192

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2012, Ne7 (59)

UDC 681.234

A.V. DERGUNOV

Lobachevsky State University of Nizhny Novgorod

SPECIFICATION AND AUTOMATIC DETECTION OF PERFORMANCE PROBLEMS
IN MESSAGE PASSING (MPI) APPLICATIONS

Traditional way to analyze performance of message passing (MPI) applications is via visualization of their ex-
ecution traces. Several tools were developed to aid this activity, one example of such tool is Jumpshot. How-
ever, performance analysis with such tools is a complex task due to large traces and complex interactions be-
tween processes. In this paper a new way to analyze performance is proposed by automatic detection of per-
formance problems in message passing applications. Performance problem is defined as a set of actions that
inhibit good performance and is specified using tracing and analysis rules.

Keywords: performance problems specification, performance problems detection, message passing applica-

tions.
Introduction

Performance properties are very important for par-
allel applications, so several tools were developed to
analyze performance. Most popular performance analy-
sis tools for MPI applications perform visualization of
execution traces. Example of such tool is Jumpshot [1]
which performs visualization using timeline view. But
the task of performance analysis using such tools is
quite complex, because trace files usually consists of
many events and interaction between events is very
complex. Performance analysis also requires expert
knowledge about MPI implementation.

This paper proposes a new way to do performance
analysis which is based on expert methodology of per-
formance problems descriptions.

1. Model of an MPI application

An MPI application [2] is defined as a set of com-
municating processes PR ={PR;,...,PRy} . Communi-
cation is performed using initiating actions in defined
sequence:

PR; = aj,....a5, 31 =1, N.

Every action is a call of a function defined by MPI
standard F={fj };k=1,..,K. Each function f; has

input and output arguments:

IN IN IN
FAk = (fakl ,...,fakLrll\])

ouT ouT ouT
FAk = (fakl ,...,fa ouT) .
kL}
Thus, every action is represented by the calling

function and the values of input and output arguments:

ajj = <fk , FAvalkIN , FAvalEUT >;

FAvalkIN = (avg,...,av}im);
k

ouT ouT OouT .
FAval ™" =(avgy .. av, our);
k

i= 1,,N,_] = 1,...,Mi;fk eF.
Every action aj; has start time t% and duration

dﬁ Loss of performance due to communication is de-

fined as:

N M;
D* =% df.
i=1 j=I
The task of performance improvement is defined
as minimization of this value.

2. Model of a performance problem

Performance problem is defined as a set of actions
that inhibit good performance, because the actions are
not synchronized. Fig. 1 shows synchronous execution
of send and corresponding receive actions which results
in good performance. Fig. 2 and fig. 3 show cases when
send and receive actions are not synchronized thus pro-
ducing late sending and late receiving problems corre-
spondingly.

r'y

o

Fig. 1. Synchronous send and receive actions

© A.V. Dergunov

Dopmanvui memoou ma Case mexnonozii eepugixayii

193

.. ~—
waiting for send]

Fig. 2. Problem of late sending

waiting for receive

—

Pr

o

time

L

Fig. 3. Problem of late receiving

Formally performance problem is defined as:
<pd, dur, TRRULES,

ANRULES, REC(A™FO)> ’

Preparation step
(performed by expert)

Performance
problem

Trace

system l
MPI application
fffffffffffffff : |
Interpreter

where pd — textual description of the problem; dur —

duration of the problem; TRRULES - trace rules for
actions that introduce the problem; ANRULES -
analysis rules to recognize the problem in sequence of
events in trace file; REC — recommendations to fix the

problem; AINFO ={(fi,ti,d',pri,csi>} — description of

i
actions that introduced the problem (where f; — the
function that was called, t; — time when the function
was called, d; — duration of the function execution, pr;
— process that initiated the call, cs; — the call site repre-

sented, for example, by source file name and line num-
ber in MPI application).

3. Performance Expert system

The task of automatic detection of performance
problems in MPI applications turns out to be quite com-
plex and it is hard to solve it using formal methods.
Thus, expert methodology was proposed and imple-
mented in Performance Expert system.

The workflow of Performance Expert system is il-
lustrated in fig. 4.

Usage step
(performed by user)

Performance Expert

>
rules

A J

Studying and
description

Analysis

rules

Fig. 4. Performance Expert system

The usage of the system supposes two steps:

Preparation step. This step is performed by expert
in performance analysis of MPI applications. The task
of the expert is to describe performance problems that
she encounters using trace and analysis rules. The trace
and analysis rules are described using languages de-

] | Problems and
: I recommendations

the MPI

application

scribed later in this paper and they constitute Knowledge
Base of the system which represents knowledge about
all performance problems known so far. At the moment
Knowledge Base of Performance Expert contains de-
scription of 10 typical performance problems of MPI
applications [3].

194

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2012, Ne7 (59)

Usage step. This step is performed by user. She
executes her MPI application under collector. Collector
uses trace rules to produce trace file containing events
that correspond to actions executed by MPI application.
Then the trace file is examined by analyzer. Analyzer
detects performance problems in MPI application using
analysis rules and generates recommendations for per-
formance improvement. The user is able to follow the
recommendations and implement the changes in her
MPI application and then repeat usage step until good
performance is achieved.

The data flow in Performance Expert system in il-
lustrated in fig. 5:

1.MPI application executes a sequence of ac-

pPn

.. DIy

Trace]]

rule

tions. Trace rules are used to describe which events
should be generated and saved in the trace file.

2.Analysis of the trace file is performed in two
steps:

a) composite events are constructed from simple
events of the trace file. Composite event construction
rules are used to perform this step;

b) performance problems are identified among the
constructed composite events. Performance problem
detection rules are used to perform this step. If a prob-
lem is identified, recommendations are produced which
are related to the exact locations in source code of MPI
application (this is done by extracting information about
actions that produced the problem).

Analysis
rules

i Composite
- event

Performatice
problem

Detected

construction
rule

Composite
event
construction
rule

Y ‘,' S
time e T
!
' Trace
MPI application | > E ——
\
N

il

Composite events

CE

performance
problem

¥ detection
rule

Composite Performance ll.
event problem no F
construction detection [> Pproblem
rule rule '|

1

]
1
1
I
I

]

| :> Performance
problems i/

Recommendations are related to exact locations in source code of the MPI application

Fig. 5. Data flow in Performance Expert system

4. Tracing model

Simple events (or just events) are stored in trace
file generated by collector. Each simple event is repre-
sented as:

e= (f,et, EPval, t,d,pr,cs) ,

where:

f e F — function that was called;

et — type of event which describes event parameters
EP = (epy,....ePk) ;

EPval = (vy,...,vg) — values of event parameters;

t — event occurrence time;

d — event duration;

pr — process which generated event;

cs — call site.

Trace rule is represented as:

trrule
a———>¢;

a= <f s FAval™ s FAval®UT >;
e= <f,et,EPval,t,d, pr, cs);

trrule = (f ,et, EPtemp),
where:
f e F — function of the rule, a call to that function
produces described event;
et — type of event which is generated as a result of
the function call,

Dopmanvui memoou ma Case mexnonozii eepugixayii

195

EPtemp = {(ep;, Expr;, kind;)} — description of gen-
erated event parameters and the way to calculate their

values, where:
ep; — event parameter;

Expr; : FAval™ x FAval®UT - v; — function to

calculate value of event parameter (using argument val-
ues of the called function);

kind; € {in,out} — kind of that parameter (in — cal-
culated before function call; out — after the call).

An XML-based language was developed to declare
trace rules. Trace rules are used by collector generator
to produce wrappers of original functions. Function
wrappers are used by PIN system [4] for dynamic in-
strumentation of MPI applications (PIN is a third-party
component, a framework for dynamic instrumentation).

5. Analysis model

Composite event is represented as:
ce =(cet, CEPval, ME)
where:
cet — type of composite event which describes pa-

rameters CEP = (cepy,...,cepk) ;

CEPval = (cevy,...,cevig) — values of composite
event parameters;

ME = {e;} U{ce;};i=1...N;j=1...M - set of

simple and composite events that are members of this
composite event.
Composite event construction rule is:

E—ET L gR
CET _cerdle e (cet,CEPval, ME);
CE CER
cerule = <ET,CET, o,cet, CEPtemp, ETS>,
where:

ET = {et;} — set of simple event types to select a

subset of relevant simple events:

ER = {(f;, et;, EPval;, t;,d;, pri,cs;)} < B ;

i
CET = {cet j} — set of composite event types to se-
lect a subset of relevant composite events:
CER = {{cet;, CEPvalj, ME;)} CE .
Let us denote:
EPV; = (f;,EPval;, t;,d;, pr;, cs;);
P = EPV, x...x EPVy x CEPval, x...x CEPvaly;
o:P—{1,0} — Boolean condition for constructing

the composite event;
cet — type of the composite event to compose;

CEPtemp = {(cepk,Exprk>} — description of the
composite event parameters and the way to calculate
their values, where:

cep — parameter of the composite event;
Expry : P — cev, — function to calculate pa-
rameter value;

If rule conditions are satisfied (i.e., subsets of rele-
vant events ETR and CETR of the specified types
exist and Boolean condition for their parameters ¢ is
satisfied), then composite event ce of type cet is con-
structed, where:

CEPval = (cevy,...,cevy) — parameter values;

ME = ER UCER _ set of member events.

Rule parameter ETS c ET describes event types

which are common for the constructed composite event
and other event types.
Performance problem detection rules is:

1
ce—Pome y

ce= <cet, CEPval, ME);
pb = <pd, dur, REC(A‘NFO)>;

pbrule = <cet, ¢,pd, RECtemp, L 4, > ,

where:

cet — type of the composite event which may repre-
sent performance problem;

¢ : CEPval — {1,0} — Boolean condition of the prob-
lem occurrence;

pd — textual description of the problem;

RECtemp: CEPval > REC -
AINFO

recommendation

template (is the description of actions that pro-
duced the problem and it is generated by extracting in-
formation from all simple events contained in the com-
posite event recursively);

Lgyr : CEPval - dur — function to calculate dura-

tion of the problem.

Languages were developed to declare composite
event construction rules and performance problem de-
tection rules. Performance Expert system uses CLIPS
[5] expert system tool to perform the analysis, so inter-
nally these rules are converted into CLIPS rules.

6. Experiment

To investigate the implemented system an experi-
ment was conducted to analyze and improve perform-
ance of MPI application which models heart activity [6].
Cells of heart comprise NxN lattice and each cell is

196

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMII’FOTEPHI CUCTEMM, 2012, Ne7 (59)

connected to the nearest neighbors. Each cell is de-
scribed by differential equations and the application
performs numerical integration.

The lattice is split into smaller parts MxM (where
M < N) which are distributed among processes. Each
process performs the following actions in cycle:

1. Calculate values in lattice points.

2. Exchange values on boarders with neighboring
processes using MPI_Sendrecv.

After numerical integration is done, the calculated
data is sent to the main process using MPI_Gather.

Analysis of this application by Performance Expert
system in automatic mode revealed the following per-
formance problems:

o Late sending. Cumulative duration of such
problems is 28,02% of total execution time.

o FEarly receive for “many-to-one” operation.
Cumulative duration is 24,16%.

The second problem relates to application imple-
mentation details (main processor initiates call to
MPI_Gather which is waiting until data is sent by other
processes). So, it was decided to fix the first problem.
Performance Expert system provided recommendation
to use non-blocking receive operations, so the cycle in
application was rewritten:

1. Calculate values in boarder lattice points.

2. Send values on boarders to neighboring proc-
esses using MPI_Send.

3. Initiate receive of values on boarders from
neighboring processes using MPI_Irecv in non-blocking
mode.

4. Calculate values in the rest lattice points.

5. Wait until receiving of values is finished using
MPI_Wait.

Fig. 6 shows achieved performance improvements.
The best improvement (1,62x) was achieved for 101
processes.

6000,00
-]
£ 5000,00
g \
Ea 4000,00 =N
]
EE \.\
£ & 3000,00
2 E
£ 7 2000.00
& - . \
[~
&=
= 1000,00
0,00
PR=17 PR=26 PR=37 | PR=101
—+—Before| 4936,51 3757,66 | 3057,43 | 205538
—B-After | 424994 2976,61 | 2296,87 | 1269.56

Fig. 6. Performance improvement results (PR denotes processes number)

Data was collected on cluster of Lobachevsky
State University of Nizhny Novgorod (it consists of
dual-core Intel Xeon 5150 2.66 GHz cores, 4 GB mem-
ory, Gigabit Ethernet, Windows Server 2008 x64, Mi-
crosoft implementation of MPI library).

Conclusion

A new way to analyze performance is proposed by
automatic detection of performance problems in mes-
sage passing applications. Experiment conducted on a
real MPI application shows validity of this approach.

References

1. Toward Scalable Performance Visualization with
Jumpshot [Texcm] / O. Zaki [et al.] // High-Performance

Computing Applications. — 1999. — Vol. 13, Ne 2. —
P.277-288.

2. MPI: A Message-Passing Interface Standard
[Onexmponnoui - pecypc]. — Peacum docmyna:
http://www.mpi-forum.org/docs/mpi-1 1-html/mpi-
report.html. — 28.08.2011 .

3. Jlepeynos, A.B. Asmomamuzayust evisagneHus: npu-
yun nomepu npouszgooumenvrocmu MPI npoepamm na
IK3APNONCHBIX U OpYeUx OOIbULUX CYNEPKOMNbIOMEPAX
[Texcm] / A.B. Jlepeynos // Hayunolii cepsuc 6 cemu Hn-
mepHem: 3K3agioncroe O6yoywee: mpyovl MescoyHap.
cynepkomnwsiomepHotl kKoug. — M.: Uz0-60 MI'Y, 2011. —
C. 491 —496.

4. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation [Texcm] / C.-K. Luk
[et al.] // Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementa-
tion, Chicago, IL, 2005. — P. 190 — 200.

Dopmanvui memoou ma Case mexnonozii eepugixayii 197

5. Ibicappamano, [ic. Dxcnepmmuvie cucmemvi. 6. Mooenuposanue cepoeunol akmusHocmu /
npunyunel paspabomxu u npoepammuposanue / I.B. Ocunoe [u op.] // CynepkomnbromepHbie mexHonio2uu
L. Jrcappamano, I'. Patinu; nep. ¢ anen. K. A. IImuypl- 6 nayke, oopazosaruu u npomviuiiennocmu. — M.: H30-60
Ha. — 4-e uz0. — M.: Bunvsimc, 2007. — 1152 c. Mock. yn-ma, 2010. — C. 35 — 40.

Tocmynuna 6 pedaxyuro 17.02.2012

PenensenT: n-p TexH. HayK, cT. Hayk. cmiBp. B.M. Onanacenko, [Hcturyt xibepueruku iMm. B.M. ['mymikosa, Kuis,
VYkpaina.

OIIMCAHUE U ABTOMATHYECKOE BBbIABJIEHUE ITPOBJIEM ITPOU3BOAUTEJIBHOCTH
B MPI IPHJIOKEHUAX

A.B. /lepzynos

TpaaunuoHHo A aHaIM3a MpousBoAuTeabHOoCTH MPI npunoxkeHui UCTIONB3YIOTCS MPOrpaMMHBIE CpPEICTBA
JUTS. BU3YaJIU3alldM TPACChl UX paboThI. J[7Is1 BBIMONMHEHUs 3TOM 3agaud pa3pabOTaHO HECKOJIBKO HMHCTPYMCHTOB,
npuMepoM sBisiercs Jumpshot. Ho aHaiu3 mpor3BOAUTENBHOCTH C UCIIOIB30BAHUEM TaKUX MHCTPYMEHTOB SIBJISCT-
Cs CIIOKHOM 3aaveii n3-3a OONBIIMX Pa3MEPOB TPACC M CIOKHBIX B3aUMOJCHCTBHI mporieccoB. B pabdore mpemio-
JKCH HOBBIM ITOIXOJ K aHAJIHM3y MPOU3BOIUTECIBLHOCTH C UCIONB30BAHHEM aBTOMATHYCCKOTO BBIABJICHHS IpPOOIeM
npousBoguteabHocTH MPI nmpunoxenuii. I[lox mpoOaeMoil TPOM3BOIUTEIBPHOCTH TOHUMAETCSI MHOXKECTBO JICHCT-
BHI, KOTOPbIC HETaTHBHO BJIMAIOT HA MPOM3BOIAMTEIBHOCTh POrpaMMEL. I1po0iieMbl IPOU3BOAUTEIBHOCTH OITUCHI-
BAIOTCSI C UCMOJIB30BAaHUEM MIPABUII TPACCUPOBKH U aHAJIM3A.

KiroueBble cjI0Ba: OnvcaHUe U BBIABICHUE MPOOJIEM MPOU3BOAUTENbHOCTH, MPI npunokeHus.

OINC I ABTOMATHYHE BUSIBJIEHHS ITPOBJIEM ITPOJYKTUBHOCTI
B MPI IOTATKAX

A.B. /lepzynos

Tpaauuiiino mis ananizy npoayktuBHocTi MPI nonaTkiB BUKOPHUCTOBYIOTBCS IIPOrPaMHi 3aco0M ISl Bizyadi-
3amii Tpacu ix poOotu. J[is BUKOHAHHS LBOrO 3aBAaHHS OYJI0 PO3POOJIEHO JEKiIbKa IHCTPYMEHTIB, HAIPHKIa[
Jumpshot. OgHak aHami3 TPOAYKTUBHOCTI 3 BUKOPUCTAHHSM IIMX IHCTPYMEHTIB € CKJIQJIHUM 3aBJIaHHSM 4depe3 BeJIH-
KM pO3MIp Tpac Ta CKJIAJIHUX B3a€MOJiH mporieciB. Y poOOTI 3ampOnOHOBaHUA HOBUH MiJXIiJ 0 aHAJI3y MPOIyK-
tuBHOocTi MPI nonatkis. I1ig mpo6iaeMoro MpOAyKTUBHOCTI pO3YMIEThCS MEBHI Jii, KOTPi HETATUBHO BILUIMBAIOTH Ha
MIPOAYKTUBHICTh MporpaMu. [Ipo0ieMu NMpomyKTHBHOCTI OMHCYIOTHCS 3 BHUKOPHCTAHHSM TpaBHJI TPAacyBaHHS Ta
aHaizYy.

Karou4osi ciioBa: onuc i BusiBneHHs mpo6iiemM npoaykruBHocti, MPI nonatku

JdeprynoB Auton BiragmmupoBud — acnupasT xadeapsl MaTemMaTnieckoro obecnedenuss DBM Hmxkeropon-
CKOro TrocymapctBeHHoro yauBepcureta uMm. H.M. JlobaueBckoro, Hwxuuit Hosropoa, Poccus, e-mail:
anton.dergunov@gmail.com.

