Axicme, Haditlinicme ma pecypco3depedicenna 011 anapamuux i nPoZPaAMHUX 3Ac00i6

227

UDC 519.686

M. GLUKHIKH"?, M. MOISEEV?, H. RICHTER'

! Clausthal University of Technology, Clausthal, Germany
2 Saint-Petersburg State Polytechnical University, St. Petersburg, Russia

A STATIC ANALYSIS APPROACH
FOR FORMAL VERIFICATION OF SYSTEMC DESIGNS

A novel approach for formal verification of SystemC designs is presented which is based on static analysis and
logical inference. It allows to specify and to verify properties of SystemC processes as functions over time. Part
of that approach is the new “Aegis FDL” language for property specification. Furthermore, we wrote a plug-in
for the gnu gcc compiler which represents the SystemC design internally by a control flow graph. A subsequent
time course analysis is applied to obtain the process’states at all simulated points in time. Property checking is
implemented by selective linear definite resolution and allows to check assertions and to identify inactive
branches. The applicability of the approach is shown by an example.

Keywords: SystemC, Static Analysis, Logical Inference, Formal Verification, Abstract Interpretation.

1. Introduction

Digital hardware design relies mostly on synthe-
sizable code for field-programmable gate arrays
(FPGA). However, hardware changes are more tedious
and time consuming compared to software updates
which is why every error in a hardware design is expen-
sive. The reason for that is that a FPGA does not support
the designer by an operation system or a run-time sys-
tem, it has no keyboard, no screen and no high-level
debugger. Because of that, all hardware errors should
preferably be found and eliminated in an early stage of
the design. During the design process, it must be en-
sured that the design matches its specification, i.e. that it
has all prescribed functional properties. One way for
that is testing: a testbench is created on the FPGA in
parallel to the design which asserts combinations of
input signals and checks the output. However, because
of the exponential growth of possible combinations with
the number of input signals, testing can normally not be
exhaustive. An other way is simulation. All hardware
description language such as VHDL [1], Verilog [2] or
SystemC [3] have more or less comprehensive simula-
tion capabilities. These simulators allow to check some
properties of a design in the prepared testbench before
downloading the design into FPGA. A third way for
ensuring the needed functionality is formal design veri-
fication by means of model checking [4, 5], static analy-
sis [5,6,7] or deductive verification [8], for example.

SystemC [3] was originally created as a hardware
description language with built-in simulation features.
With the advent of commercial and open source high-
level synthesis (HLS) tools that can translate simulated
SystemC into real VHDL or Verilog code that can be
synthesized for a programmable logic gate array

(FPGA) situation has changed significantly. Examples
for such HLS tools are CTOS [9] from Cadence or
Catapult C from Calypto [10]. One cause for the situa-
tion change is that SystemC has a higher level of ab-
straction, especially when its C++ features are used,
compared to traditional hardware description language
like VHDL and Verilog. An other reason for the situa-
tion change is the comprehensive simulation features of
SystemC. Both together allow to shorten the develop-
ment cycle for FPGA designs significantly.

In this paper, we propose a novel approach for
formal verification of SystemC designs that is based on
a combination of static analysis methods and logical
inference methods [11,12]. This approach uses a special
language for specification of the required functional
properties. The rest of the paper is organized as follows.
In chapter 2, an overview of the approach is given. In
chapter 3, the used intermediate representation is briefly
considered. In chapter 4, the functional description lan-
guage is presented. Chapter 5 describes the developed
verification method in detail. Application of the ap-
proach to a practical example is considered in chapter 6.
The paper ends with a conclusion and a literature list as
reference.

2. Overview of the Approach

The approach is based on the idea that the designer
of an FPGA creates his design and writes-up in parallel
what functional properties he expects from it. Both, the
design and the functional properties have to be specified
by the designer in a formal language. For the specifica-
tion of the functional properties, we created a new lan-
guage called “Aegis FDL”. After the implementation of
the design and the description of functional properties

© M. Glukhikh, M. Moiseev, H. Richter

228

ISSN 1814-4225. PAIIOEJIEKTPOHHI I KOMIT’IOTEPHI CUCTEMM, 2013, Ne 5 (64)

are completed, an automated comparison of both is per-
formed in order to detect mismatches. The automated
comparison consists of the following three steps which
are considered in the following chapters:

1. Creation of an internal representation of the
analyzed design.

2. Parsing functional properties from Aegis FDL
source.

3. Verification of functional properties with use of
static analysis and logical inference methods.

2.1 Approach Restrictions

Together with the CTOS compiler from Cadence
and in compliance with many other SystemC compilers,
our approach has for practical reasons the following
restrictions:

1. Event-based wait/notify statements and shared
variables are not allowed.

2. Channels are limited to sc_signal. User-defined
channels or sc_fifo are not handled.

3. Only synchronous designs with a single
sc_clock are possible, clock-based waits are allowed.

4. Loops must be finite, and a number of itera-
tions must be deducible from the source code for each
loop. One infinite loop is allowed for a process, and a
wait() or wait(n) statement must exist in all execution
paths of the loop.

Interprocess communication is allowed in princi-
ple but not considered yet.

3. Intermediate Representation

The approach uses as intermediate representation
of the examined design an enhanced control flow graph.
We have developed the ssadump plugin [13] to the gcc
compiler to create such a control flow. The plugin ac-
quires objects from the gnu compiler after its static sin-
gle-assignment pass[14] and saves them in a file in
JSON [19] format.

This file is used to build-up the control flow graph.
After the compiler’s pass for static single-assignment,
the successor and predecessor of every statement is
known, and most design statements were simplified
which is both needed.

The intermediate representation is also extended
by different design properties, such as the set of de-
clared parallel processes, their main function and the
used signals and ports. The properties are determined by
abstract interpretation [15] of the sc_main function of
the design (see Chapter 5).

Additionally, we use a slightly modified SystemC
source code which includes callbacks. For example, the
sc_port constructor adds a new port to a process, and
the SC CTHREAD macro detects a new process, to-
gether with its main function.

4. Aegis Functional Properties
Description Language

We have developed a language called ,,Aegis
FDL* to describe the properties of a SystemC design as
functions over time. Aegis FDL specifies the design
properties by a set of conditions that are valid at a point
T in time, together with subsequent assertions. FDL
thus reflects the real-time behavior hardware designs
have. The basic element of Aegis FDL is the following
inference:

(T, <condition>) =>

It means: if <condition> is true at a point T in
time then the assertion will become true at the same T
or at a later point which is specified by <time>. Fur-
thermore, in the approach the course of time is discre-
tized and measured in “clock ticks”. Each clock tick is
the time quantum that the subsequent analyses will
simulate. The Backus-Naur [16] notation of <condi-
tion> and <assertion> of the inference is as follows:

(<time>, <assertion>)

<condition> ::= <unary operator> <condition> |
<condition> <binary operator> <condition> |
<timed element> <comparison_ operator> <value>

<assertion> ::= <assertion>, <assertion> |
<timed element><comparison_operator><value>

<comparison operator> ::= == | = | > | < |
:>|<:

<binary operator> ::= []| | &&

<unary operator> ::= !

<value> ::= <timed element> | <literal>

<timed element> ::= <element> |

<element> (<time>)

<time> ::= T | T + <NUM>

<element> ::= <NAME> | <element>.<NAME> |

<NAME> [<NUM>]

<condition> and <assertion> are defined by means of
the symbol <timed element> which denotes the value
of a variable or of a signal at some time moment. The
symbol <time>, as part of <timed element>, Will be
evaluated either at T or at a later point in time
T+<NUM> in order to check whether <assertion> is
true. NAME is a terminal symbol and denotes the name
of a signal or a variable. Furthermore, NUM is also a
terminal symbol, which is a literal of type unsigned in-
teger. Finally, we have added into Aegis FDL
<NAME>[<NUM>] and <element>.<NAME> in order
to support C++ arrays and structures.

5. Verification Method

Our verification method is based on abstract inter-
pretation, which is well-known static analysis technique
[15]. This technique works by standard interpretation of
the design, but uses so-called abstract semantic do-
mains to describe potential variable and signal values.
This stands in contrast to standard interpretation which
uses non-abstract, i.e. normal semantic domains. A se-
mantic domain is the set of all concrete values a vari-

Axicme, Haditlinicme ma pecypco3depedicenna 011 anapamuux i nPoZPaAMHUX 3Ac00i6

229

able or signal can assume in a design. For example, an
integer variable has a specific set of 32 bit integer val-
ues, and a pointer variable has a set of addresses. In an
abstract semantic domain however, values are not al-
ways exactly known, only intervals may exist. For ex-
ample, an integer variable can be abstracted as
[min...max], and a pointer variables by the tuple (ob-
ject, offset). Object is that location to which the pointer
points-to, and offset is an interval increment to that ob-
ject. Additionally, an abstract semantic domain allows
the value any which means there is no concrete value
information available.

For abstract interpretation, variable and signal val-
ues are stored in a so-called process state which is a set
of tuples (element, value) for any process in the design.
A tuple element is cither a variable of a simple type or it
is part of complex type such as array or structure. The
tuple value is taken from the abstract semantic domain
of the tuple element and depends on its type. Each
process state is valid only for a specific program point
which is the space between two consecutive, sequential
statements. So every statement in the process has at
least two states associated to it. These are the input
state immediately before a sequential statement, and the
output state immediately after that statement. Condi-
tions such as if or switch have one input state but more
than one output states, depending on the number of
else/case branches.

5.1. Analysis of the Time Course of the Process

The target of this analysis is the main function of
the process under consideration. In the main function,
the control flow of the process and its FDL property are
examined. This is done by simulating each clock tick in
one iteration which is performed by time step analysis
and predicate analysis. As a result, the time course
analysis will answer whether a FDL property is matched
by a design or not.

Let's consider the point T in time as the moment
when a FDL condition becomes true. Then, the time
course analysis has to start already Npaox clock ticks
earlier at T—Ny,e in order to reach full precision. Npaex
is the maximum number of wait() statements of all exe-
cution paths. It is also possible to use less than Ny,ex
clock ticks but then then the maximum precision will
not be reached. In case of an infinite loop, an iteration is
made for every loop cycle until time T is reached.

Additionally, we define “initial points” as the
program points where the process can start with a first
iteration.

The set of all initial points will include those pro-
gram points which are located immediately after the
wait() statements of the process, if there are any. In the
initial points, the process state contains tuples only with
any as element value.

In the following iterations, time step analysis and
predicate analysis are executed hand in hand in order to
simulate one clock tick. The analysis ends at so-called
final points which are those program points that lie
immediately before wait() statements. For every next
run, final points of iteration i will become the initial
points of iteration i+/ because the wait() statement is
the border for each iteration. Furthermore, also process
states evolve before the run, because signal values
should be updated according to the SystemC specifica-
tion [3]. So, each signal value is internally represented
by a pair of (R-value, W-value), where R-value is the
value of the signal before an iteration and W-value is
the value afterwards. For the developer of FDL proper-
ties, it is sufficient to specify the signal R-value of every
condition and assertion.

After Ny, iterations, the time course analysis of
the process reaches T, and the FDL property of the
process that was specified to become true at time T or
later has to be checked. To accomplish this, information
about the property’s condition is added to the process
state at time T. From time T on, Ny, additional itera-
tions have to be executed because in the coming interval
[T...T+Ngorwl all FDL assertions must match with the
design. At the end of an iteration, the assertion that is
prescribed for that clock tick is tested with the help of
predicate analysis.

In the case that an assertion does not match with
the design, the analysis terminates with a negative re-
sult, otherwise it continues until T+Ny,, and ends with
a positive result.

5.2. Time Step Analysis

The purpose of the time-step analysis is to deter-
mine signal and variable values in every clock tick. The
analysis starts in initial points which were determined
by time course analysis. It stops in final points. All pos-
sible execution paths from initial points to final points
are traced. For each sequential statement in a path, the
analysis considers the input state of the statement and
updates it to the output state. For example, the state-
ment b=b+1 modifies b value from [min...max] in the
input state to [min+1...max+1] in the output state.

For a conditional statement such as if, the output
states of all then...else branches are calculated. For in-
stance, the statement “if (@>0)” will result in a positive
value for a in the true branch and in a non-positive
value for the false branch as output state. For an input
state of the if statement that is defined by the interval [-
N...P] for a, the output states of the if statements will be
defined by the two subintervals [-N...0] in case of false
and [1...P] in case of true. If a finite loop is encountered,
the loop’s body is iterated n times, where n is the loop’s
cycle limit, provided that n could be determined as a
static value from the design.

230

ISSN 1814-4225. PAIIOEJIEKTPOHHI I KOMIT’IOTEPHI CUCTEMM, 2013, Ne 5 (64)

5.3. Predicate Analysis

Predicate analysis examines the interdependencies
between elements. An element is either a variable of a
simple type such as float or integer or it is part of a
complex type such as array or structure. The interde-
pendencies are described in predicate logic of second
order. This logic type is built-up of terms of first-order
logic and of so-called quantifiable relation variables.
For predicate checking, each process state is extended
by a set of predicates which will become true for those
program points for which they were defined.

Because of the fact that the value of an element
can change over time and between program points as
well, the predicate checking must follow. For example,
the statement b=b+1/ may give a predicate “b(7, next) =
b(T, prev)+1”, where prev and next are the program
points immediately before and after the statement.

After predicate checking of a statement, new in-
formation is created and stored in the process state. For
example, the information “a>b" is created in case of an
“if (a>b)” statement for the true branch, and “a<b” is
created for the false branch. It happens also that infor-
mation is removed from the process state if a variable is
no longer used after some clock ticks.

Finally, predicate checking examines also whether
a FDL condition is true for all possible values
(=provable) or whether it is true only for some possible
values (=satisfiable). There are two situations where the
distinction between provable and satisfiable is impor-
tant: The first situation occurs if an ,,if" or ,,switch*
statement is examined. In this case, a branch is classi-
fied as active if is satisfiable. It is classified as inactive
if the negation is provable. The second situation occurs
during property check in order to find a design error in
source code. In this case, a property can be verified if its
assertion is provable, or it can be disproved if the nega-
tion of its assertion is satisfiable.

In order to find-out whether an assertion is prov-
able or satisfiable, we are using Horn clauses and selec-
tive linear definite resolution (SLD resolution) [11]. In
general, a Horn clause is a disjunction of literals where
there is at most one positive literal. For inference rules
representation, so-called definite clauses with exactly
one positive literal are used. They can be written in im-
plication form: p;Ap,, ..., Ap,— q. For assertions repre-
sentation, goal clauses are used which contain no posi-
tive literals and can be written in conjunction form:
qING2, -y NG

The resolution of a goal clause with a definite
clause into a new goal clause is the basis of the SLD
resolution inference rule. It is also used to implement
logic programming and the programming language
Prolog. SLD resolution proves sequentially that p;,
P2, ..., Pn are true to make the conclusion that ¢ is true.

Although SLD resolution is simple and thus fast it
is powerful enough for predicate analysis. We have also
considered to use commercial tools, such as the Micro-
soft Z3 Solver [17] or the HOL theorem prover [18], for
example, but it turns out that it is very time-consuming
to convert data between analyzer internal format and the
tool’s format.

6. Example Application

As an example of the approach, a single storage
element is considered that is depicted in fig.1. It allows
for push and pop operations, and provides for full and
empty flags. Its implementation in SystemC is given
below.

in out
push empty
—> Cell >
pop full
—> —>

Tclk

Fig. 1. Stack-like memory cell and its ports.

1 :template <class T> SC MODULE (hwcell) {
2 T data;

3 :public: // ports omitted, see fig. 1

4 SC_CTOR (hwcell) {

5: SC_CTHREAD (run, clock.pos());

6 }

7 void run() {

8: bool isFull = full = false;

9: empty = true;

10: data = out = 0;

11: wait();

12: while (true) {

13: bool pushed=push && (!isFull || pop);
14: bool popped = (pop && isFull);
15: if (popped) isFull = false;

16: if (pushed) data = in, isFull = true;
17: full = isFull;

18: empty = !isFull;

19: out = data;

20: wait();

21: }

22 }

23:};

For this design, we define a property in Aegis FDL as:
(T, (push == true) && (empty == true)) =>
(T+1, full == true, out==in(T))

This property specifies that if at time T the cell is empty
and push is true, then the value at the in port is stored.
One clock tick later, that value is output to the out port
and full is true.

The approach is performed in the following steps.
Below, the signal R-values are recorded as “signal-R”,
while the W-values are recorded as “signal-W”.

Axicme, Haditlinicme ma pecypco3depedicenna 011 anapamuux i nPoZPaAMHUX 3Ac00i6

231

1. First, the control flow graph is built-up, and
run() is identified as the main function of the process;
in, push, pop, out, empty and full are found as process
ports.

2. The verification starts at clock tick 7-/, be-
cause the infinite loop of the process contains only one
wait. The only initial point that can be found is located
after the wait() statement at line 20. The initial value is
any for all ports and variables.

3. Atlines 17 and 18, at clock tick 7-1, “full-W(T-
1) =isFull(T-1,17)” and “empty-W(T-1)=not isFull(T-
1,17)” predicates are extracted by predicate checking.

4. At the line 20, 2nd iteration starts, and clock
tick 7 is reached. The predicates “full-R(T)=full-W(T-
1)” and “empty-R(T)=empty-W(T-1)" are added to the
process state. Additionally, time course analysis adds
FDL conditions push-R(T)=true and empty-R(T)=true
as new variable tuples (push-R(T), true), (empty-R(T),
true) to the process state.

5. At the line 13, predicate analysis infers that
“pushed(T, 13)=true” holds because of “push(T)=true”
and because of “isFull(T-1,17)=false”. To infer the
value of isFull, predicate checking uses predicates
“empty-W(T-1)= not isFull(T-1,17)", “empty-
R(T)=empty-W(T-1)” and “empty-R(T)=true, together
with the “inverse symmetry rule” (A=not B < B=not A)
and the “equal transitivity rule” (4=C «—A4=B A B=C).

6. Because of “pushed(T 13)=true” at line 16
only the true branch is active, so only the predicate
“data(T,16)=in-R(T)” and the tuple (isFull(T,16), true)
are added to the process state.

7. At line 17, the tuple (full-W(T), true) is added
because isFull(T,16) is true.

8 At line 19, the predicate “out-
W(T)=data(T,16)” is added. Then, the final point at time
T is reached, and the predicate “out-R(T+1)=out-W(T)”
and the variable tuple (full-R(T+1), true) are added to
the state.

9. As a result, predicate analysis concludes that
“full-R(T+1)==true” holds and that “out-R(T+1)=in-
R(T) ” holds. The latter is true because of equal transitiv-
ity and the predicates “data(T 16)=in-R(T)”, “out-
W(T)=data(T,16)”, “out-R(T+1)=out-W(T)”.Because
of that, both assertions full(T+l)==true and
out(T+1)==in(T) are inferred, and the property given in
Aegis FDL is proved.

Conclusion

We have developed an approach which allows to
verify the behavior of SystemC designs as functions
over time. For that purpose, we developed a language
which can describe the design behavior by properties in
second order logic. The approach is based on static
analysis and logical inference. Its applicability was

demonstrated by an example. In the future, we will use
the approach for industrial applications. Additionally, it
is planned to generate Aegis FDL specifications auto-
matically out of SystemC designs using static analysis
and to employ them for the analysis of higher-level
modules created from lower-level components.

References

1. EDA-STDS.ORG Page [Electronic resource]. —
Available to: http://www.vhdl.org. — 20.12.2012 y.

2. Verilog Resources Page [Electronic resource]. —
Available to: http://'www.verilog.com/.

3. Accelera Systems Initiative [Electronic
resource]. — Available to: http.//www.accellera.org/
home/. — 20.12.2012 y.

4. Sysfier: Actor-based formal verification of
systemc [Text] / N. Razavi, R. Behjati, H. Sabouri,
E. Khamespanah, A. Shali, M. Sirjani // ACM Trans.
Embed. Comput. Syst. —2011.

5. Blanc, N. Race analysis for systemc using
model checking [Text] / N. Blanc, D. Kroening // ACM
Trans. Des. Autom. Electron. Syst. — Jun. 2010. — Vol. 15,
no. 3. —P.21:1-21:32.

6. Static Analysis Method for Deadlock Detection
in SystemC Designs [Text] / M. Moiseev, A. Zakharov,
1 Klotchkov, S. Salishev // International Symposium on
System-on-Chip 2011.

7. Nielson, F. Principles of Program Analysis
[Text] / E Nielson, H.R. Nielson, C. Hankin. — Springer
(Corrected 2nd printing, 452 pages, ISBN 3-540-65410-
0), 2005.

8. Using SMT Solvers for Deductive Verification
of C and Java programs [Electronic resource]. —
Available to: http://research.microsoft.com /en-us/um/
redmond/events/smt08/filliatre.pdf. — 20.12.2012 y.

9. C-to-Silicon Compiler [Electronic resour-
ce]. — Available to: http://www.cadence.com /pro-
ducts/sd/silicon_compiler/pages/default.aspx. —
20.12.2012 y.

10. Catapult: Product Family Overview [Electro-
nic resource]. — Available to: http://calypto.com/en/
products/catapult/overview.

11. Jean H., Gallier. Logic for Computer Science.
Foundation of Theorem Proving [Text] / Jean H. Gallier
// Harper & Row Publishers, Philadelphia, 2003.

12. Glukhikh, M. Using Dependencies to Improve
Precision of Code Analysis [Text] / M. Glukhikh, V. It-
sykson, V. Tsesko // Automatic Control and Computer
Sciences. —2012. — Vol. 46, No. 7. — P. 338 — 344.

13. Static Analysis Framework [Electronic
resource]. — Available to: http://www.digiteklabs.ru/en/
aegis/platform. — 20.12.2012 y.

14. Static Single Assignment Pass [Electronic
resource]. — Available to: http://gcc.gnu.org/ online-
docs/gecint/SSA.html. — 20.12.2012 y.

15. Cousot, P. Abstract Interpretation [Text] /
P. Cousot // ACM Comput. Surveys. — 1996. — Vol. 28,
no. 2. —P. 324 —328.

232 ISSN 1814-4225. PAIIOEJIEKTPOHHI I KOMIT’IOTEPHI CUCTEMM, 2013, Ne 5 (64)

16. Backus-Naur Form (BNF) Semantics [Elec- 18. HOL4 Kananaskis 8 [Electronic resource]. —
tronic resource]. — Available to: http:// infolab.stanford. Available to: http://hol.sourceforge.net/. — 20.12.2012 y.
edu/~burback/dadl/node8.html. — 20.12.2012 y. 19. JSON [Electronic resource]. — Available to:

17. Z3 Solver [Electronic resource]. — Available http://www.json.org/. — 20.12.2012 y.
to: http://z3.codeplex.com/.

Hocmynuna 6 pedaxyuro 1.02.2013, paccmompena na peokonnezuu 6.03.2013

Penensent: a-p TexH. Hayk, npod., nmpod. kad. nmwxeHepun nporpaMmmHoro odecrieyenus: b.M. Konopes, Hammo-
HanbHBINA a’poxocMudeckuil yausepcutet uM. H.E. JKykoBckoro « XAI», XapbkoB.

MOJIXOA K ®OPMAJIbHOM BEPUGUKAIIMU SYSTEMC-ITIPOEKTOB
HA OCHOBE CTATHYECKOT'O AHAJIN3A

M. I'nyxux, M. Moucees, X. Puxmep

Paspaboran moaxon k GopMaiabHOM BepuduKamuu nporpamM Ha si3eike SystemC. ITogxom ocHOBBIBaeTCS Ha
HCITIONb30BAHUH METOIOB CTATHYCCKOTO aHAIM3a M JIOTMYCCKOTO BBHIBOAA U IO3BOJISCT BEpUBHUIIMPOBATH (DYHKIIHO-
HaJIbHBIC CBOMCTBA mporieccoB SystemC. Jlist onvcanus QyHKIIMOHATIBHBIX CBOMCTB pa3padoTaH CIICIIHAILHBIHN SI3BIK
“Aegis FDL”. Jlnsa BHyTpeHHero npeacTarieHus SystemC mporpaMM HCIOIb3yeTcs rpad MOTOKa yIpaBieHHS, KO-
TOPBIN CTPOUTCS C MOMOIIBIO TUIATMHA K KOMITHIIATOPY gCC. 3aTeM OCYIIECTBIISIETCS MOCTPOCHUE BO3SMOXKHBIX CO-
CTOSTHMI TTpoIecca ISl Pa3IUYHBIX MOMEHTOB CHMYJISIIMH C MTOMOIIBI0 METOIOB CTaTHUYSCKOrO aHaiu3a. MeTombl
JIOTHYECKOT'O BBIBOJIA MCIONB3YIOTCS IS ONpPEeSiCHUS MEPTBBIX BETBEH B XOIE aHAJIM3a. a TAKXKe JUIs IPOBEPKU
YTIBEPXKICHUN (DYHKITMOHAIBHBIX CBOMCTB. B KadecTBe 0Oa3uca JIOTHYECKOTO BBIBOMA, WCIONB3YIOTCS THU3BIOHKTHI
XopHa ¥ IpaBuIIo pe3oioruii. PaboTocrnocoOHOCTh OIX0Aa NPOAEMOHCTPUPOBaHA Ha TIPUMEpE.

KiroueBble ciaoBa: SystemC, cTaTHUYSCKHI aHaIW3, JIOTMYECKHN BBIBON, (popManbHas BepubuKamums, adcT-
paKTHAs HHTEPIIPETAIIHUS.

HIIXII 10 ®OPMAJILHOI BEPU®IKAIIL SYSTEMC-ITIPOEKTIB
HA OCHOBI CTATUYHOI'O AHAJII3Y

M. I'nyxux, M. Moicees, X. Pixmep

Pozpobnennii miaxin xo popmansHoi Bepudikarnii nporpam Ha MoBi SYSTEMC. Ilinxix rpyHTy€eThCSI HA BUKO-
PHUCTaHHI METOMIB CTATHYHOIO aHAJi3y 1 JIOTIYHOTO BUBOY 1 JO3BOJISE BEPUPHUIIMPOBATh (DYHKINIOHAJBHI BIACTHBOC-
1i poreciB SYSTEMC. [lns omucy (yHKIIOHAJBHUX BIACTHBOCTEH po3poliieHa crierianbHa MoBa “Aegis FDL”.
s BayTpimHboro npencrasiaends SYSTEMC nporpaM BUKOPUCTOBYEThCS rpad) MOTOKY YHpPaBIiHHS, SKUH Oymy-
€THCS 32 JIOTIOMOTOI0 IUIariHa JI0 KOMITIsiTopa gec. [1oTiM 31iHCHIOEThCS TOOYIOBa MOXKIIMBUX CTaHIB MPOLECY IS
PI3HUX MOMEHTIB CUMYJISILIT 32 IOMTOMOT'OF0 METOJIB CTaTHYHOrO aHaji3y. MeToau JIOriYHOr0 BUBOAY BUKOPUCTOBY-
I0THCS JIJIsl BU3HAYCHHSI MEPTBUX TJIOK B XOJIi aHAJTi3y. a TAKOX JUIsl IEPEBIPKHU 3aTBEp/KEeHb (PYHKIIOHAILHHUX BJIac-
TUBOCTEH. SIK Ga3uc JOTiYHOrO BUBOAY, BUKOPHCTOBYIOTHCS TU3BIOHKTHI XOpHA 1 paBWiIo pesomntolii. [Ipane3aar-
HICTB MiJIXOly NPOAEMOHCTPOBAaHA Ha MPUKIIAJII.

Karwuogi caoBa: SYSTEMC, crarnunuii aHami3, JIOTiYHUN BUBiJ, GopmaibHa Bepudikalis, abcTpakTHa iH-
Teprperaris.

I'nyxux Muxamn — kaHJ. TeXH. HayK, AOLEHT, TexHomorumuecknit YHuBepcuter Knaycrans, I'epmanuss; CaHkT-
[erepOyprekuii [ocynapcrBennslii [lonurexanueckuiit Yauepeuret, Poccus, e-mail: mikhail. glukhikh@gmail.com.

MouceeB Muxams — kaHJ. TexH. Hayk, noueHt, Cankr-IlerepOyprekuii ['ocynapcrBennsiil [Tomurexauaeckuii
Yuupepcuret, Poccus, e-mail: mikhail. moiseev@gmail.com.

Puxtep Xapaawsn — 1-p TexH. Hayk, npodeccop, Texnomormueckuit Yuusepcuter Knaycrans, I'epmanus,
e-mail: hri@tu-clausthal.de.

