
tools  are  not necessarily  uniform  across  the  spectrum  of  flaws  they detect. Even tools that target a specific 
type of flaw are capable of finding some variants of that flaw and not others. Nowadays there is a lack of informa-
tion concerning the quality of functioning results of the static code analysis tools. In order to overcome this the 
SCA usage for software security defects identification was investigated. The common SCA tools functioning re-
sults were considered. The effectiveness of SCA means to identify defects in the source code associated with soft-
ware security was analyzed. 
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Introduction 

 
One of the definitions of software security is its 

property to function without showing negative effects on 
a computer system [1]. The level of software security is a 
probability that software during its operation under given 
conditions will returned functionally suitable result. The 
reasons that lead to functionally useless results can be 
different: failures of the computer systems, error of pro-
grammers and operators, defects in software. Harmful 
influence on software is performed with the purpose of 
privacy violation, integrity and availability of informa-
tion. Software safety assurance includes two main as-
pects: development of secure software and control of its 
secure execution. First aspect requires implementation 
into life cycle measures for software quality and security 
assurance. This includes usage of the special tools, stud-
ies of developers, architects and engineers for safety re-
quirements providing. The second aspect is providing of 
secure software execution. For example sandboxing code 
(as the Java virtual machine does), protecting against 
malicious code, obfuscating code, monitoring programs 
as they run (especially their input), enforcing the software 
use policy with technology, and dealing with extensible 
systems. 

However, today there are serious problems with 
security software. The Veracode company is analyzed 
the source code of software in order to identify vulner-
abilities. The report indicates the presence of serious 
problems with safety in approximately 60% of tested 
software. The 88% of tested by company software does 
not meet standards OWASP and CWE/SANS [2].  

Vulnerabilities in software lead to significant fi-
nancial losses. For example, a buffer overflow error in 

Microsoft IIS and Windows RPC Service were used by 
viruses Code Red and MS Blaster. They cost to Micro-
soft $3.26 and $1 billion respectively. Buffer overflow 
in Microsoft SQL Server, which was used by SQL 
Slammer virus has brought losses of $1.2 billion for 5 
days [3]. IBM’s reports indicate that each year about 
eight thousand new vulnerabilities in software are ap-
peared [4]. 

Therefore, implementation of measures for soft-
ware security assurance throughout its life cycle is 
important problem for today.  

One of the methods of source code verification and 
automated detection of defects associated with the soft-
ware security is a static code analysis (SCA). SCA is the 
process of detecting errors and defects in software's 
source code that is performed without actually executing 
programs [5]. Static code analyzers are used to uncover 
hard to find implementation errors before run-time, since 
they may be even more difficult or impossible to find and 
assess during execution. These tools can discover many 
logical, safety and security errors in an application with-
out the need to execute the application.  

SCA methods include model checking, control 
and data flow analysis and text-based pattern matching 
[6]. The diversity between analysis algorithms leads to 
significant differences and differentiation of their func-
tioning results. SCA tools do not demonstrate equally 
effectiveness in detection of various types of weak-
nesses, because do not cover all flaw types [7].  

Nowadays researches indicate the necessity of 
quality assessment of the static code analysis results. 
The presence of false positive and the lack of standardi-
zation for interpretation of SCA results creates obstacles 
in tools effectiveness assessment [8][9]. Evaluation of 
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SCA usage effectiveness and development of the 
method for SCA tools selection will allow to improve 
the quality of static code analysis and to get a univer-
sal mean for selecting an analyzer for a specific soft-
ware project. 
 

1. С and С++ security problems 
 

Today, considerable part of the system software, 
software for mobile and embedded systems, control 
systems, and other mission-critical software developed 
with using of C and C++ programming languages [10]. 
Languages such as C and C++ are designed primarily 
for efficiency and portability assurance. Therefore, 
they provide little support to avoid or to deal with run-
time errors. For example, there is no checking in C that 
read or write access to an array is within bounds, that 
dereferencing of a pointer variable is possible (that the 
variable is not null) or that type casting is well-
defined. Such checks must therefore be enforced by 
the programmer. For software with high security re-
quirements advanced memory management and poten-
tially dangerous set of library functions (such as gets) 

lead to increase costs and time that are spent on the 
phases of implementation and testing. 

So for languages C and C++ much attention re-
quire weaknesses introduced in the source code. This 
requires the use of measures for weaknesses detection 
at the phase of implementation. Because of this source 
code security analysis is effective.  

At present, there are a wide range of commercial 
and free tools for C and C++ static code analysis. Al-
though C and C++ are different programming lan-
guages, they are treated as a single unit since C++ is a 
generally a superset of C. In addition, the most of 
software assurance tools support both C and C++. 

 
2. SCA tools and test samples 

 
Security department of U.S. National Institute 

of Standards and Technology provides a list of SCA 
tools that can be used for detecting and reporting 
about weaknesses that can lead to security vulner-
abilities [11]. Table 1 shows the SCA tools for C 
and C++ that were selected for research and their 
brief descriptions. 

Table 1 
SCA Tools description 

Characteristics Tool 
Price Main features 

PVS-
Studio $4585 There are 3 sets of rules included in PVS-Studio: diagnosis of 64-bit errors 

(Viva64) diagnosis of parallel errors (VivaMP) general-purpose diagnosis . 

PC-Lint $389 Memory leaks, invalid STL usage, overlapping data in sprintf, division by zero, 
null pointer dereference, unused struct member, passing parameter by value, etc. 

Goanna 
Studio $999 memory corruptions, resource leaks, buffer overruns, null pointer dereferences, 

C++ hazards, etc. 
Cpp 
check free Customization facilities, pre-compiled headers, dimensional strong types, value 

tracking, semantic specifications (-sem), multi-thread support. 
 

Three sets of test samples for quality of the SCA 
assessment are selected. First set is taken from site of 
the U.S. department of homeland security. It includes 
23 test samples designed specifically for SCA tools 
testing [12]. These example programs demonstrate 
flaws that may be detected by security scanners for 
C/C++ software. The examples are small, simple 
C/C++ programs, each of which is meant to evaluate 
some specific aspect of a security scanner's perform-
ance. The total number of vulnerabilities that should 
have been detected by SCA tools was 25.  

Second set includes 14 test samples. It is taken 
from site of Security department of U.S. National In-
stitute of Standards and Technology. Each case as in 
first group is small C/C++ program, which includes 
some defect, for example buffer overflow or memory 
leak.  Set is selected for comparative analysis with the 
results for the first test set and assessment of the SCA 
results for different software.  

The third test set contains 10 applications with 
only one type of defect. The widespread defect in the 
source code CWE (Common Weakness Enumeration) 
476 СWE null pointer dereference was selected [13]. 
In C/C++, a null pointer does not point to any object. 
Null pointer dereference causes runtime errors and 
abnormal program termination. 

Null pointer dereferences can result in the follow-
ing security impacts: denial of service (denial-of-
service attack is an attempt to make a machine or net-
work resource unavailable to its intended users) and in 
some circumstances malicious code execution. 

Null pointer dereferences generally impact the 
availability of an application. However, in some cases 
they can also impact confidentiality and integrity. 

Each of considered SCA has rule for identifica-
tion of such class of defects. So the third test set is 
aimed on detection the differences between the meth-
ods used by developers to identify the stated defects. 
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3. SCA Results 
 

The following source code contains two defects 
of null pointer dereferences: 

 
#1 #include <stdio.h> 
#2 void function(int *ptr) { 
#3  int value = *ptr; } 
#4 int main(void) 
#5 { 
#6  int *p = NULL; 
#7  int x; 
#8       x = *p;   
#9  function(p); 
#10  return 0; 
#11 } 

 
Defect in the line 8 was detected by all SCA 

tools, but defect in the line 3 wasn’t detected by any 
SCA tool. The difference in first and second situations 
is usage of dereferencing pointer operation in function 
body. Analyzers in the investigation do not track such 
situations. Thus, detection of a defect does not depend 
only on availability of the rule in analyzer’s base. The 
structure of the source code also impact on results. 
Type of software and programming style determine 
differences of the source code, which influence on 
SCA applying effectiveness in general. 

The next fragment of source code is more com-
plex and contains a set of problems related to memory 
leaks, null pointer dereferencing and buffer overflows: 

 
#1 class A { 
#2  public: 
#3   A() { 
#4   char* p = new char[10];  
#5   p = new char[10];        
#6   char* a = (char *)0;      
#7   *a = 0;                     
#8   char c[10];                
#9   c[10] = 0;  } 
#10  ~A() { 
#11   delete p;               
#12   char* a = new char[100];  
#13   return;                    
#14   delete[] a; } 
#15  private: 
#16   char* p; }; 
#17  int main() { 
#18   A a;   
#19   return 0; } 

 

Dereferencing null pointer a and array out of 
range c were found by all analyzers. Memory leaks 
associated with the pointers p and a were found by 
CppCheck and PC-lint only. Overall PVS-Studio and 
Goanna Studio found on 2 defects while CppCheck 
and PC-Lint found on 4. But the resulting reports con-
tained 4, 4, 8 and 30 messages respectively. Therefore 

SCA allows to detect and to remove the real defects in 
the software. But the effectiveness of the tools usage is 
different. 

 
4. SCA effectiveness 

 
For quality of the SCA results assessment the set 

of metrics was chosen. Criteria that reflect the quality 
of SCA results are Precision and Recall. They are 
based on the number of true positive (TP), false posi-
tive (FP), and false negative (FN) in the analyzer’s 
reports.  

Precision means the ratio of weaknesses reported 
by a tool to the set of actual weaknesses in the analyzed 
code. It is defined as the number of weaknesses cor-
rectly reported (TP) divided by the total number of 
weaknesses actually reported (TP plus FP): 

TPPrecision
TP FP




. 

The Recall metric represents the fraction of real 
flaws that were reported by a tool. Recall is defined as 
the number of real flaws that a tool reported (TP), di-
vided by the total number of real flaws that existed in 
the code (TP plus FN): 

TPRecall
TP FN




. 

SCA tools reports contained messages with differ-
ent importance levels: style, informational, elective 
notes, etc. These messages are not related to vulnerabili-
ties that were presented in the test samples and can be 
suppressed in the results. Therefore, for Precision and 
Recall metrics calculation such messages did not taken 
into account.  Only error and warnings messages for 
tools reports were taken. 

In addition to the Precision and Recall metrics, an 
F_score was calculated by taking the harmonic mean of 
the Precision and Recall values. The F_score provides 
weighted guidance in identifying good static analysis 
tool by capturing how many of the weaknesses were 
found (TP) and how much noise (FP) was produced. 
F_Score is a measure of the SCA results quality: 

SCA_Precision SCA_recallF _ Score 2
SCA_Precision SCA_recall


 


. 

Usage of such metrics is a complex task for real 
software with a large amount of the source code. It is a 
difficult task to estimate accurately the number of actual 
defects in software. Small test samples do not cover all 
defects that may be present in real projects, but they 
allow to estimate the number of existing defects and to 
calculate the value of TP, FP, FN for the SCA results. 
Table 2 shows Precision, Recall and F_Score metric’s 
values that were obtained for all test sets. 
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Table 2 
SCA Results 

 CppCheck PVS-
Studio Goanna PC-

Lint 
 Test set 1 

Recall 0,64 0,24 0,12 0,48 
Precision 0,89 1 1 0,41 
F_score 0,74 0,39 0,21 0,44 

 Test set 2 
Recall 0,18 0,18 0,27 0,27 

Precision 1 1 1 0,43 
F_score 0,31 0,31 0,35 0,33 

 Test set 3 
Recall 0,6 0,5 0,5 0,6 

Precision 1 1 1 0,75 
F_score 0,75 0,67 0,67 0,67 

 

Test samples contains an average no more than 
several tens lines of the source code. So, analysis 
Precision value is high enough. PVS-Studio and Goanna 
Studio analyzers Precision metric is equal to 1 for all 
test sets. Recall metric shows opposite results. It 
characterize small percentage of defects detection. 
Figure 1 shows metric F_Score change depending on 
the test set. 

For the first test set effectiveness of SCA tools 
varies significantly. CppCheck is the most effective in 
this case. Static analyzer allows to detect the vast ma-
jority of defects present in test samples and to generate 
small percentage of false positives. For the second and 
third sets values are similar. All tools demonstrate 
analogous results. For CWE 476 vulnerability test set 
rate of the F_Score is the same for three analyzers. The 
result for CppCheck SCA is differed slightly. 

 

 
Fig. 1. F_Score metric for all test sets 

 
Thus, the metric F Score reflects effectiveness of 

SCA. However, the study found that the effectiveness of 
static analysis is a complex measure that depends on the 
complexity and implementation details of the testing 
source code. The value of the F_Score metric is useful 
for comparison of the results for only single target soft-
ware. The high results for particular project do not guar-
antee a similar result for any other software. 

 
Conclusion 

 
Static code analysis is effective measure for soft-

ware security assurance. The use of SCA technology in 
the software development requires a small amount of 
resources and allows to eliminate the real defects. 
However, selecting of the specific SCA tool is an ac-
tual problem. Different SCA tools do not demonstrate 
the same effectiveness in vulnerability identification. 
Effectiveness depends on the rule’s bases, used meth-

ods, complexity and characteristics of the software 
source code.  

The development of general approach for source 
code security analyzers choosing requires further 
study. This will help to improve the quality of SCA 
and to get a universal means for static analyzer selec-
tion for particular projects. 
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ОЦІНКА ПРИДАТНОСТІ ЗАСТОСУВАННЯ СТАТИЧНИХ АНАЛІЗАТОРІВ  
ДЛЯ ВИЯВЛЕННЯ ВРАЗЛИВОСТЕЙ В ПРОГРАМНОМУ ЗАБЕЗПЕЧЕННІ  

О.В. Поморова, Д.О. Іванчишин 
Інструментальні засоби статичного аналізу вихідного коду (СА) дозволяють аналізувати вихідний код 

або відкомпільований код з метою виявлення недоліків безпеки. Розробники засобів СА декларують можли-
вість виявлення значного переліку дефектів, проте ефективність ідентифікації для різних типів помилок є не 
однаковою. В статті досліджено застосування статичного аналізу вихідного коду для виявлення дефектів 
пов’язаних з безпекою програмного забезпечення. Розглянуто результати функціонування поширених на 
сьогодні інструментальних засобів СА вихідного коду. Проведено аналіз ефективності застосування інстру-
ментальних засобів СА для виявлення дефектів у вихідному коді пов’язаних з безпекою ПЗ. 

Ключові слова: безпека ПЗ, статичний аналіз, ефективність статичного аналізу. 
 

ОЦЕНКА ПРИГОДНОСТИ ПРИМИНЕНИЯ СТАТИЧЕСКИХ АНАЛИЗАТОРОВ  
ДЛЯ ВЫЯВЛЕНИЯ УЯЗВИМОСТЕЙ В ПРОГРАМНОМ ОБЕСПЕЧЕНИИ 

О.В. Поморова, Д.А. Иванчишин 
Инструментальные средства статического анализа исходного кода (СА) позволяют анализировать ис-

ходный код или откомпилированный код с целью выявления недостатков безопасности. Разработчики 
средств СА декларирует возможность выявления значительного перечня дефектов, однако эффективность 
идентификации для различных типов ошибок является не одинаковой. В статье исследовано применение 
статического анализа исходного кода для выявления дефектов связанных с безопасности программного 
обеспечения. Рассмотрены результаты функционирования распространенных на сегодня инструментальных 
средств СА исходного кода. Проведен анализ эффективности применения инструментальных средств СА 
для выявления дефектов в исходном коде связанных с безопасностью ПО. 

Ключевые слова: безопасность ПО, статический анализ, эффективность статического анализа. 
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