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The paper presents the method of generating Labelled Transition Systems for passive agents in Alvis models. Alvis 
is the language designed for the modelling and formal verification of embedded systems. The key concept of Alvis is 
an agent which is any distinguished part of a considered system with defined identity persisting in the time. Alvis 
combines a graphical modelling of interconnections among agents with a high level programming language used 
for describing a behaviour of agents. The basic property of the Alvis Toolkit is the ability of a direct generation of a 
formal system description from an Alvis source code. The LTS graphs represent control flow related to Alvis code 
execution and they are the base for the formal model verification. 
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Introduction 

 
Alvis [1, 2] is the novel modelling language de-

signed for real-time systems, especially for embedded 
ones. The main goal of the Alvis project was to strike a 
happy medium between formal and practical, user-
frendly modelling languages. From programmers point 
of view, it is necessary to design two layers of an Alvis 
model. The code layer uses Alvis statements supported 
by the Haskell functional programming language to 
define a behaviour of individual agents. The graphical 
layer (communication diagrams) is used to define com-
munication channels between agents. The layer takes 
the form of a hierarchical graph, that allows designers to 
combine sets of agents into modules that are also repre-
sented as agents (called hierarchical ones). Alvis model-
ling environment called Alvis Toolkit creates in parallel 
a model of a considered embedded system and the cor-
responding LTS graph (Labeled Transition System) that 
is its formal representation. The LTS graph can be for-
mally verified with the help of the CADP toolbox [4]. 

The paper is organized as follows. Section 1 provides 
the short presentation of the Alvis modelling language. The 
formal definition of an agent state is introduced in Section 
2. The generation of an LTS graph for a single passive 
agent is described in Section 3 and the definition of LTS 
for the whole system in presented in Section 4. The algo-
rithm of merging single LTSs into LTS representing the 
whole system is presented in Section 5. Finally, an exam-
ple of LTS merging is presented in Section 6. 

 
1. Alvis overview 

 
Alvis is a successor of the XCCS modelling lan-

guage [4, 5], which was an extension of the CCS proc-

ess algebra [7, 8]. However, instead of algebraic equa-
tions, Alvis uses a high level programming language 
based on the Haskell syntax.  

An Alvis model consists of three layers, but the last 
one (system layer) is predefined. The system layer is used 
for the simulation and analysis (generation of an LTS 
graph) purposes. An Alvis model is a system of agents 
that usually run concurrently, communicate one with an-
other, compete for shared resources etc. The agents, in 
Alvis, are used for the design of communication diagrams 
(see Fig. 3). Active agents perform some activities and 
are similar to tasks in the Ada programming language [9], 
[10]. Each of them can be treated as a thread of control in 
a concurrent system. Passive agents (Agent Container) 
are used to store data shared among agents and to avoid 
the simultaneous use of such data by two or more agents.  

An agent can communicate with other agents 
through ports drawn as circles placed at borders of 
rounded boxes or rectangles. A communication channel 
is defined for two agents and connects two ports. Com-
munication channels are drawn as lines . One-way 
communication channel (connection (X1.p,X2.q)) con-
tain an arrowhead that points out the input port for the 
particular connection. 

The code layer is used to define data types used in a 
considered model, functions for data manipulation and 
behaviour of individual agents. The layer uses the Haskell 
functional language (e.g. the Haskell type system) and 
original Alvis statements. The set of AlvisCL statements is 
given in Table 1. To simplify the syntax, following sym-
bols have been used. A stands for an agent name, p stands 
for a port name, x stands for a parameter, g, g1, g2,... stand 
for guards (Boolean conditions), e stands for an expression 
and ms stands for milliseconds. Each non-hierarchical 
agent placed in the communication diagram must be de-
fined in the code layer and vice-versa. 
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Table 1 
Table of selected some Alvis statements 

Statement Description 
if (g1) 
{...} 
elseif 

(g2) {...} 
... 

else {...} 

Conditional statement. 

in p 
in p x 

 

Collects a signal via the port p. 
Collects a value via the port p and as-
signs it to the parameter x. 

loop (g) 
{...} 

 
loop {...} 

Repeats execution of the contents while 
the guard if satisfied. 
Infinite loop 

out p 
out p x 

 
 

Sends a signal via the port p. 
Sends a value of the parameter x via 
the port p; a literal value can be used 
instead of a parameter. 

select { 
alt (g1) 
{...} 

alt (g2) 
{...} 
... } 

Selects one of the alternative choices 

proc (g) p 
{…} 

Defines the procedure for the port p of 
a passive agent. 

 
2. Models 

 
An embedded system designed with the help of an 

object abstraction (expressed by hierarchical agents) can 
be finally represented by a set of non-hierarchical agents 
cooperating in the way described by the maximal flat 
representation of the communication diagram. The poly-
nomial algorithm of designing such a flat representation 
was described in [2]. 

In this paper, primarily we are interested in a char-
acteristic of states of passive agents. The characteristic of 
states of passive agents was described in [2]. A current 
state of an agent is represented by a tuple with four pieces 
of information: agent mode (am), program counter (pc), 
context information list (ci), parameters values tuple (pv). 
An passive agent is always in one of two modes: waiting 
or taken. 

The waiting  means that the agent to call one of its 
accessible procedures. In such a situation the program 
counter is equal to zero and the context information list 
contains names of accessible procedures. In any state, the 
parameters values list contains the current values of the 
agent parameters.  

The taken mode means that one of the passive agent 
procedures has been called and the agent is executing it. 
In such a case, ci contains the name of the called proce-
dure (i.e. the name of the port used for current communi-
cation). The pc points out the index of the next statement 
to be executed or the current statement if the correspond-
ing active agent is waiting. 

The formal definition of an agent state is as follows. 

Definition 1. A state of an agent X is a tuple S(X) = 
(am(X), pc(X), ci(X), pv(X)), where am(X), pc(X), ci(X) 
and pv(X) denote mode, program counter, context infor-
mation list and parameters values of the agent X respec-
tively. 
 

3. Labelled Transition System  
for Single Passive Agent 

 
Active agent statements which form the Alvis code 

may be either single- or multi-step ones. An agent state 
may be changed in a result of executing a program step. 

Passive Agents provide a set of procedures that 
can be called by other agents and their executions are 
mutually exclusive. Each procedure has its own port 
assigned and a communication with a passive agent via 
that port is treated as the corresponding procedure call. 
Depending on the communication direction, such a pro-
cedure may be used either to send or to collect some 
data from the passive agent.  

 
Listing. 1. The Alvis code for the sample passive agent 

 
The Listing 1 shows the Alvis code of the passive 

agent Container. Container agent exposes three proce-
dures, namely p1, p2, ret, matched to corresponding 
input/output ports. The statement numbering convention 
used in the listing above is described in [3]. 

 To simplify the formal description of  transition 
the formal description of transitions, for agent X we use 
the following notation convention: 

 when exist transition t tS S  the  state is S 
= (amX, pcX, ciX, pvX) is substituted by S’ = (am’X, 
pc’X, ci’X, pv’X) 

  for a port p, p* denotes a port associated with 
p in a communication diagram (note that p = p**), 

 we provide nextpcX function that determines a 
number of a next step (a next program counter for an 
agent) and instrX (i) function that determines a type of 
instruction associated with number of step, i. 

 for a currently considered agent we neglect the 
postfix pointing an agent (i.e. we put a instead aX). 

The initial state of passive agent is waiting and he 
waits until some other agent Y has put a message and is 
pending on port p* then a message is taken form p, 
am’=taken and pc’=nextpc (executes procedure p); note 
that the state of agent Y will be also changed from run-
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ning to waiting and pcY points out an index of the next 
agent statement after out statement. If passive agent is 
taken, then some other agent Y, which waits in a select 
guard containing out p*(i.e. ciY=[q(...,out p*:npc,...]) 
must waiting until a passive agent X will be back wait-
ing. 

The execution of the step i (called transition from 
state S to S’) by the taken agent means a statement exe-
cution of current procedure and changes a current state. 
More details about the transition idea in Alvis models 
can be found in [2]. 

Table 2 
Table of relationship between  

the mode and program counter for passive agents 
am(X) pc(X) 
waiting 0 
taken current statement of current procedure. 

 
4. Labelled Transition Graphs 

 

Assume that  0A D,B,   is an Alvis model. For 

the pair of states S, S’ we say that S’ is directly reachable 
from S iff there exists transition t  such that 

tS S' .  

All states directly reachable from S is denoted as 
R(S). We say that S’ is reachable from S iff there exists a 
sequence of states S(1), . . . , S(k+1) and t(1),..., t(k)  T a se-
quence of transitions such that  

           1 2 kt t t1 2 k 1S S S ... S S'      

The set of all states that are reachable from the ini-
tial state S0 is denoted by R*(S0). 

States of an Alvis model and transitions between 
them are represented by a labelled transition system (LTS 
graph for short). An LTS graph is a directed graph 
LTS=(V, E, L), such that V = R(S0), L = T, and  

  t
0E (S, t,S ') : S S', whereS,S' R S andt L     

In other words, an LTS graph represents all states 
reachable from S0 and transitions between them in the 
form of a directed graph. 

Primarily we generate LTS graph for a single agent, 
starting from AlvisCL representation of its behaviour. Let 
us consider the agent Container presented in Listing 1 
with LTS graph shown in Fig. 1.  

The initial state of the passive agent is waiting with 
all accessible ports. Note that transition from a taken 
state leads to another taken state unless it starts in a last 
statement of a given procedure. 

 

 
Fig. 1. LTS diagram for listing 1 

 
5. LTS Generation 

 
In this section we assume that we have a system 

consisting of N Alvis passive agents X1, X2, …, XN and 
M Alvis active agents Y1, Y2,…, YM. Connections be-
tween them are represented by a communication dia-
grams. Using the method described in Section 3 we can 
generate LTS for single passive agents. Methods how to 
generate LTS for single active agents and merge such 
individual LTS’s for active agents into composite on rep-
resenting a system was described in [3].  Now we will 
show how to merge such individual LTS’s both active 
and passive agents into composite on representing a 
whole system. 

Let us compare the method of merging active agents 
only (as presented in [3]) and the case when a passive 
agent exists in the set of merged agents.  

The tables 2 and 3 describe modified algorithms from 
the paper [3] for the general system with active and pas-
sive agents. 

Let Sk,0 represents the initial state of the agent Xk then 
R*(Sk,0) represents states of LTS representing k-th agent. 
By Ak we denote cardinality of R*(Sk,0)  set for active 
agents. By Pk we denote cardinality of R*(Sk,0) set for 
passive agents. By L we denote maximal number of states 
directly reachable from any state belonging to any single 
LTS.  

Now we can formulate two theorems. 
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Table 3 
Table of the Algorithm 1.  

CheckTransition 
 input : x – an individual agent’s LTS state,  
  s – a composite LTS state 
output: S – set of all states accessible from s 
1 
2 
3 
4 
 
5 
6 
7 
 
8 
9 
10 
11 
12 
13 
 
14 
15 
16 
17 
18 
19 
 
20 
21 
22 
23 
24 
25 
 
26 
27 
28 
 
29 
30 
31 
32 
33 
34 
 
35 
36 
37 
38 
39 

begin 
 if  X ← the active agent described by x; 
    if no in/out in the current statement then 
       foreach running state x’ directly reachable from x do 
           s’ ← s < x ; 
           S ← S  {s’}; 
   else if current statement contains in/out and some active  
   agent Y waits for X then 
       y ← current state of Y ; 
       x’ ← running state directly reachable from x;  
       y’ ← running state directly reachable from y;  
       s’ ← s < x’, y’ 
       S ← {s’}; 
    else if current statement contains in/out and some pas          
sive 
    agent Y waits for X then 
       y ← current state of Y ; 
       x’ ← waiting state directly reachable from x;  
       y’ ← taken state directly reachable from y;  
       s’ ← s < x’, y’ 
       S ← {s’}; 
    else if current statement contains in/out and  no agent 
waits   
    for X then 
       x’← waiting state directly reachable from x; 
       s’ ← s < x 
       S ← {s’}; 
else if  X ← the passive agent described by x; 
    if no in/out in the current statement then 
       foreach taken state x’ directly reachable 
       from x do 
           s’ ← s < x ; 
           S ← S  {s’}; 
   else if current statement contains in/out and some agent  
   active Y waits for X then 
       y ← current state of Y ; 
       x’ ← waiting state directly reachable from x;  
       y’ ← running state directly reachable from y;  
       s’ ← s < x’, y’ 
       S ← {s’}; 
   else if current statement contains in/out and some pas-
sive  
   agent Y waits for X then 
       y ← current state of Y ; 
       x’ ← taken state directly reachable from x;  
       y’ ← taken state directly reachable from y;  
       s’ ← s < x’, y’ 
       S ← {s’}; 
return S 
end 

 
Lemma 1. The number of states of a composite LTS 

graph generated from LTS graphs X1, . . .XN passive 
agents and Y1, . . .YM active agents is not greater than  

M N

i i
i 1 i 1

S A P
 

    

Proof. The proof is based on the observation that a 
number of possible states for a composite LTS is not 
greater than a number of cells in N+M-dimensional hy-
percube  

HC = R*(S1,0) × R*(S2,0). . .× R*(SN+M,0) . 
By the Theorem 1 and the Theorem 2 for active 

agents which has been proved in paper [3], we get the 
following lemma. 

Lemma 2. The complexity of a composite LTS 
graph generation from individual LTS X1, . . .XN passive 
agents and Y1, . . .YN active agents is limited by  

 
M N

i i
i 1 i 1

N M L A P
 

  
          

  . 

Proof. The general idea is using the hypercube HC 
and putting edges inside it reflecting all possible subse-
quent transitions, starting from the initial state S0 = (S1,0, 
S2,0, . . . , SN+M,0). The unreachable states are removed. 
The finding of all possible transitions is made in the Al-
gorithm 1 and it is based on the observation that a transi-
tion in the hypercube HC may be performed if some ac-
tive agent, say A, is in the running state or some passive 
agent, say P, is in the taken state and they trigger a transi-
tion. Let consider it in a more detail.  

The agent A being in running state may transit to fol-
lowing states: 

1. running, when neither in nor out operation exists in 
a currently executed code line (Algorithm 1, line 3). 

2. running, when either in or out operation is to be ex-
ecuted in a current code line and some active agent re-
mains in a waiting state on suitable port, ready to contact 
(either write or read) A. In that case a waiting agent will 
also change its state to running (Algorithm 1, line 7). 

3. waiting, when either in or out operation is in a cur-
rent code line but no agent waits or passive agent waits 
for A (Algorithm 1, line 13 and 19). 

The agent P being in taken state may transit to follow-
ing states: 

1. taken, when neither in nor out operation exists in a 
currently executed code line (Algorithm 1, line 24). 

2. waiting, when either in or out operation is to be ex-
ecuted in a current code line and some active agent re-
mains in a waiting state on suitable port, ready to contact 
(either write or read) P. In that case a waiting agent will 
change its state to running (Algorithm 1, line 28). 

3. taken, when either in or out operation is to be exe-
cuted in a current code line and some passive agent re-
mains in a waiting state on suitable port, ready to contact 
(either write or read) P. In that case a waiting agent will 
change its state to taken (Algorithm 1, line 7). 

In Algorithm 2 we use the queue of composite states 
Q which initially is empty. To simplify pseudocodes the 
following notation was used in algorithms: s < x, y de-
notes that for a given composite state s we replace indi-
vidual states of given agents with states x, y. States of 
other agents remain unchanged.  
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Table 4 
Table of the Algorithm 2.  

Merge       0 0 0
K1 2x , x , x  

input : 
      0 0 00

K1 2s x , x , x   – a sequence of individual 

initial states of agents X1 ,X2, . . . XK (some active and same pas-
sive) 
output: G = (V, E) – a composite LTS graph for  X1 , X2, . . . XK 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

begin 
   Q ← s0 ; 
   Mark all composite states as unvisited; 
   while Q is nonempty do        
         s ← Q.dequeue(); 
        Mark s as visited; 
        Add s to V if not present; 
        S ← ; 
        foreach running or taken state x in s do 
             S ← S    CheckTransition(x, s); 
       foreach s’  S do 
            Enqueue s’ in Q if unvisited; 
            if s V then 
               V ← V  {s’};  
            E ← E  {(s, s’)}; 
   G = (V, E); 
   return G; 
end 

 
To evaluate the computational complexity of the Al-

gorithm 2 we should remark that since each composite 
state can be enqueued at least once (as unvisited) the 
while loop (Algorithm 2, line 4) can be executed not 

more than 
M N

i i
i 1 i 1

A P
 

   times. The loop foreach (Algo-

rithm 2, line 9) is executed N+M times and in each case 
the size of S is increased by not more than L, hence |S| ≤ 
(N+M). Thus body of the next loop foreach (Algorithm 2, 
lines from 12 to 15) can be executed not more than 

 
M N

i i
i 1 i 1

N M L A P
 

 
     

 
  . 

6. Example 
 

To illustrate LTS graph generation we consider the 
model shown in Fig. 2 that represents communication 
between passive and one active agent.  

The agent Container returns an arithmetic mean of 
the values, which are entered by independent processes 
and agent Active is the receiver. The LTS graph for this 
model is shown in Fig 3. 

Initially we are in the state 0 defined as: 
 C:(waiting,0,[in p1, in p2, out ret],[]), A:(running,1,[],[]). 
In this state only agent A can run so we move to state 1 
defined as C:(waiting,0,[in p1, in p2, out ret],[]), 
A:(running,2,[],[]). In state 1 again, only agent A can run 
so we move to state 2 defined as C:(taken, 3,[out ret],[]), 
A:(waiting,2,[in get],[]); the execution of in get shifts 
agent C to state 3 in his individual LTS and agent A is 
already waiting on the port get. In the state 2 the agent C 
is taken; the statement execution of procedure shift agent 
C to state 4 in his individual LTS and agent A is still 
waiting on the pot get. The execution of out ret shifts 
both agents to the initial state.    

 

 
 

Fig. 2. Example 
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Fig. 3. Example – LTS graph 
 

Conclusion 
 

In the paper the algorithm of generation of the LTS 
for all agents present in a given system coded in the Alvis 
toolkit is presented. This generation is made in two phas-
es: firstly we generate LTS graphs for single agents. In 
the second step we merge those graphs into a formal 
presentation of a whole system. This gives the possibility 
of the formal verification of the defined system proper-
ties. 

The estimations of the space and computational 
complexities of this approach are also presented. 

The disadvantage of generation of the LTS by this 
method is duplication of waiting states of active agent, 
which waits to ability to communicate to the taken pas-
sive agent. This state is performed in the composite LTS 
as many times as number of steps in called procedure, 
which has been called by another active agent. This issue 
is a continuation of further studies on Alvis toolkit. 
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СОЗДАНИЕ СЛОЖНОЙ РАЗМЕЧЕННЫХ ПЕРЕХОДНЫХ СИСТЕМ  
ДЛЯ ПАССИВНЫХ АГЕНТОВ ALVIS 

Л. Котульски, М. Шпирка, А. Седживы, К. Гроблер-Дебска 
Статья представляет метод создания размеченных переходных систем для пассивных агентов в моделях 

Alvis. Alvis является языком, спроектированным для моделирования и формальной верификации встроенных 
систем. Ключевым понятием в языке Alvis является агент – любая отличительная часть рассматриваемой систе-
мы, имеющая определенное обозначение, устойчивое во времени. Alvis объединяет графическое моделирование 
взаимосвязей между агентами с высокоуровневым языком программирования, использующимся для описания 
поведения агентов. Основным свойством инструментария Alvis является способность непосредственно созда-
вать формальное системное описание из исходного кода Alvis. Графы размеченных переходных систем пред-
ставляют последовательность операций, связанных с выполнением кода на языке Alvis, и они являются основой 
для формальной верификации моделей.  

Ключевые слова: язык моделирования Alvis, встроенные системы, микроинструкции, формальная ве-
рификация. 

 
СТВОРЕННЯ СКЛАДНИХ РОЗМІЧЕНИХ ПЕРЕХІДНИХ СИСТЕМ  

ДЛЯ ПАСИВНИХ АГЕНТІВ ALVIS 
Л. Котульски, М. Шпирка, А. Седжіви, К. Гроблер-Дебська 

У статті викладено метод створення розмічених перехідних систем для пасивних агентів у моделях Alvis. 
Alvis - це мова спроектована для моделювання та формальної веріфікації вбудованих систем. Ключовим понят-
тям у мові Alvis є агент – будь-яка відмітна частина системи, що розглядається, яка має певне позначення стійке 
в часі. Alvis об’єднує графічне моделювання взаємозв’язків між агентами з високорівневою мовою програму-
вання, яка використовується для опису поведінки агентів. Основною властивістю інструментарію Alvis є здат-
ність безпосередньо створювати формальний системний опис з вихідного коду Alvis. Графи розмічених перехі-
дних систем становлять собою послідовність операцій, пов’язаних з виконанням коду на мові Alvis, і вони ста-
новлять основу для формальної верифікації моделей.  

Ключові слова: мова моделювання Alvis, вбудовані системи, мікроінструкції, формальна веріфікація  
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