284

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2012, Ne 7 (59)

UDC 004.05

R. LEDYAYEV!, B. RIES?, A. GORBENKO'

! Department of Computer Systems and Networks, National Aerospace University, Kharkiv, Ukraine
2 Laboratory for Advanced Software Systems, University of Luxembourg, Luxembourg

REACT: AN ARCHITECTURAL FRAMEWORK FOR THE DEVELOPMENT
OF A SOFTWARE PRODUCT LINE FOR DEPENDABLE CRISIS
MANAGEMENT SYSTEMS

The paper reports our practical research efforts and experience in specifying REACT framework in the context
of software product line engineering, striving to incorporate dependability into the system requirements. We
present an requirements specification derived from the REACT and discuss how REACT-based applications
can be implemented in the context of service-oriented architecture. Dependability policies configuration capa-
bilities were incorporated to enable developers to control the behaviour of the systems facing certain threats
and failures. We discuss a Car Crash Management System as a case study of REACT-based project.

Key words: software product line engineering; dependability policies; crisis management systems, architectural

framework; service-oriented architecture.

Introduction

The need for crisis management systems has
grown significantly over time. A crisis can range from
major to catastrophic, affecting many segments of soci-
ety. Crisis management involves identifying, assessing,
and handling crisis situations. A crisis management sys-
tem (CMS) facilitates this process by orchestrating the
communication between all parties involved in handling
the crisis. The CMS allocates and manages resources,
and provides access to relevant crisis-related informa-
tion to authorized users of the CMS.

A Software Product Line (SPL), as defined by
Clemens and Northrop [3], is “a set of software-
intensive systems sharing a common, managed set of
features that satisfy specific needs of a particular market
segment or mission and that are developed from a
common set of core assets in a prescribed way”.

The variety of CMS and their commonalties have
motivated us to consider applying SPL engineering ap-
proach to the development of dependable crisis man-
agement systems. Due to their nature, crisis manage-
ment systems must be dependable, i.e. they must be able
to deliver services that can justifiably be trusted [1].
Few techniques have been defined that take into consid-
eration dependability constraints and SPL engineering
approach. In this paper, we will experiment with some
of the techniques developed at the University of Lux-
embourg [4, 8] in a particular development environment
and introduce an extension to the platform to deal with
dependability attributes at the implementation-level.
The development environment used for this experimenta-
tion is the REACT framework, used by instructors and

students of the University of Luxembourg in teaching
courses on software engineering and software product
line engineering. It is also targeted at researchers as a case
study to perform experimental validations.

The rest of the paper is organized as follows. Sec-
tion 1 highlights the general approach followed in this
paper that combines the concepts of: SPL, dependability
and architectural framework. Section 2 describes the pro-
cess of combining various methodologies for the re-
quirements elicitation of the REACT platform. Section 3
provides some theoretical and practical details on creating
REACT applications and enhancing them with depend-
ability policies configuration capabilities. Section 4 dis-
cusses the Car Crash Management System application
case study. Finally, the analysis of the results of our re-
search and development efforts, with some suggestions
for future research, is presented in the Conclusion.

1. Dependable Crisis Management Systems
Development with REACT

In this work, we have followed a software product-
line approach to develop dependable crisis management
systems. The activities that we performed to develop
such systems are based on the abstract process for SPL
engineering defined by Pohl et al. [9]. This process de-
fines a number of activities divided into two categories:
domain activities, which are related to the software plat-
form, and application activities — related to the concrete
systems under development.

We have focused our work on the following three
activities: Domain Requirements Engineering, Applica-
tion Requirements Engineering, Application Design.

© R. Ledyayev, B. Ries, A. Gorbenko

Haoitinicms ma esonoyiitHicmos npozpamHux cuchnem

285

(Crisis Management Sysiem)

Mctification

External Services

Internal Resource

Hutman
Resource

FirstAid
Material

Governmental | | Medical
Services ErViCEs

Coordinstor

Perzonal

—— Mandatory
— Cptional

{i Alternative (xor)

System Admin

Legend &

Remove Ohstacle

(Crisis Types)
=

Plant Explosion

Matursl Disasters

tdsjor Accident

Fig. 1. Some Features of the REACT Platform

This abstract process must be instantiated with concrete
techniques in order to be usable.

We have selected specification notations from the
previous work held at the University of Luxembourg. In
the Domain and Application Requirements Engineering
activities, we use the artifacts defined in the FIDIJI
methodology [8] for the analysis phase in a software
product line approach, and complement it with DRET
[4] for the specification of dependability attributes.

In our approach, the software platform used to de-
velop dependable crisis management systems is imple-
mented as an architectural framework. An architectural
framework [8] is “a layered set of reusable models char-
acterizing core assets devoted to the specification and
realization of a specific SPL”. The Application Design
activity is performed by means of derivation from the
platform, following a set of guidelines which allow de-
veloping systems that reuse some of the platform com-
ponents and have architecture compliant with that of the
framework.

2. Dependability-enhanced Requirements
for REACT Framework

We built our work on the previous efforts of others
to draw requirements for general crisis management
product line as part of the REACT project. The work on
REACT requirements began with selecting the core set
of features that could be represented in the systems
which we set out to describe. From a large set of pro-
posed features we have selected a subset, large enough
to be representative and small enough to be manageable.
This subset is depicted in Fig. 1. The next step consisted
in the actual Domain requirements engineering with
DRET. DRET is a requirements elicitation template,
suitable for the elicitation of dependable SPLs. This
template is composed of two parts: a DOMain Elicita-

tion Template (DOMET), which represents a data dic-
tionary and is depicted using a tabular notation; and a
Use Case Elicitation Template (UCET), which repre-
sents SPL. members’ behaviour and is depicted using a
use-case-scenario-based template. In the context of our
car crash management system case study, concrete ex-
amples of DOMET and UCET are given in Section 4.
Complete specification of these two templates is defined
by Gallina et al. [4].

3. REACT Applications with Dependability
Policies Configuration Capabilities

One of the major goals of creating the REACT
framework was to enable developers to derive new sys-
tems belonging to the same family (line) from this ar-
chitectural framework without unnecessary time and
effort overheads needed for creating the same systems
from scratch. We have accomplished this by including
most general business objects and functionality into our
framework and providing the means for new product
derivation along with the framework distribution.

The process of deriving new systems from REACT
is fairly straightforward. Two kinds of such systems
could be created using the framework: server and client.
Each client can simultaneously use one, two or any oth-
er number of servers located anywhere in the world. A
typical physical architecture of a REACT application is
shown in Fig. 2.

Another goal we set out to accomplish was to make
these newly derived systems more dependable and resil-
ient. This was accomplished by introducing dependabil-
ity configuration capabilities for each of these systems.

What is of particular interest for us here is the exis-
tence of two configuration files, one on the server and
the other on the client side, which have direct impact on
systems behaviour and dependability.

286

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2012, Ne 7 (59)

The first of these files is an XML file, called con-
figurations.xml, stored on the server. In the current im-
plementation of REACT server, the purpose of this file
is twofold:

1. To specify which services to load at startup.

2. To provide dependability metadata about each
of the available services.

At the moment, the metadata is collected and reg-
istered in this file manually. This metadata consists of
the following: Name of the service, Minimum response
time, Maximum response time, Average response time,
Transactions per second, Bytes per second and Errors.

External
Ressaurces

T

m
bl

WPN via Internet or
Frivate network,

m
4
ra

L

m
4
&

Crisis Managemert System \

Lacal ressaurces

wire connection

wiireless connection

serers

crigis Cd\ﬂawl'
(clignt)y

Super obsatver
(Client)

Fig. 2. Physical Architecture of a REACT Application

The second file is an XML file, called ClientCon-
figurations.xml, stored on the client. Currently, this file
serves two purposes:

1. Choosing which dependability policy to use.

2. Specifying maximum allowed response time
for the service called.

Four patterns of dependability-oriented composi-
tion [6], adapted from our previous work, have been
used to develop policies for the Client application. The-
se patterns were not 100% implemented but simply used
as a basis for our dependability policies for the purpose
of illustration. In a nutshell, each of these patterns could

Concept Name | Var Type

be used to prescribe different system behavior, which is
the gist of what we have done with them. For more de-
tailed information on these patterns we refer the inter-
ested reader to the work by Gorbenko et al. [5].

4. Car Crash Management Application
derived from the REACT Framework

Let us illustrate all of the theoretical information
above with a brief Car Crash Management System case
study. To create this system we have selected features
corresponding to car crash management activities and
eliminated the features we did not need.

Next, we have described our system using the
combination of FIDJI and DRET and registered all of
the necessary features in the DOMET table. Part of this
table is depicted in Fig. 3.

The behavior of the system is described using
UCET use cases. The Car Crash Management system
summary level use case is described as follows:

ID: UCO01

Collaborative Use Case name: Deal with the cri-
sis.

Selection category: Mand.

Description: Describes the main sequence of
events that take place when car crash happens.

Synchronous Primary Actors: System Adminis-
trator, Worker, Coordinator, External Services.

Synchronization: Among other Single and Col-
laborative UCETsS of the system.

Resources: DB-data (competitive sharing, transac-
tional resources), Notification data (cooperative re-
source).

Dependency: Includes Single UC02, Single UCO03,
Single UC04, Single UCO05, Single UCO07, Collaborative
UCO08, Single UCI1.

Preconditions: The crisis has occurred. Worker is
at the scene of the crisis. Administrator is not signed in.
Missions are not assigned and not executed.

Postconditions: The crisis is dealt with and its
consequences are eliminated (main valid scenario post-
condition). The crisis is not dealt with and not all of the
consequences are eliminated (mis-scenario postcondi-
tion).

Dependencies

Systern Ldredn Ivlard Crisis Specialization ~ Wrong Wrong content. High
rranage ment of Hurnan inforrnation CF
sygtern Fesoree ertering IV
adrdrnistrator,
Ilanages usexs
and devices,

Fig. 3. Car Crash Management System. Fragment of DOMET Specification

Haoitinicms ma esonoyiitHicmos npozpamHux cuchnem

287

Main scenario (abbreviated):

1. Worker calls the Car Crash Management centre
and Administrator answers the call.

2. Worker reports the crisis to Administrator.

3. Administrator signs into the system (Single
ucCo02).

4. Administrator registers the crisis with the sys-
tem (Single UCO03).

5. Administrator selects a Coordinator and sends
him a Personal Notification (Single UC04) ...

Alternatives to the main scenario:

3a. If the System Administrator credentials are in-
valid, he is invited to retry. If they are valid the main
sequence continues starting from step 4.

Variation points description: V1: Type=Alt, For-
mat={worker, witness, device}, Concerns=Behavior.

Non-Functional: security: it must always be true
that logging into the system is done via secure connec-
tion; efficiency: it must always be true that there are no
delays in communication between the actors of the sys-
tem; reliability, scalability.

Duration: Dx hours (where Dx is the time be-
tween Administrator's logging in and Coordinator's
informing the system that the crisis was successfully
managed).

Mis-scenarios: Administrator misunderstands col-
umn meaning and enters wrong information about the
crisis.

Recovery scenarios: The erroneous condition
concerning the wrong information is detected and the
Administrator is requested to enter the information
again.

Note that fields in italics have been introduced in
DRET to help in recognizing commonalities and vari-
abilities; and that underlined fields specify dependabil-
ity-related properties. Following this requirements elici-
tation stage, we have derived a Car Crash Management
server application from the REACT framework and
developed a client application following the require-
ments we elicited in the previous stage.

The Apache Tuscany framework [2, 7] for devel-
oping service-oriented applications is the heart of all of
the service binding happening behind the scenes. Tus-
cany implements a number of standard communication
protocols (e.g. SCA, SOAP, RMI). REACT service
components may communicate with each other or with
external services using any of these protocols.

In this paper, we focus on implementation parts re-
lated to dependability. What is of special interest for us
here and, therefore, is worth mentioning in this article is
what happens every time there is a need to call a par-
ticular service. The method getServiceAccording-
ToPolicy (policy, servicel, service2), belonging to one
of the classes on the client side, is the heart of the logic
performing all of the necessary voting on which service
to choose to carry out the requested functionality. The
choice is based on the policy used and the metadata

available for each service. Each time we want to call a
specific service:

1) the name of the policy to be used and/or any ad-
ditional information is read from the ClientConfigura-
tions.properties file located on the Client;

2) based on the policy, the appropriate metadata
about the given service is read from the configura-
tions.xml files located on the Servers;

3) based on this metadata and/or any other condi-
tions specified in the policy the voting takes place on
which service fits the policy criteria best;

4) the appropriate service is returned to be used by
the Client.

Conclusion

The contribution of this paper is two-fold. In the
first place, we have reported on experimentation with
existing techniques in a consecutive case study: the cri-
sis management systems product line. In the second
place, we have extended the REACT platform with de-
pendability capabilities, so that REACT applications
(derived from the platform) increase their dependability
by using some predefined dependability policies and
metadata. Experimentation has been performed that
derives three different CMS applications. This paper
presents one of these three derived applications with the
selected methodological techniques. This experimenta-
tion allows us to formulate the following feedback.

At the requirements elicitation stage of our work
we have experienced that it was not easy to determine
which features should be included in the framework and
which should not, to determine which business objects
are general enough to belong to any derived system and
to eliminate all of the unnecessary dependencies.

We suggest that more attention should be given to
carefully examining/re-engineering the: Features be-
longing to the framework; Existing business objects;
Dependencies between various modules; Current
UCETs and DOMETSs. We propose several solutions for
ensuring dependability of our SOA applications:

1. Using specific metadata to describe services

2. Using configuration files (.xml, .properties)

Configuration files are used to determine applica-
tion behaviour (policies) and to store various depend-
ability metadata (description).

In addition, some questions still remain concerning
the following:

— which dependability metadata should be stored
on the server and which on the client?

— who should collect this metadata?

— from where this metadata should be collected?

We believe that REACT framework itself could be
enhanced with dependability collecting capabilities.
Development of such dependable, scalable and high-
performance generic architectural framework as
REACT is in a great demand.

288

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2012, Ne 7 (59)

References

1. Basic Concepts and Taxonomy of Dependable and
Secure Computing [Text] / A. Avizienis, J.-C. Laprie,
B. Randell, C. Landwehr // IEEE Trans. on Dependable
and Secure Computing. — 2004. — Vol. 1, No. 1. — P. 11-33.

2. Apache Tuscany [Electronic recourse]. — Access
mode: http://tuscany.apache.org. — 15.03.2012 y.

3. Clements, P. Sofiware Product Lines: Practices
and Patterns [Text] / P. Clements, L. Northrop. — New
York: Addison-Wesley Profrssional, 2001. — 608 p.

4. Gallina, B. A Template for Requirement Elicita-
tion of Dependable Product Lines / B. Gallina, N. Guelfi.
— Conf. on Requirements Engineering: Foundation for
Software Quality — REFSQ’07: conf. proc. — Trondheim
(Norway), 2007. — P. 63-717.

5. Gorbenko, A. Using Inherent Service Redundancy

[Text] / A. Gorbenko, V. Kharchenko, A. Romanovsky //
Methods, Models and Tools for Fault Tolerance, LNCS
5454 / Eds. M. Butler, C. Jones, A. Romanovsky,
E. Troubitsyna. — Berlin, Heidelberg (Germany):
Springer-Verlag, 2009. — P. 324-341.

6. Ledyayev, R. Developing Techniques for Increas-
ing Dependability of Service-Oriented Systems. BS Thesis
/ R. Ledyayev. — Kharkiv: National Aerospace University,
2008. — 108 p.

7. Service Component Architecture. Assembly Model
/ Eds. M. Beisiegel, A. Karmarkar, S. Patil, M. Rowley. —
OASIS, 2011. — 138 p.

8. Perrouin, G. Architecting Sofiware Systems Using
Model Transformations and Architectural Frameworks. PhD
thesis / G. Perrouin. — Univ. of Luxembourg, 2007. — 142 p.

9. Pohl, C. Sofiware Product Line Engineering /
C. Pohl, G. Béckle, F. J. van der Linden. — Berlin: Sprin-

and Diversity to Ensure Web Services Dependability — ger-Verlag Heidelberg, 2005. — 334 p.

Tocmynuna 6 pedaxyuio 15.03.2012

PeuensenT: 1-p TexH. Hayk, npod., 3aB. kad. KOMIbIOTepHBIX cucTeM U cerell B.C. Xapuenko, HarmoHa bHBIH
aspokocmuueckuil yausepcureT uM. H.E. JKykoBckoro « XAI», XapbpKoB.

REACT: APXITEKTYPHU KAPKAC PO3POBKHM CIMEVICTBA ITPOTPAMHMX ITPOAYKTIB
JJIA TAPAHTO3AATHUX CUCTEM YIIPABJIIHHA KPU3AMU

P. Jleoses, b. Piec, A. I'opoenko

B crarTi mpencraBieHi pe3ynbTaTH AOCIIKEHHS W po3poOku crenudikamii Ui apXiTEKTYpHOTO KapKacy
REACT B KOHTEKCTI iH)KHHIPUHTY CIMEHCTBA ITPOrpaMHHX MPOAYKTIB 3 YpaXyBaHHIM BHMOT JIO TapaHTO3aTHOCTI.
[pencraBneno enementn crernmdikanii Bumor 10 REACT Ta po3risiHyTo ocoOnmMBOCTI OpraHizamii B KOHTEKCTI
BHUKOPHCTaHHS cepBic-opieHToBaHOi apxiTekTypu. B mpoekti REACT Gyno peanizoBaHo MOXIIUBICTH KOHQITYPY-
BaHHS IOJITHK rapaHTO3[aTHOCTI, IO JI03BOJISIE PO3POOHUKAM KOHTPOJIIOBATH TOBEIIHKY CUCTEM YIPABJIiHHS KpH-
3aMHM 332 YMOB BiJMOB Ta 30BHIIIHIX 3arpo3. B sxocTi mpuknamy peanmizaiii npoekty REACT posrisHyTa cucrtemMa
JIIKB1IAIIi1 HACIIKIB aBTOMOOLIBHUX aBapii.

Karw4oBi cioBa: iHXUHIPpHHT ciMelCTBa NMpPOrpaMHUX IPOIYKTIB, MOJITHKH T'apaHTO3JaTHOCTi, CHCTEMH
YIIpaBJIiHHS KpPU3aMH, apXITEeKTYpHHUI KapKac, CepBiCc-Opi€HTOBaHA apXiTEeKTypa.

REACT: APXUTEKTYPHBIN KAPKAC PASPABOTKHA CEMEMCTBA ITPOI'PAMMHBIX
MHNPOAYKTOB JJIs TAPAHTOCIHIOCOBHBIX CUCTEM KPU3UC-MEHEJI’KMEHTA

P. Jleoses, b. Puec, A. I'opboenxo

B craTbe npencraBieHsl pe3yabTaThl HCCIEI0BaHMS U Pa3pabOTKU crielU(UKaIMH ISl apXUTEKTYPHOTO KapKaca
REACT B KOHTEKCTE MHDKWHUPUHTA CEMEHCTBA IPOrPaMMHBIX TPOIYKTOB C y4€TOM TPeOOBaHMH K rapaHTOCIIOCOOHO-
cru. Ilpencrapnens! snementsl crnenmpukanyn tpedoannii Kk REACT u paccMoTpeHi 0COOSHHOCTH peau3allii B
KOHTEKCTE MCIIOJIBb30BaHUs CEPBHUC-OPHEHTUPOBAHHOM apxuTeKkTyphl. B nmpoexte REACT 0Oblia peanu3oBaHa BO3MOX-
HOCTh KOH(UTYPHPOBaHUs NOJUTUK FAPaHTOCHIOCOOHOCTH, YTO MO3BOJISET Pa3paboTYMKaM KOHTPOJIMPOBATH MOBEJIe-
HHUE CHUCTEM KPHU3HUC-MEHEPKMEHTA B YCIOBUAX OTKA30B M BHEIIHHUX yrpo3. B kauecTBe mpumepa peaau3aluyl IpoeKTa
REACT paccMoTpeHa cucTeMa JIMKBUIAIMH ITOCISICTBUI aBTOMOOMIIBHBIX aBapHIA.

KaroueBble ci10Ba: MHXHHUPUHT CEMENCTBA POIPAMMHBIX MPOIYKTOB, ITOJUTUKH TapaHTOCIIOCOOHOCTH, CH-
CTEMBbI KpU3HUC-MEHEKMEHTa, ApXUTEKTYPHBIH KapKac, CepBUC-OpUEHTHPOBAaHHAS apXUTEKTYypa.

Ledyayev Roman — MSc, Analyst Programmer, Application Owner at Accenture Inc., Riga, Latvia.

Ries Benoit — PhD, Scientific Support Staff Member, Laboratory for Advanced Software Systems, University
of Luxembourg, Luxembourg.

Gorbenko Anatoliy — PhD, Docent, Associate Professor, Department of Computer Systems and Networks,
National Aerospace University, Kharkiv, Ukraine.

