
ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2012, № 6 (58) 252

UDC 004.4

I. BISCOGLIO, M. FUSANI, S. GNESI

ISTI – CNR, Pisa, Italy

CAN SAFETY BE OBTAINED THROUGH GOOD PRACTICES
FOR REQUIREMENT WRITING?

Software Requirements analysis of quality characteristics as completeness, consistency and unambiguity as-
sume an important role in the safety-critical software. We consider then the contributions to Natural Language
(NL) Software Requirements Analysis as good practices or recommendations for producing high level quality
NL requirements. From a survey of different approaches and solutions, it is possible to draw an incremental
list of Good Practices (GP) for writing NL software requirements, making them understandable to their users,
typically from the linguistic point of view, thus reducing the efforts for the analysis. The industrial experiences
of two research/service laboratories about requirements analysis are compared with the suggestions of the lit-
erature and the technology, and the results are shown.

Keywords: Natural Language, software requirements analysis, good practices

Introduction

If we consider the different languages for express-

ing requirement specifications, Natural Language (NL)
is a single modality of expression but, as it is well
known, there are others. The requirement specifications
can be written in Structured Natural Language (a re-
stricted NL where the terminology is limited and tem-
plates can be used), or in Semi-formal Language (with
graphical notations, precise syntax and a non-rigorous
semantic) or in Formal Language (mathematics-based
language with syntax and semantics formally defined).
Among them, NL is the most common way to express
software requirements: NL requirements can be easily
communicated to the various stakeholders, technical and
no-technical, before being used in the subsequent prod-
uct development phases, and NL requirements facilitate
communication among stakeholders.

However, NL requirements often are inherently
ambiguous. Avoiding ambiguities can be considered an
important step to produce quality safety-related software
in time and with reasonable cost.

It is not uncommon that different users of the same
requirements understand them in different ways. This
situation may have detrimental effects on subsequent
development phases: the cost of late removal of errors
in requirements elicitation could be very high [5], as it
implies much rework and maintenance.

Even when requirements have to be expressed
with rigorous notation, which it is needed in most con-
tracts and standards for safety-related systems, they are
first conceived and written in Natural Language. The
(mostly manual) re-writing process to have them as
formal expressions is itself a critical job as it suffers
from the risks of subjectivity and ambiguity.

Certainly, analyzing the quality of NL require-
ments is more difficult than analyzing semiformal or
formal descriptions: the latters are less ambiguous than
the former, but NL requirements are more pervasive and
immediate in the communication process between re-
quirements engineers and system stakeholders.

In general, requirement analysis is an expensive
and time-consuming process. Even the few organiza-
tions that are aware of the risks due to poor require-
ments are reluctant to sustain the effort of analyzing
their quality as it is considered a hardly sustainable re-
source investment.

As the goal of requirement analysis is establishing
an agreed set of complete, consistent and unambiguous
requirements, adopting good practices for writing NL
requirements can be a relatively low cost against the
benefits that may result. From this point of view, writing
good NL requirements becomes an important investment
for their subsequent analysis: if the requirements are well
written their analysis will be faster and cheaper.

The problem of ensuring the quality of NL re-
quirements remains a big deal. The process, as already
mentioned, is heavily time consuming indeed, involving
reviews and sometimes-partial prototyping.

Referring to recommendations about requirements
standards [11, 12, 17], we can see that requirements
specifications are expected to exhibit a list of quality
characteristics, such completeness, consistency and
unambiguity: incomplete, inconsistent, or even subject
to misinterpretation, requirements may create problems
both in software development and in operation with the
finished product.

In this paper we try to take stock of the situation
about NL software requirements analysis drawing an
incremental list of Good Practices (GP) for writing high

 I. Biscoglio, M. Fusani, S. Gnesi

Надійність та еволюційність програмних систем 253

quality requirements. In the following, we describe the
experiences of the System and Software Evaluation
Centre (SSEC) and the Formal Methods and Tools La-
boratory (FMT) of the National Research Council at
Pisa (CNR) about software requirements analysis in
industrial contexts.

As we shall see, the activity of requirement analy-
sis adopted by FMT Laboratory with the QuARS tool
[10] highlights several potential sources of ambiguity
and inconsistency in requirements that may case errors
in the software development. By the experience of the
SSEC, we also show that the resources dedicated to this
activity by a set of examined developers are lower than
those employed in other activities.

Section 1 introduces related works on NL require-
ments analysis. In Section 2, a list of GP for writing
quality requirements is presented, and in Section 3 some
industrial experiences are shown. Finally, conclusions
close this work.

1. Related works

In order to produce quality software, starting from
quality software requirements is a must, and, quality
requirements are firstly good written requirements. As
this need has been commonly recognised, several stud-
ies have defined methodologies and proposed tools for
the analysis of NL requirements. In literature, two ap-
proaches emerge. The first approach is aimed at defin-
ing best practices or recommendations for both learning
to write requirements less ambiguously and less impre-
cisely, and learning to detect ambiguity and imprecision
in the written text (e.g. [2, 3, 11, 12, 15, 21]). The sec-
ond approach, introducing automation in best practices
adoption, is aimed at proposing tools that perform lexi-
cal, syntactical or semantic analysis, to detect ambigu-
ity, inconsistency or incompleteness in NL requirements
(e.g. [1, 9, 10, 14, 16, 18, 20, 22, 23]).

The first approach is rich, authoritative and clear,
but it is likely to be theoretical and slightly abstract. The
second approach is more detailed, but it is focused
mainly on NL requirements analysis phase and not NL
requirements writing phase. Besides the differences
between the two approaches are related to type of de-
tected ambiguity, scope, instruments, and solutions.
Nevertheless, for both, the purpose is the same: avoid-
ing or detecting ambiguity, inconsistency and incom-
pleteness and, consequently, promoting understandabil-
ity and clarity of users' needs.

2. A list of good practices (GP) for writing
software requirements

From the above cited contributions and other

sources that we mention soon, it is possible to draw
an list of GP that can assist and help the NL software

requirements writers. This GP list is incremental:
new elements can come out from experience and NL
requirements can be written always better. Besides,
the GP presented here do not identify defined and
closed categories of words or sentences, each cate-
gory is not mutually exclusive of other categories.
However, the use of GP could encourage the writing
of more defined and less ambiguous NL require-
ments.

We derived our incremental list of GP from differ-
ent sources of knowledge:

 the study of literature in the requirements anal-
ysis field;

 our research activity that led us to the design
and the creation of the tool QuARS [10];

 the adoption of QuARS for analyzing require-
ments in projects [6] and requirements expressed as
clauses of International Standards Requirements [4].
During our research activity we noticed how “good
practices” in writing NL requirements can be derived
from observing how frequent “bad practices” are re-
flected in software requirements documents. Thus, we
have reversed the perspective: the analysis of problems
in written text of NL requirements has returned a list of
GP for writing quality requirements;

 our experience with many industries in the
software product and process assessment / improvement
[7, 8].

The experience of having approached the problem
from the perspective of requirements analysis puts the
scope of GP use in the initial phase of software lifecy-
cle, particularly during the phase of writing of NL re-
quirements.

A. The Good Practices
Adopting a domain glossary
Adopting a glossary is fundamental for writers of

requirements as the meaning of words should be the
same both to those who write and to those who use.

The idea of specialized glossaries [20] is adopted
with the shape of having them organized into sections:

 acronym glossary, for every used acronym;
 agent glossary, for all valid agent entities (e.g.

actor, system, process);
 action glossary, for all valid actions (e.g. allow,

generate…);
 modal word glossary, for all valid modal words

(e.g. shall, should…);
 remaining words glossary, for used words,

mainly those related to the application domain the re-
quirements are used.

Using terms if and as defined in the glossary
Do not use different terms to refer to the same

thing.

ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2012, № 6 (58) 254

Using correct grammar
Using the correct grammar the risk of ambiguity is

more reduced.

Avoiding non-uniquely quantifiable words
Many words without precise quantifications, as

some, sufficient, minimum, maximum, immediately, pe-
riodically, etc., are ambiguous and not verifiable. These
words could generate misunderstandings and errors,
compromising the verification of compliance to re-
quirements. A requirement should only contain measur-
able quantities.

Avoiding words holding inherent vagueness
The vagueness-revealing words, as strong, accept-

able, easy, adequate and difficult, have no a unique in-
terpretation, and it can change for different subjects.

Avoiding words used to express personal opin-

ions or subjectivity-revealing words.
Examples of subjectivity-revealing wordings are

similar, simple, known, essential, usual. In this context,
it is important to avoid, for example, the adjectives.

Specifying always the subject of the sentence.
In a sentence, the presence of a generic subject ex-

pressed by demonstrative adjectives, pronouns, adjec-
tives or preposition could make not clear the under-
standing of whole requirement.

Avoiding optional parts in a requirement.
In a requirement, we can find words or set of

words, as possibly, if needed, eventually, etc. that intro-
duce an optional part. The use of these components can
generate the doubt of what to implement.

Avoiding a weak main verb
"Weak" modal verbs, as can, could, may, make the

sentence not imperative, reducing the strength of the
requirement.

Defining all references
If the sentence contains undefined or incorrect ref-

erences, its understanding can be compromised.

Avoiding words identifying a class of objects

without a specifyer of this class
It is possible that the sentence contains a word

identifying a class of objects without a modifier (typi-
cally an adjective or a genitive) specifying an instance
of this class, for example access (write access, remote
access, authorized access…), testing (functional testing,
unit testing…), manual (user’s, maintainer’s).

Theses cases of under-specification relate to a lack
of completeness that is a characteristic of a good Soft-
ware Requirements Specification [14].

Adopting the active form
The sentences in active form are direct, energetic,

less ambiguous and make it clear who’s doing what.

3. Industrial experiences on requirements
analysis

Requirements Engineering is an area where much

research work has been done for years. Problems analy-
sis, solutions and proposals have appeared in many
journals and conference proceedings. We have seen in
the previous sections that literature surveys and known
projects reports can give an insight on these speculative
areas. But what has been happening in the practitioners’
world?

In order to detect the real situation of many indus-
tries regard to requirement analysis, we have used the
experience of our laboratories, the Formal Methods and
Tools Laboratory (FMT) and the System and Software
Evaluation Centre (SSEC), in interfacing with industrial
software suppliers for providing services and for ex-
perimenting research results.

A. The FMT experience

The experience of the FMT regards the analysis of

a large collection of NL requirements produced inside
the EU/IP MODTRAIN project, in the
MODCONTROL [19] subproject, from different project
partners.

MODCONTROL addresses the standardization of
an innovative Train Control and Monitoring System
(TCMS) for the future interoperable European trains.
Their requirements were collected in a SRD (System
Requirements Document) with more than 5.700 re-
quirements (exactly 5.777) categorized as:

 Functional Requirements (FREQ): Require-
ments for a TCMS function.

 System Requirements (SREQ): Requirements
for devices carrying some functions (or sub-functions).

For the analysis, the 5.777 requirements (3.209
FREQ and 2.568 SREQ) were analysed by QuARS. The
tool has produced rich reports of information about lin-
guistic defects and writing style of NL requirements.

In both categories of analysed requirements there
are defective (according to the QuARS’ analysis) re-
quirements (in FREQ, the defect rate1 is 51% and in the
SREQ the defect rate is 50%).

Each requirement can contain multiple errors. The
types of detected errors (for their definitions, see [10])

1 Defect Rate: number of requirements that present defects
divided for total number of requirements [10]

Надійність та еволюційність програмних систем 255

recall the importance of the use of above cited GP in
order to avoid them.

As we can see in the Table 1, in the analysed re-
quirements there are sentences that have multiple sub-
jects and then without a specified subject (multiplicity
analysis), or sentences that contain non-uniquely quanti-
fiable words and words holding inherent vagueness
(vagueness analysis), or also sentences with weak modal
verbs (weakness analysis), etc.

Table 1
FREQ and SREQ: Defects for Type

Defective
Requirements

Errors Defective
Requirements

Errors

Optionality 35 47 23 29
Subjectivity 39 54 39 61
Vagueness 353 652 396 613
Weakness 128 164 54 61
Implicity 116 251 66 129
Multiplicity 847 2437 633 1809
Underspecification 129 190 68 120
Total 1647 3795 1279 2822

Defects
FREQ SREQ

After having remove the “false positive”,2 the re-
minder requirements with these types of problems can
create, in any case, misunderstandings and ambiguity
among the stakeholders. The presence of the cited
defects can have detrimental effects on the subsequent
phases of the software process: as we said above, the
cost of removing errors in requirements could be very
high, requiring at least rework and maintenance.

B. The SSEC experience
The experience of SSEC regards the requirement

analysis as object of independent software lifecycle
process verification. After two decades of such work,
we may conclude that only very few organizations per-
form requirements analysis as a specific and docu-
mented lifecycle activity.

From a repository of 26 ISO/IEC 15504 [13] as-
sessments reports performed between 2001 and 2011,
we did an explorative analysis of the assessment results
about the Process Capability Level3 “Performed” or
“Level 1” of System Requirement Analysis process. This
level is evaluated through indicators named Base Prac-
tices (BP) or activities that, when consistently per-
formed, contributes to achieving a specific process pur-
pose [13]. There are five BP:

 BP1 : Establish system requirements
 BP2: Analyse system requirements

2 False Positive: a requirement recognized as defective by the
tool but considered acceptable by the user [10]
3 Process Capability Level: a point on the six-point ordinal
scale (of process capability) that represents the capability of
the process; each level builds on the capability of the level
below [13]

 BP3: Evaluate and update system requirements
 BP4: Ensure consistency
 BP5: Communicate system requirements
Our aim is to observe the distributions of different

BP and to detect relevant differences. As we can see in
the figure 1, the most widely used modality (here mo-
dalities correspond to scores of practice performance) is
that of fully performed: that is, the BP are practically
fully achieved. Nevertheless, BP2, or Analyze System
Requirements, and BP4, or Ensure Consistency, show
some downturns and major variability. In a global posi-
tive situation of the level 1 of System Requirement
Analysis process, these scores uncover weak points and
scopes to be monitored: why these results? What do
they mean? Is this a coincidence?

For both BP, the variability in the scores is not
casual (we used One Sample Kolmogorov - Smirnov
test obtaining the following results: 1,852 for BP2 and
2,025 for BP4 with α = 0.01). Above all, it is very inter-
esting that a statistically significant, strong and positive
correlation between BP2, or Analyze System Require-
ments, and BP4, or Ensure Consistency was found
[Spearman’s rho Correlation Coefficient (SRCC) =
0.791, P < 0.01 level (2-tailed)]. Obviously, a strong
correlation doesn’t mean that a cause – effect relation-
ship between BP2 and BP4 exist, but only that the or-
ganizations with the lower scores for BP2 are the same
with lower scores also for BP4. Then, for BP2 and BP4
similar problems to be addressed and the situation de-
serves further insights.

It is fair to say that some actual requirements
analysis is conducted for correctness and testability in
the most mature suppliers organizations. Nevertheless,
the quality aspects of consistency and non-ambiguity
seem to be still far away from the industry targets.

0

1

0

3

0

3

10

2

6

1

23

15

24

17

25

0% 20% 40% 60% 80% 100%

BP1.

BP2

BP3

BP4

BP5.

not achieved partially performed largely performed fully performed
Fig. 1. Ratings for BP

in System Requirement Analysis Process

Conclusion and future work

In this paper, we provided an overview on NL soft-
ware requirements analysis in literature and we have
drawn an incremental list of GP for writing NL software
requirements.

ISSN 1814-4225. РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2012, № 6 (58) 256

We have also presented the industrial experiences of
two research/service laboratories about requirements
analysis, together with the results of their analysis.

For the future, we consider the idea that the GP can
be integrated in a project of textual editor that helps
requirements engineers in writing software require-
ments. Particularly, for the future developments of this
work, our projects are:

1. the implementation of the GP in a new part of our
tool QuARS analyzer. The new part should be considered
as the “editor” part of QuARS, able to assist the require-
ments engineers during the writing of NL requirements and
to reduce the risk of their arbitrariness. The “editor” part of
the tool does not exclude or reduce the importance of the
“analysis” part: the editor should only provide “warnings”
that flag potentially risky words or sentences, and suggest
GP, but freedom and creativity in writing requirements
would be guaranteed.

2. evaluating if, how and how much the above cited
GP are implemented in the System Requirement Analysis
Process in the process assessment activity of the System
and Software Evaluation Centre (SSEC).

References

1. Ambriola, V. The Circe approach to the
systematic analysis of NL requirements [Text]/
V. Ambriola. V. Gervasi // TR-03-05, University of Pisa,
2003.

2. Berry, D.M. From contract drafting to software
specification: Linguistic sources of ambiguity [Text]/
D.M. Berry, E. Kamsties, M.M. Krieger // TR,
University of Waterloo, 2003.

3. A new quality model for natural language
requirements specifications [Text]/ D.M. Berry,
A. Bucchiarone, S. Gnesi, G. Lami, G. Trentanni // In
Proceedings of REFSQ, 2006.

4. An approach to Ambiguity Analysis in Safety-
related Standards [Text]/ I. Biscoglio, A. Coco, M.
Fusani, S. Gnesi, G. Trentanni //In Procedings of
QUATIC 2010, Porto, Portugal, – P. 461-466.

5. Boehm, B.W. Software Engineering Economics
[Text]/ B.W. Boehm // Prentice-Hall, Englewood Cliffs,
NJ, 1981.

6. An experience in using a tool for evaluating a
large set of Natural Language Requirements [Text]/
A. Bucchiarone, S. Gnesi, A. Fantechi, G. Trentanni,
//Proceedings of ACM SAC, 2010. – P. 281-286.

7. Fabbrini, F. One decade of software process
assessments in automotive: a retrospective analysis
[Text]/ F. Fabbrini, M. Fusani, G. Lami// In:
proceedings of ICCGI 2009 - Cannes, France, IEEE. –
2009. – P. 92 – 97.

8. Using software process assessment to manage
the quality of suppliers: an experience in automotive
[Text]/ F. Fabbrini, M. Fusani, G. Lami, E. Sivera //In
Proceedings of the 15th ICSSEA 2002, Paris, France. –
P. 29 – 35.

9. Fantechi, A. A Content Analysis Technique for
Inconsistency Detection in Software Requirements
Documents [Text]/ A. Fantechi, E. Spinicci //In: VIII
Workshop on Requirements Engineering, 2005, Porto,
Portugal.

10. Gnesi, S. An automatic tool for the analysis of
natural language requirements [Text] / S. Gnesi, G.
Lami, G. Trentanni //In International Journal of
Computer Systems Science and Engineering. – 2005. –
V. 20, N. 1. – P. 1-13.

11. Hooks, I. Writing Good Requirements [Text] /
I. Hooks // Proceedings of the Fourth International
Symposium of the NCOSE 2, San Jose, CA, 1994. –
P. 197-203.

12. IEEE Recommended Practice for Software
Requirements Specification [Text] // IEEE/ANSI
Standard 830-1998, Institute of Electrical and
Electronics Engineers, 1998.

13. ISO/IEC 15504. Information Technology
Software Process Assessment [Text] // International
Organisation for Standardization. Geneva Switzerland,
2006.

14. Automated review of natural language
requirements documents: generating useful warnings
with user-extensible glossaries driving a simple state
machine [Text] / P. Jain, K. Verma, A. Kass,
R.G. Vasquez // In Proceedings of ISEC 2009, ACM,
2009. – P. 37–46.

15. Kamsties, E. Detecting Ambiguities in
Requirements Documents Using Inspections [Text] /
E. Kamsties, D.M. Berry, B. Paech //In Proceedings of
WISE, ed. M. Lawford and D. L. Parnas, Software
Quality Research Lab at McMaster University in
Canada, Paris, France, 2001. – P. 68–80.

16. Requirements for tools for ambiguity
identification and measurement in natural language
requirements specifications [Text]/ N. Kiyavitskaya,
N. Zeni, L. Mich, D.M. Berry //Requir. Eng. – 2008. –
Vol. 13, No. 3. – P. 207–239.

17. Meyer, B. On Formalism In Specifications
[Text]/ B. Meyer //IEEE Software. – 1985. – Vol. 2,
No. 1. – P. 6-26.

18. Mich, L. Ambiguity measures in requirement
engineering [Text] / L. Mich, R. Garigliano // In
Feng Y., Notkin D., Gaudel, M., eds.: Proceedings of
ICS2000, Sixteenth IFIP World Computer Congress,
Beijing, Publishing House of Electronics Industry,
2000. – P. 39 – 48.

19. MODTRAIN: Innovative Modular Vehicle
Concepts for an Integrated European Railway System
[Electron resourse]. – Access an:
http://www.modtrain.com. – 12.03.2012.

20. Verma, K. Requirements analysis tool: A tool
for automatically analyzing software requirements
documents [Text]/ K. Verma, A. Kass //In ISWC ’08:
Proceedings of ISWC 2008, Karlsruhe, Germany. – P.
751–763.

21. Wiegers, K. Software Requirements [Text] /
K. Wiegers //Microsoft Press, 2003.

Надійність та еволюційність програмних систем 257

22. Wilson, W.M. Automated analysis of
requirement specifications [Text]/ W.M. Wilson,
L.H. Rosenberg, L.E. Hyatt // In Proceedings of ICSE
‘97, New York, NY, USA, ACM Press, 1997. –
P. 161–171.

23. Automatic Detection of Nocuous Coordination
Ambiguities in Natural Language Requirements [Text] /
H. Yang, A. Willis, A.D. Roeck, B. Nuseibeh
//Procedings of The 25th IEEE/ACM, ASE'2010.

Поступила в редакцию 12.03.2012

Рецензент: д-р техн. наук, проф., зав. каф. программной инженерии И.Б. Туркин, Национальный аэрокосмиче-
ский университет им. Н.Е. Жуковского «ХАИ», Харьков, Украина.

МОЖЕТ ЛИ БЕЗОПАСНОСТЬ БЫТЬ ОБЕСПЕЧЕНА С ПОМОЩЬЮ РУКОВОДСТВ

ПО НАПИСАНИЮ ТРЕБОВАНИЙ?
И. Бискольо, М. Фузани, С. Нези

Анализ качественных характеристик полноты, согласованности и однозначности требований к про-
граммному обеспечению играет важную роль в обеспечении безопасности критического программного
обеспечения. Мы считаем, что вклад в анализ требований к программному обеспечению на естественном
языке является передовой практикой в производстве высококачественных NL-требований. Из обзора раз-
личных подходов и решений, возможно составить дополнительный список передовых практик для написа-
ния NL-требований к программному обеспечению, делая их понятнее для их пользователей, как правило, с
лингвистической точки зрения, тем самым, снижая усилия, направленные на анализ. Промышленный опыт
двух исследовательских/сервисных лабораторий в области анализа требований сравнивается с предположе-
ниями, описанными в литературе и показываются результаты сравнения.

Ключевые слова: Естественный Язык, анализ требований к программному обеспечению, руководства.

ЧИ МОЖЕ БЕЗПЕКА БУТИ ЗАБЕЗПЕЧЕНА ЗА ДОПОМОГОЮ ІНСТРУКЦІЙ
З НАПИСАННЯ ВИМОГ?

І. Біскольо, М. Фузані, С. Незі
Аналіз якісних характеристик повноти, узгодженості та однозначності вимог до програмного забезпе-

чення відіграє важливу роль у забезпеченні безпеки критичного програмного забезпечення. Ми вважаємо,
що внесок в аналіз вимог до програмного забезпечення на природній мові є передовою практикою у вироб-
ництві високоякісних NL-вимог. З огляду різних підходів і рішень, можливо скласти доповнюваний список
передових практик для написання NL-вимог до програмного забезпечення, роблячи їх зрозумілішими для їх
користувачів, як правило, з лінгвістичної точки зору, тим самим, знижуючи зусилля, спрямовані на аналіз.
Промисловий досвід двох дослідницьких/сервісних лабораторій в галузі аналізу вимог порівнюється з при-
пущеннями, описаними в літературі, та відображається результат цього порівняння.

Ключові слова: Природна Мова, аналіз вимог до програмного забезпечення, інструкції.

Isabella Biscoglio is a post doc at CNR-ISTI since 2007. Her current research interests include study and
development of web quality models and NL requirements analysis for safety-related Standards and Software
requirements.

Mario Fusani has been with the National Research Council (CNR) of Italy since 1973. Since the 80’s, he has
been involved in the investigation of quality issues of software products and processes. In 1986 he founded the
Software and Systems Evaluation Center, still operating at ISTI-CNR in Pisa. His current work is related with soft-
ware certification and system safety.

Stefania Gnesi is director of research at CNR-ISTI since 2001, and she is head of the Formal Methods and
Tool group. She has been chair of the ERCIM-FMICS working group from 2002 to 2005, and currently is deputy
chair of the Formal Methods Europe (FME) association. Stefania Gnesi's current research interests include i) study
and development of formal languages for the specification and verification of families of dependable systems; ii)
application of model-checking techniques to complex case studies; iii) development of rigorous techniques for the
analysis of Software requirements.

