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DECISION DIAGRAM AND DIRECT PARTIAL LOGIC DERIVATIVES  
IN RELIABILITY ANALYSIS OF MULTI-STATE SYSTEM 

 
Direct Partial Logic Derivative (DPLD) is used in the reliability analysis for the calculation of the Multi-State 
Systems (MSS) importance measures. MSS is mathematical model that permits to define some performance levels 
(more than two) for the system reliability. This mathematical model causes using of the special methods for anal-
ysis because has high dimension as a rule. One of possible methods for the MSS analysis is methods based on De-
cision Diagram we that can easily analyzes systems with higher dimension. New algorithms for calculating 
DPLD by Multi-Valued Decision Diagrams of the MSS are proposed in this paper.   
   
Key words: reliability, decision diagram, direct partial logic derivative, multi state system. 

 
Introduction 

 
The importance analysis is one of directions in reli-

ability analysis [1, 2]. This analysis allows identifying the 
relatively most critical components of the system from 
which alternatives can be identified to improve the sys-
tem reliability. Here, a component has two aspects: the 
structural aspect and the reliability aspect [3]. The former 
refers to the location of the component in the system, and 
the latter refers to the reliability of the physical unit in-
stalled at that location. The structural aspect is relevant in 
the system design when several components with distinct 
reliabilities can be arbitrarily assigned to several locations 
in the system. The reliability aspect is considered when 
the components are already installed in the system but 
there is budget to improve the system reliability through 
the improvement of the reliability of a component. Many 
Importance Measures (IMs) have been proposed for es-
timation of these aspects. 

The IM quantifies the relative importance of a 
component, in comparison to other components, with 
respect to the system reliability. Every of IMs allows 
measuring some aspect of the influence of the system 
component states changes to the system reliabil-
ity/availability. Basic IMs were been considered in [1 – 
4]. Different mathematical tools and approaches are 
used for calculation of IMs [5]. There are methods of 
importance analysis that are based on the mathematical 
tools of logic algebra [2, 6, 7]. These methods are de-
veloped in this paper. In particularly new algorithms are 
proposed for calculation of IMs by mathematical tools 
of Multi-Valued Logic as Logic Differential Calculus 
and Multi-Valued Decision Diagram. Authors of the 
paper [8] considered approach for calculation of IMs 
based on Logic Differential Calculus and Decision Dia-
gram. In this paper this approach is developed and new 
algorithms improves calculation aspects of result in [8]. 

1. Multi-State Systems 
 
As a rule the initial system in reliability analysis 

interpreted as the system with two possible states: fail-
ure and functioning. Therefore such system presentation 
permits to investigate the system failure first of all. Dif-
ferent aspects of the system functioning isn’t analyzed 
in this case. There is other interpretation of the system 
as opposed to system with two states. Multi-State Sys-
tem (MSS) is the mathematical model for the represen-
tation of the initial system in reliability analysis, i.e. the 
set of reliability indices and measures are calculated 
based on this representation. This model allows defining 
some system states (more than two). These states can be 
interpreted as system failure, system partial functioning 
and system perfect functioning, for example. 

 
1.1. Structure function of the MSS 

 
Consider the MSS that has M performance levels: 

from zero to (M-1). Each of n system components can 
be in one of mi (i = 1, …, n) possible states: from the 
complete failure (it is 0) to the perfect functioning (it is 
mi-1). A structure function is one of typical representa-
tions of the MSS [6, 9] and is defined as: 

(x): {0,…,m1-1}…{0,…,mn-1}{0,…,M-1},   (1) 

where xi is the i-th component; x = (x1, …, xn) is vector 
of components states.  

The structure function (1) represents the system 
with two states if mi = mj = M = 2 (i  j; i, j =1, …, n). 

The i-th (i =1, …, n) system component states xi is 
characterized by probability of the performance rate: 

 i,s i ip Pr{x s }, s 0, , m 1     (2) 

There are some methods of the MSS reliability 
analysis [9]. Markovian methods, Monte-Carlo simula-
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tion, Logic Algebra methods are used for the MSS reli-
ability analysis and estimation. In this paper we use the 
Multi-Valued Logic (MVL) mathematical tools for the 
MSS reliability analysis, namely the Multi-Valued De-
cision Diagram (MDD) for the structure function (1) 
representation and the Logical Differential Calculus for 
the MSS behavior analysis. 

The Logical Differential Calculus for MSS quanti-
fication have been proposed in [8] firstly. The Logical 
Differential Calculus is mathematical tool that permits 
to analysis changes in function depending of changes of 
its variables. Therefore this tool can be used to evaluate 
influence of every system component state change. The 
principal disadvantage of the Logical Differential Cal-
culus application in reliability analysis is increase of 
computational complexity depending on number of sys-
tem component. In this case the MDD is used for the 
structure function representation [6]. 

 
1.2. Direct Partial Logic Derivation 

 
The Logical Differential Calculus of MVL func-

tion includes different methods and algorithms for esti-
mation of influence of variable/variables value change 
to the function value modification [6]. Direct Partial 
Logic Derivative (DPLD) is part of Logic Differential 
Calculus and can be used for analysis of dynamic prop-
erties of MVL function or MSS structure function.  

The DPLD with respect to variable xi for MSS 
structure function (1) permits to analyse the system per-
formance level change from j to j  when the i-th com-
ponent state changes from s to s  [6]. This change is 
defined by the derivative: 

i i

i

1,   if (s , ) j and (s , ) j;( j j)
x (s s) 0, other.

         

 


x x
   (3) 

where (si, x) = (x1,…, xi-1, s, xi+1,…, xn); ( is , x) = 
= (x1,…, xi-1, s , xi+1,…, xn); s, s  {0,…,mi-1} and j, 
j  {0,…,M-1}.  

The structure function (1) of the coherent MSS has 
following assumptions [9]: (a) the structure function is 
monotone; (b) all components are independent and rele-
vant to the system. 

 
1.3. Multi-Valued Decision Diagram 

 
The MDD is generalization of the Binary Decision 

Diagram (BDD) that is introduced for Boolean function 
representation in [10]. The MDD is a directed acyclic 
graph to represent the MVL-function [11]. For the struc-
ture function (1) this graph has M sink nodes, labelled 
from 0 to (M-1), representing M corresponding constant 
from 0 to (M-1). Each non-sink node is labelled with a 
structure function variable x and has mi outgoing edges. 

The sink node is interpreted as a system reliability state 
from 0 to (M-1) and non-sink node presents either a 
system component. Each non-sink node has mi edges 
and the first (left) is labelled the “0” edge and agrees 
with component fail, and the mi-th last outgoing edge is 
labelled “mi -1” edge and presents the perfect operation 
state of system component. 

The example of the MDD for the MSS with three 
components (n = 3) is in Fig.1, the structure function of 
this MSS (m1 = m2 = 2, m3 = 4 and M = 3) is defined as: 

 (x) = (x1 OR x2) AND x3               (4) 

 
Fig. 1. The MDD example 

 
2. Importance analysis of the MSS 

 
2.1. Importance measures for the MSS 

 
The MSS importance analysis is one of directions 

for estimation of MSS behavior against the system 
structure and components states [6]. In papers [12] for 
MSS define IM such as Structural Importance (SI), Crit-
icality Importance (CI), Birnbaum importance (BI), 
Fussell-Vesely importance (FVI), Component Dynamic 
Reliability Indices (CDRI). Short descriptions of these 
measures are in Table 1.  

In paper [8] algorithms for the calculation of the 
IMs have been considered. This calculation is imple-
mented by the DPLD for the MSS that is presented as 
the MDD. 

 
2.2. Calculation of the DPLD by the MDD 

 
In article [8] was presented two algorithms for cal-

culation of IMs for the MSS that is defined by the MDD. 
The DPLD (3) is principal tools in this calculation. These 
algorithms locate two sets of paths in the MDD. The first 
set consists of the paths that satisfy condition (si, x) = j 
that is path from the top-node to the sink node labelled j 
which includes the non-sink node of the i-th variable with 
value s only. The second set includes paths ( is , x)= j . 
The comparison of these sets permits to determine paths in 
the MDD that conform to non-zero values of DPLD (3). 
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Table 1 
Importance Measures of MSS 

Short name  Description 

SI SI concentrates on the topological structure of the system and determines the proportion of working 
states of system in which the working of the i-th component makes the difference between system 
failure and working state. 

BI BI of a given component is defined as the probability that such component is critical to MSS 
functioning and represents loss in the MSS when the i-th component was fails. 

CI CI measure is the probability that the i-th system component is relevant to MSS and is functioning 
in the specified time  

CDRI CDRI estimates the influence of the i-th component state change to MSS and is probability of MSS 
performance change depending on the i-th component state change. 

 

The modification of the algorithms in [8] permits to 
obtain two new algorithms. Both new algorithms have 
identical basic principle that locates the path from the top 
non-sink to the sink node of the MDD that satisfy condi-
tion for the DPLD (3) calculation. This path is united in 
the special structure that is named “Tree of paths”. 

The tree of paths is formed for the conditions of 
the DPLD calculation: (si, x) = j or  ( is , x) = j . 
Therefore the tree of paths for the condition (si, x) = j 
unites all paths from the root to the sink node j that in-
clude out coming edges of the non-sink node xi labelled 
s. The tree of paths for the condition ( is , x) = j  is 
formed similarly.  

 
Fig. 2. The tree of paths for the MDD in Fig.1  

 
For example, consider the tree of paths of the 

DPLD x for the condition 1, x = 0 
(Fig.2). This tree starts from root labelled “S” that con-
forms to the variable x1, because it is variable of the 
DPLD. The variable, on which the derivative is calcu-
lated, isn't included in the tree of paths. Consider other 
values of variables x2 and x3 between x1 = 0 and x = 
0 for the MDD in Fig.1. If the variable x2 = 0, the vari-
able x3 is absent in this path. Therefore the variable x3 
can has any value. So, the tree of paths includes node 
with value 0 for the variable x2 and nodes with values 0, 
1, 2, 3 for the variable x3 (it is “white part” of the tree in 
Fig.2). If the variable x2 = 1, the variable x3 = 0 (it is 
“gray part” of the tree in Fig.2). Therefore the tree of 
paths in Fig.2 locates all paths for condition 1, x = 0. 

2.3. New Algorithms for the DPLD calculation  
by the “tree of path” 

 
Consider two algorithms for the DPLD (3) calcula-

tion by the MDD based on the application of the trees of 
paths below.  

The Algorithm 1 has three steps. The tree of paths 
for the condition (si, x) = j is formed at the first step. 
The tree of paths for the condition ( is , x) = j  is ob-
tained at the second step. The last step of the algorithm 
is comparing these two trees. The general part of these 
trees is decision that is non-zero values of the DPLD 
(3). 

For example, Fig. 3 illustrates the calculation of 
the  DPLD x for MDD in Fig. 1 based 
on the Algorithm 1. The first step of this algorithm is 
forming of the tree of paths for condition 1, x = 0. 
This tree building is considered in detail above (Fig. 2). 
The second step of the algorithm permits to obtain the 
tree of paths for condition 11, x = 1. This tree in-
cludes all paths from the out-coming edge labelled 1 of 
the first variable x1 to the sink node 1 of the MDD in 
Fig. 1. The third step of algorithm is comparing of two 
trees that satisfy condition 1, x = 0 and 11, x = 1 
accordingly. The resultant tree of paths (the algorithm 
result) includes paths that are identical for two initial 
trees. So, the paths with x2 =0 and x3 = {1, 2, 3} are 
appended in the resultant tree, because they are in both 
trees. The path x2 =0 and x3 = 0 is only in the first tree 
for the condition 1, x = 0. The path x2 =1 and x3 = 0 
in this tree differ from the path x2 =1 and x3 = 1 in the 
tree for the condition 11, x = 1. Therefore the non-
zero valued of the DPLD x are (x1, x2, 
x3) = {(01, 0, 1), (01, 0, 2), (01, 0, 3)}. 

The Algorithm 2 is modification of the Algorithm 
1 and includes 2 steps. The first step is identical to the 
first step of the algorithm 1. The result of this step is the 
tree of paths for the condition (si, x) = j. The second 
phase of this algorithm unites the second and third steps 
of the algorithm 1.  

(01 , x) = 0 
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Fig. 3. Example of the Algorithm 1  
 
The tree of paths for the condition (si, x) = j is 

verified and transformed to the resultant tree of paths 
that is defined non-zero valued of the DPLD. The one of 
paths of the tree is selected and transformed taking into 
account next rules: (a) the value of the variable xi is 

changed from s to s ; (b) the value of the sink node is 
define as j . This transformed path is compared with the 
MDD. If this path is in the MDD, it is included into the 
resultant tree. 

For example, in the Fig. 5 is presented the Algo-
rithm 2 for calculation of the DPLD x 
for the MDD (Fig. 1). The first step of this algorithm is 
identical of the first step of the Algorithm 2. The resul-
tant tree is formed at the second step of the Algorithm 2. 
The building of this tree starts from analysis of the path 
(x1, x2, x3) = (1, 0, 0) (Fig. 4). This path doesn’t agree 
with any of paths of the MDD from the top node to the 
sink node labelled 1. Therefore this path isn’t included 
to the resultant tree. Next tree paths from the root to the 
sink node labelled 1 (x1, x2, x3) = (1, 0, 1), (x1, x2, x3) = 
(1, 0, 2) and (x1, x2, x3) = (1, 0, 3) are in the MDD. 
Therefore these paths are included in the resultant tree. 
And last path (x1, x2, x3) = (1, 1, 1) (Fig.4) isn’t in the 
MDD. The result of this algorithm (Fig.4) is identical to 
the result of the Algorithm 1 (Fig. 3). 

 

 
Fig. 4. Example of the Algorithm 2 

 
These algorithms have similar computation complex-

ity and the pseudo-code of these algorithms is in Fig. 5. 
 

3 Experimental researches 
 

The Algorithm 1 and the Algorithm 2 are tested by 
sets of the benchmark’s LGSynth91. With tool ABC (A 
System for Sequential Synthesis and Verification devel-
oped by Berkeley Verification and Synthesis Research 
Center) [13].  
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Search_Diagram(state_1){  
   Construct_TreeOfPaths_1(); 
} 
 
if(algorithm_1) { 
    Search_Diagram(state_2){  
         Construct_TreeOfPaths_2(); 
    }  
 
     Compare_Trees(TreeOfPaths_1, 

TreeOfPaths_2){ 
View_Result(); 
     } 
} 
else {   // algorithm 2 
     Compare_Trees(TreeOfPaths_1, 

Diagram(state_2)){ 
 View_Result();  
     } 
} 
 

Fig. 5.  Pseudo-code of algorithms  
 

These benchmarks are transformed to set on Deci-
sion Diagram. 18 Decision Diagrams are builder based 
on the benchmarks. One characteristic is considered in 
the testing and it is scanning duration in CPU ticks.  The 
computer with Windows 7 Professional 64-bit with two 
cores CPU Intel i5-2430M 2.40 GHz was used for test-
ing.   

The comparison of both algorithms according to 
calculating time given the number of variables and 
numbers of nodes (ordered by number of nodes) is in 
Fig. 6. For both algorithms it is possible to see the rela-
tionship between the number of variables and number of 
nodes in the BDD benchmarks. Numbers at the left part 
of the graphs indicate the number of the CPU ticks and 
the numbers in the right are number of the nodes in the 
benchmarks.  

The computation times of the Algorithm 1 and Al-
gorithms 2 are indicated as “NEW1-2T TIME” and 
“NEW2-1T TIME” respectively 

 
 

Fig. 6. Test 1 – elapsed time 
 
The comparison of the computation time for the 

Algorithm1 and Algorithm 2 show that the Algorithm 
has lesser computational complexity. 

 
Conclusion 

 
MDD is well-suited for representation of MVL 

function with large number of variables. MSS structure 
function has a lot of variables that are agree with system 
components. Therefore a structure function has a large 
dimension and MDD is useful for representation of 
MSS structure function. But most of algorithms in MSS 
reliability analysis are proposed for system representa-
tion by Truth Table or equation, so new algorithms for 
MSS estimation based on MDD representation of sys-
tem structure function development are necessary.  

New algorithms for calculation of the DPLD by 
the MDD are presented in this paper. Therefore DPLD 

is mathematical background in algorithms for calcula-
tion of importance measures. The computational com-
plexity of these algorithms is less than the previously 
proposed algorithms in [8]. 
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ДІАГРАМИ РІШЕНЬ І ЛОГІЧНІ НАПРАВЛЕНІ ПОХІДНІ  
ДЛЯ АНАЛІЗУ НАДІЙНОСТІ СИСТЕМ З ДЕКІЛЬКОМА РІВНЯМИ НАДІЙНОСТІ 

Й. Костолни, O. Зайцева 
Логічні направлені похідні використовуються в аналізі надійності систем з декількома рівнями працез-

датності для обчислення оцінок значущості елементів. Системи з декількома рівнями працездатності є ма-
тематичною моделлю, яка дозволяє описати декілька станів надійності системи. Проте така математична 
модель обумовлює використання спеціальних методів для аналізу, що обумовлене великою розмірністю 
обчислень. Один з можливих підходів до аналізу таких систем полягає в описі досліджуваної системи у ви-
гляді діаграми рішень. У даній статті пропонуються нові алгоритми розрахунку логічних направлених похі-
дних для обчислення індексів надійності систем з декількома рівнями працездатності заданих у вигляді ба-
гатозначних діаграм рішень. 

Ключові слова: надійність, діаграми рішень, логічні направлені похідні, системи з декількома рівнями 
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ДИАГРАММЫ РЕШЕНИЙ И ЛОГИЧЕСКИЕ НАПРАВЛЕННЫЕ ПРОИЗВОДНЫЕ  

ДЛЯ АНАЛИЗА НАДЕЖНОСТИ СИСТЕМ С НЕСКОЛЬКИМИ УРОВНЯМИ НАДЕЖНОСТИ 
Й. Костолны, Е. Зайцева 

Логические направленные производные используются в анализе надежности систем с несколькими 
уровнями работоспособности для вычисления оценок значимости элементов. Системы с несколькими уров-
нями работоспособности представляют собой математическую модель, которая позволяет описать несколь-
ко состояний надежности системы. Однако такая математическая модель обуславливает использование спе-
циальных методов для анализа, что обусловлено большой размерностью вычислений. Один из возможных 
подходов к анализу таких систем состоит в описании исследуемой системы в виде диаграммы решений. В 
данной статье предлагаются новые алгоритмы расчета логических направленных производных для вычисле-
ния индексов надежности систем с несколькими уровнями работоспособности заданных в виде многознач-
ных диаграмм решений. 

Ключевые слова: надежность, диаграммы решений, логические направленные производные, системы 
с несколькими уровнями работоспособности. 
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