Dopmanvui memoou ma Case mexnonozii eepugixayii

205

UDC 681.234

L. KOTULSKI, M. SZPYRKA, A. SEDZIWY, K. GROBLER-DEBSKA

AGH University of Science and Technology, Krakow, Poland

ON GENERATION OF COMPOSITE LABELLED TRANSITION SYSTEMS
FOR ALVIS PASSIVE AGENTS

The paper presents the method of generating Labelled Transition Systems for passive agents in Alvis models. Alvis
is the language designed for the modelling and formal verification of embedded systems. The key concept of Alvis is
an agent which is any distinguished part of a considered system with defined identity persisting in the time. Alvis
combines a graphical modelling of interconnections among agents with a high level programming language used
for describing a behaviour of agents. The basic property of the Alvis Toolkit is the ability of a direct generation of a
formal system description from an Alvis source code. The LTS graphs represent control flow related to Alvis code
execution and they are the base for the formal model verification.

Keywords: Alvis modeling language, embedded systems, microinstruction, formal verification

Introduction

Alvis [1, 2] is the novel modelling language de-
signed for real-time systems, especially for embedded
ones. The main goal of the Alvis project was to strike a
happy medium between formal and practical, user-
frendly modelling languages. From programmers point
of view, it is necessary to design two layers of an Alvis
model. The code layer uses Alvis statements supported
by the Haskell functional programming language to
define a behaviour of individual agents. The graphical
layer (communication diagrams) is used to define com-
munication channels between agents. The layer takes
the form of a hierarchical graph, that allows designers to
combine sets of agents into modules that are also repre-
sented as agents (called hierarchical ones). Alvis model-
ling environment called Alvis Toolkit creates in parallel
a model of a considered embedded system and the cor-
responding LTS graph (Labeled Transition System) that
is its formal representation. The LTS graph can be for-
mally verified with the help of the CADP toolbox [4].

The paper is organized as follows. Section 1 provides
the short presentation of the Alvis modelling language. The
formal definition of an agent state is introduced in Section
2. The generation of an LTS graph for a single passive
agent is described in Section 3 and the definition of LTS
for the whole system in presented in Section 4. The algo-
rithm of merging single LTSs into LTS representing the
whole system is presented in Section 5. Finally, an exam-
ple of LTS merging is presented in Section 6.

1. Alvis overview

Alvis is a successor of the XCCS modelling lan-
guage [4, 5], which was an extension of the CCS proc-

ess algebra [7, 8]. However, instead of algebraic equa-
tions, Alvis uses a high level programming language
based on the Haskell syntax.

An Alvis model consists of three layers, but the last
one (system layer) is predefined. The system layer is used
for the simulation and analysis (generation of an LTS
graph) purposes. An Alvis model is a system of agents
that usually run concurrently, communicate one with an-
other, compete for shared resources etc. The agents, in
Alvis, are used for the design of communication diagrams
(see Fig. 3). Active agents perform some activities and
are similar to tasks in the Ada programming language [9],
[10]. Each of them can be treated as a thread of control in
a concurrent system. Passive agents (Agent Container)
are used to store data shared among agents and to avoid
the simultaneous use of such data by two or more agents.

An agent can communicate with other agents
through ports drawn as circles placed at borders of
rounded boxes or rectangles. A communication channel
is defined for two agents and connects two ports. Com-
munication channels are drawn as lines . One-way
communication channel (connection (X1.p,X2.q)) con-
tain an arrowhead that points out the input port for the
particular connection.

The code layer is used to define data types used in a
considered model, functions for data manipulation and
behaviour of individual agents. The layer uses the Haskell
functional language (e.g. the Haskell type system) and
original Alvis statements. The set of AlvisCL statements is
given in Table 1. To simplify the syntax, following sym-
bols have been used. A stands for an agent name, p stands
for a port name, x stands for a parameter, g, gl, g2,... stand
for guards (Boolean conditions), e stands for an expression
and ms stands for milliseconds. Each non-hierarchical
agent placed in the communication diagram must be de-
fined in the code layer and vice-versa.

© L. Kotulski, M. Szpyrka, A. Sgedziwy, K. Grobler-De¢bska

206

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne7 (59)

Table 1
Table of selected some Alvis statements
Statement Description
if (g1)
(...}
elseif ..
(G2) {..) Conditional statement.
else‘ ‘{‘. ..}
in p Collects a signal via the port p.
in p x Collects a value via the port p and as-
signs it to the parameter x.
loop (9) Repeats execution of the contents while
e the guard if satisfied.
1oop {...} | Infinite loop
out p Sends a signal via the port p. .
out p x Sends a value of the parameter x via
the port p; a literal value can be used
instead of a parameter.
select {
alt (g1)
o) Selects one of the alternative choices
alt (g2)
{..)
. }
proc (g) p | Defines the procedure for the port p of
{3 a passive agent.

2. Models

An embedded system designed with the help of an
object abstraction (expressed by hierarchical agents) can
be finally represented by a set of non-hierarchical agents
cooperating in the way described by the maximal flat
representation of the communication diagram. The poly-
nomial algorithm of designing such a flat representation
was described in [2].

In this paper, primarily we are interested in a char-
acteristic of states of passive agents. The characteristic of
states of passive agents was described in [2]. A current
state of an agent is represented by a tuple with four pieces
of information: agent mode (am), program counter (pc),
context information list (ci), parameters values tuple (pv).
An passive agent is always in one of two modes: waiting
or taken.

The waiting means that the agent to call one of its
accessible procedures. In such a situation the program
counter is equal to zero and the context information list
contains names of accessible procedures. In any state, the
parameters values list contains the current values of the
agent parameters.

The taken mode means that one of the passive agent
procedures has been called and the agent is executing it.
In such a case, ci contains the name of the called proce-
dure (i.e. the name of the port used for current communi-
cation). The pc points out the index of the next statement
to be executed or the current statement if the correspond-
ing active agent is waiting,

The formal definition of an agent state is as follows.

Definition 1. 4 state of an agent X is a tuple S(X) =
(am(X), pc(X), ci(X), pv(X)), where am(X), pc(X), ci(X)
and pv(X) denote mode, program counter, context infor-
mation list and parameters values of the agent X respec-
tively.

3. Labelled Transition System
for Single Passive Agent

Active agent statements which form the Alvis code
may be either single- or multi-step ones. An agent state
may be changed in a result of executing a program step.

Passive Agents provide a set of procedures that
can be called by other agents and their executions are
mutually exclusive. Each procedure has its own port
assigned and a communication with a passive agent via
that port is treated as the corresponding procedure call.
Depending on the communication direction, such a pro-
cedure may be used either to send or to collect some
data from the passive agent.

Agent_Container {

x1l,x2,5 :: Int;
proc pl {

in pl x1;7} --1
proc p2 {

in p2 x2;%} --2

proc ret { s = (x1 + x2)/2; --3

out ret s; 7t --4

¥

Listing. 1. The Alvis code for the sample passive agent

The Listing 1 shows the Alvis code of the passive
agent Container. Container agent exposes three proce-
dures, namely pl, p2, ret, matched to corresponding
input/output ports. The statement numbering convention
used in the listing above is described in [3].

To simplify the formal description of transition
the formal description of transitions, for agent X we use
the following notation convention:

— when exist transition t S—->§' the state is S
= (amX, pcX, ciX, pvX) is substituted by S’ = (am’X,
pc’X, ci’X, pv’X)

— for a port p, p* denotes a port associated with
p in a communication diagram (note that p = p**),

— we provide nextpcy function that determines a
number of a next step (a next program counter for an
agent) and instry (i) function that determines a type of
instruction associated with number of step, i.

— for a currently considered agent we neglect the
postfix pointing an agent (i.e. we put a instead ay).

The initial state of passive agent is waiting and he
waits until some other agent Y has put a message and is
pending on port p* then a message is taken form p,
am =taken and pc =nextpc (executes procedure p); note
that the state of agent Y will be also changed from run-

Dopmanvui memoou ma Case mexnonozii eepugixayii

207

ning to waiting and pcy points out an index of the next
agent statement after out statement. If passive agent is
taken, then some other agent Y, which waits in a select
guard containing out p*(i.e. ciy=[q(...,out p*mnpc,...])
must waiting until a passive agent X will be back wait-
ing.

The execution of the step i (called transition from
state S to S”) by the faken agent means a statement exe-
cution of current procedure and changes a current state.
More details about the transition idea in Alvis models
can be found in [2].

Table 2
Table of relationship between
the mode and program counter for passive agents

am(X) pe(X)
waiting 0
taken current statement of current procedure.

4. Labelled Transition Graphs

Assume that A = (D, B, oco) is an Alvis model. For

the pair of states S, S” we say that S’ is directly reachable

from S iff there exists transition t e T such that

s—'sgs.

All states directly reachable from S is denoted as
R(S). We say that S’ is reachable from S iff there exists a
sequence of states SO ., S andtV t% e T a se-

quence of transitions such that

t(]) S(z) t(Z)

The set of all states that are reachable from the ini-
tial state Sy is denoted by R*(Sy).

States of an Alvis model and transitions between
them are represented by a labelled transition system (LTS
graph for short). An LTS graph is a directed graph
LTS=(V, E, L), such that V=R(S;), L=T, and

E={(5.1,8):5—55" whereS,S' R (g Jandt < L}

g—gh) () §(k+) _ g

In other words, an LTS graph represents all states
reachable from S, and transitions between them in the
form of a directed graph.

Primarily we generate LTS graph for a single agent,
starting from AlvisCL representation of its behaviour. Let
us consider the agent Container presented in Listing 1
with LTS graph shown in Fig. 1.

The initial state of the passive agent is waiting with
all accessible ports. Note that transition from a taken
state leads to another taken state unless it starts in a last
statement of a given procedure.

0: C:(W,0 [in pl, in p2, out ret],())

In p1
np Inp1*
In p2

1: C«(T, 1, [in p11,0)

A

In p2* \)ut ret* out ret

3: C«(T, 3, [out ret],()#
\

{2: C:(T, 2, [in p21,0))

s=(x1+x2)/2

Y

-
4: C(T, 4, [out ret],())

Fig. 1. LTS diagram for listing 1

5. LTS Generation

In this section we assume that we have a system
consisting of N Alvis passive agents X;, Xy, ..., Xy and
M Alvis active agents Y;, Y,..., Y. Connections be-
tween them are represented by a communication dia-
grams. Using the method described in Section 3 we can
generate LTS for single passive agents. Methods how to
generate LTS for single active agents and merge such
individual LTS’s for active agents into composite on rep-
resenting a system was described in [3]. Now we will
show how to merge such individual LTS’s both active
and passive agents into composite on representing a
whole system.

Let us compare the method of merging active agents
only (as presented in [3]) and the case when a passive
agent exists in the set of merged agents.

The tables 2 and 3 describe modified algorithms from
the paper [3] for the general system with active and pas-
sive agents.

Let Sy, represents the initial state of the agent X, then
R*(Sk) represents states of LTS representing k-th agent.
By Ay we denote cardinality of R*(Sy) set for active
agents. By P, we denote cardinality of R*(Sy) set for
passive agents. By L we denote maximal number of states
directly reachable from any state belonging to any single
LTS.

Now we can formulate two theorems.

208

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne7 (59)

Table 3
Table of the Algorithm 1.
CheckTransition

input : x — an individual agent’s LTS state,

s —a composite LTS state
output: S — set of all states accessible from s
1 begin
2 if X « the active agent described by x;
3 if no in/out in the current statement then
4 foreach running state x’ directly reachable from x do

§'—s<x;
5 S—Suis’)
6 else if current statement contains in/out and some active
7 agent Y waits for X then
y « current state of Y ;
8 x’ < running state directly reachable from x;
9 y’ < running state directly reachable from y;
10 s’ e—s<x,y’
11 S—{s’};
12 else if current statement contains in/out and some pas
13 | syve
agent Y waits for X then
14 y < current state of Y ;
15 X’ « waiting state directly reachable from x;
16 y’ « taken state directly reachable from y;
17 s —s<x’ y ’
18 S—{s’};
19 else if current statement contains in/out and no agent
aits
20 for X then
21 X« waiting state directly reachable from x;
22 s —s<x
23 S—{s’};
24 | elseif X « the passive agent described by x;
25 if no in/out in the current statement then
foreach taken state x’ directly reachable

26 from x do
27 §'—s<x;
28 S—SuUis’k

else if current statement contains infout and some agent
29 active Y waits for X then

30 y « current state of Y ;

31 x’ «— waiting state directly reachable from x;
32 y’ < running state directly reachable from y;
33 s —s<x’ y ’

34 S—{s')

else if current statement contains in/out and some pas-
35 | sfve
36 agent Y waits for X then

37 y « current state of Y ;
38 x’ « taken state directly reachable from x;
39 y’ « taken state directly reachable from y;
s —s<x,y’
S—{s’};
return S
end

Lemma 1. The number of states of a composite LTS
graph generated from LTS graphs X;, . . Xy passive
agents and Y,, . . .Yy active agents is not greater than

M N
s<[TAi-]I"m
i=1 i=1

Proof. The proof is based on the observation that a
number of possible states for a composite LTS is not
greater than a number of cells in N+M-dimensional hy-
percube

HC =R*(S;) X R*(S50). . .x R*(Snemp) -

By the Theorem 1 and the Theorem 2 for active
agents which has been proved in paper [3], we get the
following lemma.

Lemma 2. The complexity of a composite LTS
graph generation from individual LTS X, . . Xy passive
agents and Y,, . . .Yy active agents is limited by

M N
O (N+M)-L-| [TA; TP
i=1 i=1

Proof. The general idea is using the hypercube HC
and putting edges inside it reflecting all possible subse-
quent transitions, starting from the initial state Sy = (S, ,
S20, - - - » Snemo)- The unreachable states are removed.
The finding of all possible transitions is made in the Al-
gorithm 1 and it is based on the observation that a transi-
tion in the hypercube HC may be performed if some ac-
tive agent, say A, is in the running state or some passive
agent, say P, is in the taken state and they trigger a transi-
tion. Let consider it in a more detail.

The agent A being in running state may transit to fol-
lowing states:

1. running, when neither in nor out operation exists in
a currently executed code line (Algorithm 1, line 3).

2. running, when either in or out operation is to be ex-
ecuted in a current code line and some active agent re-
mains in a waiting state on suitable port, ready to contact
(either write or read) A. In that case a waiting agent will
also change its state to running (Algorithm 1, line 7).

3. waiting, when either in or out operation is in a cur-
rent code line but no agent waits or passive agent waits
for A (Algorithm 1, line 13 and 19).

The agent P being in taken state may transit to follow-
ing states:

1. taken, when neither in nor out operation exists in a
currently executed code line (Algorithm 1, line 24).

2. waiting, when either in or out operation is to be ex-
ecuted in a current code line and some active agent re-
mains in a waiting state on suitable port, ready to contact
(either write or read) P. In that case a waiting agent will
change its state to running (Algorithm 1, line 28).

3. taken, when ecither in or out operation is to be exe-
cuted in a current code line and some passive agent re-
mains in a waiting state on suitable port, ready to contact
(either write or read) P. In that case a waiting agent will
change its state to taken (Algorithm 1, line 7).

In Algorithm 2 we use the queue of composite states
Q which initially is empty. To simplify pseudocodes the
following notation was used in algorithms: s < x, y de-
notes that for a given composite state s we replace indi-
vidual states of given agents with states x, y. States of
other agents remain unchanged.

Dopmanvui memoou ma Case mexnonozii eepugixayii

209

Table 4
Table of the Algorithm 2.

Merge (Xgo),x(zo),...xgg))

0 0 0
input : S0 = (Xg), X(2),. .. Xg()) —a sequence of individual
initial states of agents X;,X,, . . . Xk (some active and same pas-
sive)
output: G = (V, E) — a composite LTS graph for X, X,, ... Xk
1 begin

2 0«5,

3 Mark all composite states as unvisited,
4 while Q is nonempty do

5 s «— Q.dequeue();
6

7

8

Mark s as visited;
Add s to Vif not present;
S — O
9 foreach running or taken state x in s do
10 | § S v CheckTransition(x, s);
11 foreach s’ € S do
12 Enqueue s’ in Q if unvisited,
13 if s ¢V then
14 | vero sy
15 E—EU{(s,s)};
1 le=mm;
17 return G;
18 end

To evaluate the computational complexity of the Al-
gorithm 2 we should remark that since each composite
state can be enqueued at least once (as unvisited) the
while loop (Algorithm 2, line 4) can be executed not

M N
more than [[A;-] [P, times. The loop foreach (Algo-

i=1 i=1

pl
2 Container ret(

Agent_Container {
x1,x2,5 :: Int;

proc pl {
in pl x1;%

proc p2 {
in p2 x2;}

proc ret { s = (x1 + x2)/2;
out ret s;}

Agent_Active {

5 o Ink;
Toop { --1
in get s;} } --2

rithm 2, line 9) is executed N+M times and in each case
the size of S is increased by not more than L, hence |S| <
(N+M). Thus body of the next loop foreach (Algorithm 2,
lines from 12 to 15) can be executed not more than

ovow{ T T1n |

i=1 =l
6. Example

To illustrate LTS graph generation we consider the
model shown in Fig. 2 that represents communication
between passive and one active agent.

The agent Container returns an arithmetic mean of
the values, which are entered by independent processes
and agent Active is the receiver. The LTS graph for this
model is shown in Fig 3.

Initially we are in the state 0 defined as:
C:(waiting,0,[in pl, in p2, out ret],[]), A:(running, 1,[],[]).
In this state only agent A can run so we move to state 1
defined as C:(waiting,0,[in pl, in p2, out ret],[]),
A:(running,2,[],[]). In state 1 again, only agent A can run
so we move to state 2 defined as C:(taken, 3,[out ret],[]),
A:(waiting,2,[in get],[]); the execution of in get shifts
agent C to state 3 in his individual LTS and agent A is
already waiting on the port get. In the state 2 the agent C
is taken; the statement execution of procedure shift agent
C to state 4 in his individual LTS and agent A is still
waiting on the pot get. The execution of out ret shifts
both agents to the initial state.

get Active

Ls: A:(W. 2. [in 1'er].(})}l

Fig. 2. Example

210

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne7 (59)

0:
(C:{waiting,ﬁ [pl. in p2. out ret].()

As{runming, 1, [], ()

h

loop(A)

15

(o =

Ac(ruoning, 2. [1, ()

C:(waiting. 0 [in pl, in p2

, out ret].(1)

in(A)

kL

out(C)

2.

C:(taken. 3 [out ret] ()

P sramrion

A-(waiting, 2, [in get]. ())

k.

statement (C)

ats
C:(taken. 4 [out ret].())

oy)

A-(waiting, 2. [in get]. ()

Fig. 3. Example — LTS graph

Conclusion

In the paper the algorithm of generation of the LTS
for all agents present in a given system coded in the Alvis
toolkit is presented. This generation is made in two phas-
es: firstly we generate LTS graphs for single agents. In
the second step we merge those graphs into a formal
presentation of a whole system. This gives the possibility
of the formal verification of the defined system proper-
ties.

The estimations of the space and computational
complexities of this approach are also presented.

The disadvantage of generation of the LTS by this
method is duplication of waiting states of active agent,
which waits to ability to communicate to the taken pas-
sive agent. This state is performed in the composite LTS
as many times as number of steps in called procedure,
which has been called by another active agent. This issue
is a continuation of further studies on Alvis toolkit.

References

1. Szpyrka, M. Alvis — modelling language for con-
current systems. Intelligent Decision Systems in Large-
Scale Distributed Environments. SC [Text] / M. Szpyrka,
P. Maryasik, R. Mrowka. — Heidelberg: Springer, 2012.

2. Formal introduction to Alvis modelling language
[Text] / M. Szpyrka, P. Matyasik, R. Mrowka, L. Kotulski,
K. Balicki // International Journal of Applied Mathematics

and Computer Science (to appear, 2011).

3. Kotulski, L. Labelled Transition Systems Generation
from Alvis Language [Text] / L. Kutulski, M. Szpyrka,
A. Sedziwy // KES2011, LNAL — 2011. — vol. 688. —
P. 180 189.

4. CADP 2006: A toolbox for the construction and
analysis of distributed processes [Text] / H. Gravel,
F. Lang, R. Mateescu, W. Serwe // CAV 2007. LNCS. —
2007. — Vol. 4590.— P. 158—163.

5. Balicki, K. Formal definition of XCCS modelling
language. Fundamenta Informaticae [Text] / K. Balicki,
M. Szpyrka. —2009. —Ne 93 (1-3).—P. 1-15.

6. Matyasik, P. Design and analysis of embedded sys-
tems with XCCS process algebra. PhD thesis, AGH Univer-
sity of Science and Technology [Text] / P. Matyasik // Fac-
ulty of Electrical Engineering, Automatics, Computer Sci-
ence and Electronics. — Krakow, Poland, 2009.

7. Milner, R. Communication and Concurrency
[Text]/R. Milner. — Prentice-Hall, Englewood CIliffs, 1989.

8. Reactive Systems: Modelling, Specification and
Verification [Text] /L. Aceto, A. Ing ofsd ottir, K. Larsen,
J. Srba // Cambridge University Press — Cambridge, 2007.

9. Barnes, J. Programming in Ada 2005. [Text] /
J. Barnes // Addison-Wesley. — Reading, 2006.

10. Burns, A. Concurrent and real-time programming
in Ada 2005 [Text] / A. Burns, A. Wellings // Cambridge
University Press. — Cambridge, 2007.

Tocmynuna 6 pedaxyuio 2.03.2012

Dopmanvri memoou ma Case mexnon02ii éepughikauyii 211

PenenszenT: a-p TexH. Hayk, nmpod. b.M. Konopes, HarmonasnbHelii aspokocmuueckuii yauBepcurer uMm. H.E. XKy-
KkoBckoro «XAW» , XapekoB, YkpanHa

CO3JAHUE CJIOKHOM PASMEUEHHBIX IEPEXOJIHbIX CUCTEM
JJISA ITACCUBHBIX ATEHTOB ALVIS

JI. Komyavcxku, M. IlInupxa, A. Ceoscuenl, K. I podnep-/ledcka

Cratbsl TIpEJICTaBIISIET METOM CO3JaHUs PAa3MEUEHHBIX IEPEXOHBIX CHCTEM I MACCHBHBIX areHTOB B MOIEISX
Alvis. Alvis siBrisiercst SI36IKOM, CIIPOEKTHPOBAHHBIM TSI MOJCIHUPOBAHUS U (POPMATBEHOM BEpH(PUKAIIMH BCTPOSHHBIX
cucreM. KittoueBbIM MoHSITHEM B si3bIKe AlVis SIBISIETCS areHT — JIr00ast OTINYUTENbHAS YacTh pacCMaTpUBaeMOM CHCTe-
MBI, UIMEIoIIast OpeAeseHHOe 0003HaUeHHE, YCTOHYUBOE BO BpeMeHH. Alvis o0bequHseT rpaduueckoe MOIETUPOBaHUE
B3aMMOCBS3€H MEX/y areHTaMy C BHICOKOYPOBHEBBIM SI3BIKOM IPOrPaMMHUPOBAHHSI, UCTIONB3YIOIUMCS TS OIMCAHUS
noBezieHUs areHToB. OCHOBHBIM CBOWCTBOM MHCTpYMeHTapus Alvis ABIIseTCs CIOCOOHOCTh HENOCPEACTBEHHO CO3/a-
BaTh (popMasIbHOE CUCTEMHOE OMKCaHHWEe U3 MCXoAHoro koma Alvis. ['padpl pa3MeYeHHBIX NEPEXOHBIX CUCTEM TPEa-
CTaBJISIOT ITOCIIEIOBATEIBHOCTD ONEPALINi, CBI3aHHBIX C BBHITIONHEHNEM KO/Ia Ha si3blke Alvis, 1 OHM SIBJISIOTCS OCHOBOM
Jutst (hOpMaJIbHOM BepHU(pHUKAIIMU MOJIEIECH.

Karouessie ciioBa: s3bIKk MoaenupoBanust Alvis, BCTpOGHHBIE CHCTEMBI, MUKPOUHCTPYKIIMH, (hopMajbHas Be-
pudukanms.

CTBOPEHHJ CKJIAAHUX POSMIYEHUX ITEPEXI/THUX CUCTEM
JJIAA TACUBHUX ATEHTIB ALVIS

JI. Komyavcku, M. IlInupka, A. Ceoncieu, K. I'poonep-/ledcoka

VY cTaTTi BUKJIAZCHO METOM CTBOPEHHS PO3MIUCHUX MEPEXiHUX CHCTEM JUIA MACHBHHX arcHTIB y Momeiisix Alvis.
Alvis - 11e MOBa CIIpOEKTOBaHa sl MOJIENIIOBaHHs Ta (hopManbHOi Bepidikailii BOyaoBaHHX crcTeM. KiouoBUM MOHST-
TsIM y MOBI Alvis € areHT — Oy/ib-sika BiIMITHA YacTHHA CHCTEMH, 1110 PO3TJISIIAETHCS, SIKa Ma€ MeBHe O3HAUYEHHS CTiHKe
B 4aci. Alvis 00’eaHye rpadiuHe MOJETIOBaHHS B3a€EMO3B’SI3KIB MK areHTaMH 3 BUCOKOPIBHEBOIO MOBOIO IIpOrpamy-
BaHHSI, sSIKa BUKOPHCTOBYETHCS ISl OMUCY TIOBEAIHKH areHTiB. OCHOBHOIO BJIACTHBICTIO iHCTpyMeHTapiro Alvis € 3aat-
HICTh Oe3nocepeHbO CTBOPIOBATH (POPMATLHUI CUCTEMHUIT Ommic 3 BUXiqHOro koxy Alvis. I'padu po3sMiueHux mepexi-
JIHUX CHCTEM CTAHOBJISTH COOOO TTOCITIIOBHICTH OIepalliif, OB sI3aHMX 3 BUKOHAHHAM KOAy Ha MOBi Alvis, 1 BoHHM cTa-
HOBJISITH OCHOBY JI1s1 (hopMaitbHOT Beprikaliii Mmoenen.

Koarouogi ciioBa: MoBa MozentoBanss Alvis, BOy/0BaHi CHCTEMH, MIKPOIHCTPYKIIii, opMaiibHa Bepidikais

Kotulski Leszek — Prof., holds a position of associate professor in AGH UST in Krakow, Poland, Department
of Applied Computer Science. He has a MSc, PhD and DSc (habilitation) in Computer Science.

Szpyrka Marcin — Prof., holds a position of associate professor in AGH UST in Krakow, Poland, Department
of Applied Computer Science. He has a MSc in Mathematics and PhD and DSc (habilitation) in Computer Science.

Sedziwy Adam — PhD, is the assistant professor at the Department of Applied Computer Science, AGH UST,
Cracow, Poland.

Grobler-Debska Katarzyna — MSc, the assistant in Department of Automatics, AGH UST in Krakow. She
graduated in Applied Mathematics at the Jagiellonian University.

