
ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2013, № 5 (64) 328

UDC 004.415.5

O.V. POMOROVA, D.O. IVANCHYSHYN

Khmelnitskyi National University, Khmelnitskyi, Ukraine

ASSESSMENT OF THE STATIC ANALYZERS USAGE FITNESS FOR
SOFTWARE VULNERABILITIES IDENTIFICATION

Source code analysis (SCA) tools are allowed to analyze source code and/or compiled version of code in order to
help find security flaws. Most SCA tools are capable of finding multiple types of flaws, but the capabilities of
tools are not necessarily uniform across the spectrum of flaws they detect. Even tools that target a specific
type of flaw are capable of finding some variants of that flaw and not others. Nowadays there is a lack of informa-
tion concerning the quality of functioning results of the static code analysis tools. In order to overcome this the
SCA usage for software security defects identification was investigated. The common SCA tools functioning re-
sults were considered. The effectiveness of SCA means to identify defects in the source code associated with soft-
ware security was analyzed.

Key words: software security, static code analysis, static code analysis efficiency.

Introduction

One of the definitions of software security is its

property to function without showing negative effects on
a computer system [1]. The level of software security is a
probability that software during its operation under given
conditions will returned functionally suitable result. The
reasons that lead to functionally useless results can be
different: failures of the computer systems, error of pro-
grammers and operators, defects in software. Harmful
influence on software is performed with the purpose of
privacy violation, integrity and availability of informa-
tion. Software safety assurance includes two main as-
pects: development of secure software and control of its
secure execution. First aspect requires implementation
into life cycle measures for software quality and security
assurance. This includes usage of the special tools, stud-
ies of developers, architects and engineers for safety re-
quirements providing. The second aspect is providing of
secure software execution. For example sandboxing code
(as the Java virtual machine does), protecting against
malicious code, obfuscating code, monitoring programs
as they run (especially their input), enforcing the software
use policy with technology, and dealing with extensible
systems.

However, today there are serious problems with
security software. The Veracode company is analyzed
the source code of software in order to identify vulner-
abilities. The report indicates the presence of serious
problems with safety in approximately 60% of tested
software. The 88% of tested by company software does
not meet standards OWASP and CWE/SANS [2].

Vulnerabilities in software lead to significant fi-
nancial losses. For example, a buffer overflow error in

Microsoft IIS and Windows RPC Service were used by
viruses Code Red and MS Blaster. They cost to Micro-
soft $3.26 and $1 billion respectively. Buffer overflow
in Microsoft SQL Server, which was used by SQL
Slammer virus has brought losses of $1.2 billion for 5
days [3]. IBM’s reports indicate that each year about
eight thousand new vulnerabilities in software are ap-
peared [4].

Therefore, implementation of measures for soft-
ware security assurance throughout its life cycle is
important problem for today.

One of the methods of source code verification and
automated detection of defects associated with the soft-
ware security is a static code analysis (SCA). SCA is the
process of detecting errors and defects in software's
source code that is performed without actually executing
programs [5]. Static code analyzers are used to uncover
hard to find implementation errors before run-time, since
they may be even more difficult or impossible to find and
assess during execution. These tools can discover many
logical, safety and security errors in an application with-
out the need to execute the application.

SCA methods include model checking, control
and data flow analysis and text-based pattern matching
[6]. The diversity between analysis algorithms leads to
significant differences and differentiation of their func-
tioning results. SCA tools do not demonstrate equally
effectiveness in detection of various types of weak-
nesses, because do not cover all flaw types [7].

Nowadays researches indicate the necessity of
quality assessment of the static code analysis results.
The presence of false positive and the lack of standardi-
zation for interpretation of SCA results creates obstacles
in tools effectiveness assessment [8][9]. Evaluation of

 O.V. Pomorova, D.O. Ivanchyshyn

Якість, надійність та ресурсозбереження для апаратних і програмних засобів 329

SCA usage effectiveness and development of the
method for SCA tools selection will allow to improve
the quality of static code analysis and to get a univer-
sal mean for selecting an analyzer for a specific soft-
ware project.

1. С and С++ security problems

Today, considerable part of the system software,
software for mobile and embedded systems, control
systems, and other mission-critical software developed
with using of C and C++ programming languages [10].
Languages such as C and C++ are designed primarily
for efficiency and portability assurance. Therefore,
they provide little support to avoid or to deal with run-
time errors. For example, there is no checking in C that
read or write access to an array is within bounds, that
dereferencing of a pointer variable is possible (that the
variable is not null) or that type casting is well-
defined. Such checks must therefore be enforced by
the programmer. For software with high security re-
quirements advanced memory management and poten-
tially dangerous set of library functions (such as gets)

lead to increase costs and time that are spent on the
phases of implementation and testing.

So for languages C and C++ much attention re-
quire weaknesses introduced in the source code. This
requires the use of measures for weaknesses detection
at the phase of implementation. Because of this source
code security analysis is effective.

At present, there are a wide range of commercial
and free tools for C and C++ static code analysis. Al-
though C and C++ are different programming lan-
guages, they are treated as a single unit since C++ is a
generally a superset of C. In addition, the most of
software assurance tools support both C and C++.

2. SCA tools and test samples

Security department of U.S. National Institute

of Standards and Technology provides a list of SCA
tools that can be used for detecting and reporting
about weaknesses that can lead to security vulner-
abilities [11]. Table 1 shows the SCA tools for C
and C++ that were selected for research and their
brief descriptions.

Table 1
SCA Tools description

Characteristics Tool
Price Main features

PVS-
Studio $4585 There are 3 sets of rules included in PVS-Studio: diagnosis of 64-bit errors

(Viva64) diagnosis of parallel errors (VivaMP) general-purpose diagnosis .

PC-Lint $389 Memory leaks, invalid STL usage, overlapping data in sprintf, division by zero,
null pointer dereference, unused struct member, passing parameter by value, etc.

Goanna
Studio $999 memory corruptions, resource leaks, buffer overruns, null pointer dereferences,

C++ hazards, etc.
Cpp
check free Customization facilities, pre-compiled headers, dimensional strong types, value

tracking, semantic specifications (-sem), multi-thread support.

Three sets of test samples for quality of the SCA
assessment are selected. First set is taken from site of
the U.S. department of homeland security. It includes
23 test samples designed specifically for SCA tools
testing [12]. These example programs demonstrate
flaws that may be detected by security scanners for
C/C++ software. The examples are small, simple
C/C++ programs, each of which is meant to evaluate
some specific aspect of a security scanner's perform-
ance. The total number of vulnerabilities that should
have been detected by SCA tools was 25.

Second set includes 14 test samples. It is taken
from site of Security department of U.S. National In-
stitute of Standards and Technology. Each case as in
first group is small C/C++ program, which includes
some defect, for example buffer overflow or memory
leak. Set is selected for comparative analysis with the
results for the first test set and assessment of the SCA
results for different software.

The third test set contains 10 applications with
only one type of defect. The widespread defect in the
source code CWE (Common Weakness Enumeration)
476 СWE null pointer dereference was selected [13].
In C/C++, a null pointer does not point to any object.
Null pointer dereference causes runtime errors and
abnormal program termination.

Null pointer dereferences can result in the follow-
ing security impacts: denial of service (denial-of-
service attack is an attempt to make a machine or net-
work resource unavailable to its intended users) and in
some circumstances malicious code execution.

Null pointer dereferences generally impact the
availability of an application. However, in some cases
they can also impact confidentiality and integrity.

Each of considered SCA has rule for identifica-
tion of such class of defects. So the third test set is
aimed on detection the differences between the meth-
ods used by developers to identify the stated defects.

ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2013, № 5 (64) 330

3. SCA Results

The following source code contains two defects
of null pointer dereferences:

#1 #include <stdio.h>
#2 void function(int *ptr) {
#3 int value = *ptr; }
#4 int main(void)
#5 {
#6 int *p = NULL;
#7 int x;
#8 x = *p;
#9 function(p);
#10 return 0;
#11 }

Defect in the line 8 was detected by all SCA

tools, but defect in the line 3 wasn’t detected by any
SCA tool. The difference in first and second situations
is usage of dereferencing pointer operation in function
body. Analyzers in the investigation do not track such
situations. Thus, detection of a defect does not depend
only on availability of the rule in analyzer’s base. The
structure of the source code also impact on results.
Type of software and programming style determine
differences of the source code, which influence on
SCA applying effectiveness in general.

The next fragment of source code is more com-
plex and contains a set of problems related to memory
leaks, null pointer dereferencing and buffer overflows:

#1 class A {
#2 public:
#3 A() {
#4 char* p = new char[10];
#5 p = new char[10];
#6 char* a = (char *)0;
#7 *a = 0;
#8 char c[10];
#9 c[10] = 0; }
#10 ~A() {
#11 delete p;
#12 char* a = new char[100];
#13 return;
#14 delete[] a; }
#15 private:
#16 char* p; };
#17 int main() {
#18 A a;
#19 return 0; }

Dereferencing null pointer a and array out of
range c were found by all analyzers. Memory leaks
associated with the pointers p and a were found by
CppCheck and PC-lint only. Overall PVS-Studio and
Goanna Studio found on 2 defects while CppCheck
and PC-Lint found on 4. But the resulting reports con-
tained 4, 4, 8 and 30 messages respectively. Therefore

SCA allows to detect and to remove the real defects in
the software. But the effectiveness of the tools usage is
different.

4. SCA effectiveness

For quality of the SCA results assessment the set

of metrics was chosen. Criteria that reflect the quality
of SCA results are Precision and Recall. They are
based on the number of true positive (TP), false posi-
tive (FP), and false negative (FN) in the analyzer’s
reports.

Precision means the ratio of weaknesses reported
by a tool to the set of actual weaknesses in the analyzed
code. It is defined as the number of weaknesses cor-
rectly reported (TP) divided by the total number of
weaknesses actually reported (TP plus FP):

TPPrecision
TP FP




.

The Recall metric represents the fraction of real
flaws that were reported by a tool. Recall is defined as
the number of real flaws that a tool reported (TP), di-
vided by the total number of real flaws that existed in
the code (TP plus FN):

TPRecall
TP FN




.

SCA tools reports contained messages with differ-
ent importance levels: style, informational, elective
notes, etc. These messages are not related to vulnerabili-
ties that were presented in the test samples and can be
suppressed in the results. Therefore, for Precision and
Recall metrics calculation such messages did not taken
into account. Only error and warnings messages for
tools reports were taken.

In addition to the Precision and Recall metrics, an
F_score was calculated by taking the harmonic mean of
the Precision and Recall values. The F_score provides
weighted guidance in identifying good static analysis
tool by capturing how many of the weaknesses were
found (TP) and how much noise (FP) was produced.
F_Score is a measure of the SCA results quality:

SCA_Precision SCA_recallF _ Score 2
SCA_Precision SCA_recall


 


.

Usage of such metrics is a complex task for real
software with a large amount of the source code. It is a
difficult task to estimate accurately the number of actual
defects in software. Small test samples do not cover all
defects that may be present in real projects, but they
allow to estimate the number of existing defects and to
calculate the value of TP, FP, FN for the SCA results.
Table 2 shows Precision, Recall and F_Score metric’s
values that were obtained for all test sets.

Якість, надійність та ресурсозбереження для апаратних і програмних засобів 331

Table 2
SCA Results

 CppCheck PVS-
Studio Goanna PC-

Lint
 Test set 1

Recall 0,64 0,24 0,12 0,48
Precision 0,89 1 1 0,41
F_score 0,74 0,39 0,21 0,44

 Test set 2
Recall 0,18 0,18 0,27 0,27

Precision 1 1 1 0,43
F_score 0,31 0,31 0,35 0,33

 Test set 3
Recall 0,6 0,5 0,5 0,6

Precision 1 1 1 0,75
F_score 0,75 0,67 0,67 0,67

Test samples contains an average no more than
several tens lines of the source code. So, analysis
Precision value is high enough. PVS-Studio and Goanna
Studio analyzers Precision metric is equal to 1 for all
test sets. Recall metric shows opposite results. It
characterize small percentage of defects detection.
Figure 1 shows metric F_Score change depending on
the test set.

For the first test set effectiveness of SCA tools
varies significantly. CppCheck is the most effective in
this case. Static analyzer allows to detect the vast ma-
jority of defects present in test samples and to generate
small percentage of false positives. For the second and
third sets values are similar. All tools demonstrate
analogous results. For CWE 476 vulnerability test set
rate of the F_Score is the same for three analyzers. The
result for CppCheck SCA is differed slightly.

Fig. 1. F_Score metric for all test sets

Thus, the metric F Score reflects effectiveness of

SCA. However, the study found that the effectiveness of
static analysis is a complex measure that depends on the
complexity and implementation details of the testing
source code. The value of the F_Score metric is useful
for comparison of the results for only single target soft-
ware. The high results for particular project do not guar-
antee a similar result for any other software.

Conclusion

Static code analysis is effective measure for soft-

ware security assurance. The use of SCA technology in
the software development requires a small amount of
resources and allows to eliminate the real defects.
However, selecting of the specific SCA tool is an ac-
tual problem. Different SCA tools do not demonstrate
the same effectiveness in vulnerability identification.
Effectiveness depends on the rule’s bases, used meth-

ods, complexity and characteristics of the software
source code.

The development of general approach for source
code security analyzers choosing requires further
study. This will help to improve the quality of SCA
and to get a universal means for static analyzer selec-
tion for particular projects.

References

1. Kazarin, O.V. Software security for computer
systems. Monograph. [Text] / O.V. Kazarin. – М.:
MGUL, 2003. – 212 p.

2. Veracode Inc. State of Software Security Re-
port: Volume 1 [Text] / Veracode Inc. – March 1,
2010. – 32 p.

3. Moore, D. Inside the Slammer Worm [Text] /
D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stani-
ford, N. Weaver // IEEE Security and Privacy, – Vol. 1,
No. 4. – July 2003. - Р. 33 – 39.

ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2013, № 5 (64) 332

4. IBM Security Systems. X-Force 2012 Mid-year
Trend and Risk Report [Text] / IBM Security Systems. –
2012. – 6 p.

5. Lopes, R. Static Analysis tools, a practical ap-
proach for safety-critical software verification. [Text] /
R. Lopes, D. Vicente, N. Silva // Critical Software SA
Parque Industrial de Taveiro. Coimbra, Portugal. –
2009. - 12 p.

6. Nilsson, U. A Comparative Study of Industrial
Static Analysis Tool [Text] / U. Nilsson, P. Emanuelsson
// Electronic Notes in Theoretical Computer Science
(ENTCS). Volume 217. – July, 2008. - Р. 5 – 21.

7. Argen, M. Static Code Analysis For Embed-
ded Systems [Text] / M. Argen. // Department of Com-
puter Science and Engineering, Chalmers University of
technology, university of gotenburg. Göteborg, Sweden.
- August 2009. – 29 p.

8. National Security Agency Center for Assured
Software. On Analyzing Static Analysis Tools. [Text] -
July, 2011. – 13 p.

9. Pomorova, O.V. Features of the Static Code

Analyzers Usage for Different Types of Software [Text] /
O.V. Pomorova, D.O. Ivanchyshyn // Proc. of the Inter-
national Conference on Computer Science and Informa-
tion Technologies (CSIT 2012). - 2012. – Р. 134 – 136.

10. Lockheed Martin Corporation. Joint Strike
Fighter Air Vehicle C++ Coding Standards for the Sys-
tem Development and Demonstration Program. [Text] –
2005. – 142 p.

11. National Institute of Standards and Technolo-
gies (NIST) SAMATE project [Electronic resource]. –
Source Code Security Analyzers. – Available to:
http://samate.nist.gov/index.php/Source_Code_Security_
Analyzers.html. – 18.01.2013 у.

12. Build Security In [Electronic resource]. –
Source Code Analysis Tools - Example Programs. –
Available to: https://buildsecurityin.us-cert.gov/bsi/artic-
les/tools/code/498-BSI.html. – 18.01.2013 у.

13. A community developed dictionary of software
weakness type [Electronic resource]. – Common Weak-
ness Enumeration. – Available to: http://cwe.mitre.org. –
18.01.2013 у.

Надійшла до редакції 21.02.2013, розглянута на редколегії 13.03.2013

Рецензент: д-р техн. наук, проф. каф. комп’ютерних систем і мереж А.В. Горбенко, Національний аерокос-
мічний університет ім. М.Є. Жуковського «ХАІ», Харків, Україна.

ОЦІНКА ПРИДАТНОСТІ ЗАСТОСУВАННЯ СТАТИЧНИХ АНАЛІЗАТОРІВ
ДЛЯ ВИЯВЛЕННЯ ВРАЗЛИВОСТЕЙ В ПРОГРАМНОМУ ЗАБЕЗПЕЧЕННІ

О.В. Поморова, Д.О. Іванчишин
Інструментальні засоби статичного аналізу вихідного коду (СА) дозволяють аналізувати вихідний код

або відкомпільований код з метою виявлення недоліків безпеки. Розробники засобів СА декларують можли-
вість виявлення значного переліку дефектів, проте ефективність ідентифікації для різних типів помилок є не
однаковою. В статті досліджено застосування статичного аналізу вихідного коду для виявлення дефектів
пов’язаних з безпекою програмного забезпечення. Розглянуто результати функціонування поширених на
сьогодні інструментальних засобів СА вихідного коду. Проведено аналіз ефективності застосування інстру-
ментальних засобів СА для виявлення дефектів у вихідному коді пов’язаних з безпекою ПЗ.

Ключові слова: безпека ПЗ, статичний аналіз, ефективність статичного аналізу.

ОЦЕНКА ПРИГОДНОСТИ ПРИМИНЕНИЯ СТАТИЧЕСКИХ АНАЛИЗАТОРОВ
ДЛЯ ВЫЯВЛЕНИЯ УЯЗВИМОСТЕЙ В ПРОГРАМНОМ ОБЕСПЕЧЕНИИ

О.В. Поморова, Д.А. Иванчишин
Инструментальные средства статического анализа исходного кода (СА) позволяют анализировать ис-

ходный код или откомпилированный код с целью выявления недостатков безопасности. Разработчики
средств СА декларирует возможность выявления значительного перечня дефектов, однако эффективность
идентификации для различных типов ошибок является не одинаковой. В статье исследовано применение
статического анализа исходного кода для выявления дефектов связанных с безопасности программного
обеспечения. Рассмотрены результаты функционирования распространенных на сегодня инструментальных
средств СА исходного кода. Проведен анализ эффективности применения инструментальных средств СА
для выявления дефектов в исходном коде связанных с безопасностью ПО.

Ключевые слова: безопасность ПО, статический анализ, эффективность статического анализа.

Поморова Оксана Вікторівна – доктор технічних наук, професор, завідувач кафедри системного про-
грамування Хмельницького національного університету, e-mail: o.pomorova@gmail.com.

Іванчишин Дмитро Олександрович – аспірант кафедри системного програмування Хмельницького
національного університету, e-mail: dmytro_ivanchyshyn@ukr.net.

