184

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne 5 (57)

UDC 004.052.42

B.M. KONOREV'!, V.V. SERGIIENKO', G.N. ZHOLTKEVYCH?, G.N. CHERTKOV',

Y.G. ALEXEEV!

' I&C System Certification Center, Kharkiv, Ukraine
2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

CONCEPT OF CRITICAL SOFTWARE INDEPENDENT VERIFICATION
BASED ON INVARIANT-ORIENTED
MODEL-CHECKING APPROACH

Concept of critical software independent verification based on invariants (software properties invariable
during the life cycle) measurement on the platform of the source software text static analysis is presented. The
use of a model-checking approach (verification of software models, oriented on the measurement of invariants)
along with the experimental calibration of sensitivity and pairwise the diversity degree of invariant
measurement methods, allows essentially increasing reliability of the results of critical software independent
verification. Proposed approach can be used for forecasting of critical software latent faults probability and

assessment of testing coverage completeness.

Keywords: software quality, independent verification, invariant, model-checking, calibration, latent faults.

Introduction

There is urgent task for I&C (Instrumentation and
Control) systems: necessity for faultless of software
which realize critical functions of systems (functions,
which failure leads to essential losses, including health
hazard). Requirements to quality of such software are
defined by the gravity of failure consequences caused
by software latent faults. Software latent faults can
result in possible failures of I&C systems and affect the
safety of the whole system. Therefore main requirement
for critical 1&C systems is the implementation of
software independent verification on the basis of the
technological diversity principle.

The requirement of independence of verification
and validation means the implementation of diversity
principle based on quantitative assessment.

Proven measured implementation of the principle
of the technological diversity allows obtaining
trustworthy results and reaching the cost-effective use
of resources.

The capability to be proved consists in provision
of objective quantitative assessment of sensitivity
(probability of software fault detection) of verification
methods and diversity level (conditional probability of
undetected faults). The decision of this problem allows
obtaining the reliable results of independent verification
and validation. Therefore one of the basic results of
independent verification should be forecasting of
software latent faults probability and assessment of
testing coverage completeness.

1. Concept

The problem of verification of software, which
carrying out critical functions of for 1&C systems,
consists in combinatorial “explosion” of software states,
and, as a result, lack of current verification means for
exhaustive testing of all software states to provide
required quality (dependability and safety) of critical
software.

Hypothesis for solution of the problem is the
following:

Software is correct if integrity of all its invariants
is confirmed. Invariant — software property or attribute
being steady during all software life cycle.

Methodological basis of the technology is the
improved model-checking (based on models)
verification [1] with use of invariant-oriented software
models developed on the basis of static analysis of
critical 1&C systems software source codes [2],
including for those performed on FPGA components.

Modified model-checking approach consists in use
of invariant-oriented models (IOM) of critical software
for verification and includes:

1. Forming of software source code models oriented
to diversified measurement for groups of invariants:

— Semantic invariants of SW variables (physical
dimension, variation interval, representation accuracy)
[31;

— Control flow invariants: control flow
reducibility, potential attainability and demand of
operators;

© B.M. Konorev, V.V. Sergiienko, G.N. Zholtkevych, G.N. Chertkov, Y.G. Alexeev

Dopmanvhi memoou ma Case mexnonozii eepupixayii

185

— Use of core memory (RAM) in specific
software project: memory leak, repeat memory release;

- SW control (logic of
execution);

flows structure

— Specific invariants of 1&C systems based on
FPGA components («list of sensitivity», «signal race»,
«latches»).

2. Experimental calibration of IOM sensitivity to
software faults and degree of IOM diversity with technique
of software test faults injection (test faults are selected
from normative faults profile of specific project).

3. Summarized assessment of latent fault probability
and test coverage completeness of software source code.

2. Methodology

Model of the
assessment on the

consolidated software quality
base of diversified invariant

For assessment of software quality the following
base characteristics are generally used: functionality,
reliability, efficiency, usability, portability,
maintainability, quality in use (including functional
safety) [4]. In the offered approach software invariants
are used as the primitives (primary attributes) during
selection of metrics for assessment of these
characteristics.

The model of the consolidated software quality
assessment, presented on Fig. 1, allows generating the
base for software analysis and quality assessment in the
form of superposition (association) of attributes sets

3
Ua;
i=l1

of internal quality (i=1), external quality (i=2) and
quality in use (i=3), which are identified taking into
consideration statistical connection with the model of

measurement technological maturity of software life cycle processes.
Stages of
software Software specification Software integration Real platform
lifecyel
teeyele defines defines
Quality Internal quality =>| External quality | =P | Quality in use
models
Depends on Depends on Is measured
Is measured Y Is measured

Attributes and Attributes and| Attributes and Attributes and metrics
metrics metrics of internal metrics of external . |of quality in use
(including quality
invariants) Al

Measurement

base
Mapping
measurement
base on IOM

Transition to

inverse model

Inverse model of
software residual
faults

Fig. 1. Model of the consolidated software quality assessment,
where A — software address field; D, — software source faults;
D;—faults undetected with I method of invariant measurement;

Dy — residual faults (undetected with any of invariant measurement methods)

186

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne 5 (57)

Possible software latent faults can cause the
distortion of invariants, which results in the loss of
invariance properties or software error. Latent faults
appearance (software error) in use can lead to failures at
system level.

Methods of measurement for various types of
invariants are characterised by various sensitivity to
latent software faults. On this statement the concept of
diversified measurements of invariants and
implementation of multiversion technology is based on
a platform of static analysis for increase of reliability
and precision of results of critical software independent
verification. Software faults can cause invariant
distortion.

Criterion for assessment of the measured software
attribute - invariant is its value integrity for all cases of
use.

Measurement methods of invariants are
characterised generally by different sensitivity shown by
probability of software fault detection. Variety degree of
each pair of methods in general is presented by
probability of presence of software faults, not detected
by both methods. Set of diverse methods for invariant
measurement, realised on platform of the static analysis
of software source code, makes up the multiversion

technology for diversified measurements of attributes —
software invariants.

The real variety of diverse methods is a necessary
condition of reliability growth (uncertainty reduction) at
the use of multiversion technology of software invariant
measurement.

The quantitative estimation of wvariety degree
represents the base characteristic of method for
diversified measurement of software invariants at
independent verification.

Model of invariant-oriented quality assessment
of I&C systems software

For the measurement of invariant values of exam-
ining projects the IOMs are forming. IOM allows con-
trolling the integrity of invariant in the automated mode.

The mechanism of software invariant checking is
presented on Fig. 2.

At the preparation stage of the static analysis the
source code of checked software is brought to internal
representation of the tool complex.

For this purpose syntactic and semantic analysis
(in terms of compiler work) with the use of parser is
performed. The received results are stored in the project
database and represent the software semantic base
model (BM).

Models Invariants
forming measurement _ _ Summarized
e (RN - |IOM Contormation m Aggeszment
Parsmng (BM ; 1 ol ; -
forming) in # {(BM + checker 1) P integrity of
static analysis mvarant 1 ¥ Report on
‘_mode Basic — —_— measured
Source asic IOM , Conformation m invariant
code —Fl}l(‘del »(BM + checker 2) P integrity of values
(BM) mvariant 2
v {3
P .
° .
_ Conformation
IOM »in mtegrity of
mvariant N

Fig. 2. Model of I&C systems software quality assessment
with use of invariant-oriented models (IOM)

The invariant-oriented models are built with the
use of semantic base model by elimination of
information which is irrelevant to invariant.

Thus for the certain invariants dynamic
interpretation of the basic model without formation of
the static IOM is possible. The algorithm of integrity
control was developed for each invariant.

Model of software residual and latent faults

The model demonstrates possible relative
positioning of residual and latent faults sets (presented
on Fig. 3).

It allows estimating benefits from use of diverse
verification methods for various variants of sets
allocation.

The indicator of estimation of achieved effect is the
value (in %) which indicates the decrease of latent faults
Py presence in the course of consequential realisation of
a composition of diverse measurement methods of
invariants at independent verification:

n
Dlat \ ﬂ Di
i=1

|Dlat|

I= ® Py -

Dopmanvui memoou ma Case mexnonozii eepugixayii

187

A

Fig. 3. Model of software residual
and latent faults, where
A — software address field;
D, — software source faults;
D; —faults undetected with I method
of invariant measurement; Dy, — latent faults

Possible variants:
a) theoretically possible case of latent fault
probability decrease in 100 %

n
[ﬂ D; Jﬂ Dy =9 I=1 (position 3);

=1

b)The most adverse variant:
n

Dy, <[\D; I=0 (position 2);
i=1

¢) general case:

1=0,1 (position 1).

If latent faults (elements of set Dy,) will not be
detected during independent verification , the subset
n
ﬂ D; (even in case when benefit is I=0) can be used as
i=1
boundary area of latent faults search (is a frame
assessment of latent faults probability). The area where

n

faults are absent -ﬂDi . For improvement of effort
i=1

assessment it is necessary to concentrate the efforts on

n
the analysis of area ﬂDi . The value of the relation
i=1

n
ﬂDi - defines a relative benefit from use of

i=1

/ U,

i=l1

diverse measurement methods of invariant.

3. Implementation

The scenario of the target technology of
independent verification is represented by the set of
interacting processes (see fig. 4), implementing three
base techniques:

- Normalization of the SW project as the object of
expertise;

- Measurement of the
assessment of SW quality;

- Calibration. Integrated SW assessment. Cost-
effectiveness achievement.

The functional model of the scenario (see fig. 5) is
developed on the basis of IDEFO modeling methodol-
ogy and implies the hierarchy of models of various
levels of detailed elaboration of scenario processes.

Basic element of the scenario is the work break-
down structure. The work break-down structure defines
functionally completed procedure.

The full specification of scenario work break-down
structures provides development and support of scenario
stages at analytical, information and organizational
levels (see fig. 5).

invariants and the

The expected effect of implementation

Implementation of the target technology gives the
opportunities to provide the controlled completeness
and reliability of software verification and to achieve
complete checking of compliance with regulatory
requirements in a formalized project profile. This
ultimately reduces the risk of latent (undetected) faults,
accidents and material losses.

Reduction of routine manual operations and thus
the significant reduction in complexity of the
implementation of different software assessment
scenarios are provided.

Opportunity of mobile instrumentation complex
development for independent verification during
modernization and improvement of critical software on-
site. with no intervention (stopping) in technological
processes is provided (due to the fact that independent
verification is based on static analysis of software
source code of I&C systems).

188

ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne 5 (57)

;

'
! !
- scenario; !
- normative profile of

i of calibration of

- instructions

* cost-effectiveness
i

{ diverse i
i software project; i imeasurement i
- restrictions i i Scheme i im‘eltr::x:‘st for i
mmmmmmmmmmmm e ! 1 of software | nvanants _________
Input v ! invariants i
----- SW oroicetTT Software project [measurement ! R R
! T Rt et RSN H i
' projec i] normalization 1 { The results of
i documentation i A 4 iinvariants control ;
i ' i ; Lhy |
fmTmmTmmmmmmmmmmeee ! Measurement of Elatv Ia” hierarchy |
t invariants e i
Output
\ 4 S,
Calibration. _::SW "lfi“ts i
. h quality 1
Cumulative Gharacteristics |
_______________________ , assessment. —H‘Latent faults !
i Implementation: Cost- probability E
. techniques; effectiveness *Test coverage 1
E - 5 X icompleteness !
= :
| i
1 1
1 1

utilities;

Fig. 4. Functional model of the scenario of target technology
of evidential independent verification

0 level

1-level

Scenario functional model

A0

Il ey

Normalization of
software project

Al

Measurement of software
invariants in the mode off
static analysis

Experimental
calibration,
Integral assessment.

A2 A3

2-level

Formation of test

0 Formation of
invariant

Formation of
— 9 normative profile of
software

Assessment of
estimated test
coverage of
invariant
specification

—» o Formation of software
base model.

p Formation of models
o for invariant checking
(checkers)

—» 0 Model realization.
Invariant measurement.
Checking of invariant
values retention.

> © fault profile

| o Calibration of
sensitivity and variety
degree of invariant-
based models

— O Processing of calibration
results

—® 0 Resulting estimation

Fig. 5. Node tree for functional IDEF0-model of scenario

Conclusion

Developed target technology of independent
verification and forecasting the possibility of latent
faults in critical software is one of the key techniques
for the analysis of criticality and evaluation of
dependability and functional safety of critical 1&C
systems during qualification tests.

Efficiency and effectiveness of this technology
mainly is determined by the real possibilities of
achieving the necessary levels of dependability and
functional safety of the developed 1&C system.

Novelty and relevance of received results.

1. Method of evidential independent verification
is developed.

This method is characterized by:

— procedures for the disclosure of the
specification of invariants and the formation of
invariants-oriented software models in static analysis
mode of software source codes;

— procedures for experimental calibration of the
sensitivity and diversity degree of invariant-oriented
models of I&C system software source code, specific to
a particular software project;

Dopmanvui memoou ma Case mexnonozii eepugixayii

189

— multi-model diversified measurement of
invariants which provides independent verification of
critical 1&C system software;

— evidential realization of diversity principle for
achievement of reliable results;

— assessment of latent faults probability with
controlled precision;

— assessment of test coverage completeness.

2. The model for assessment of latent faults
probability of critical 1&C system software is offered.
This model differs from the known models by the use of
the assessment of residual faults received by the results
of calibration of the invariant-based models and
provides a final assessment of latent faults probability.
To achieve the required precision of the assessment
during the implementation of diverse measuring
methods the indicator of changes measurement of
residual faults cardinal number is used.

3. The method of model-checking verification,
which differs from the known methods by the use of a
new class of models based on checking of invariants
integrity, is improved. This method provides evidential
basis to the general hypothesis of model-checking
verification (correctness of models confirms the
correctness of software);

4. The method of "point" injection of test
software faults for the experimental calibration of the
sensitivity and diversity degree of invariant-oriented
models is improved. This method differs from the
known models by the implemented procedure of “point”
injection of test faults in accordance with the faults
profile in the specific project for the specific software
programming language (that allows considering the
specificity of software project). For the achievement of
required uncertainty degree of the results the faults
injection halt criterion is used.

The offered approach (invariant-oriented model-
checking verification based on static analysis of
software source code) provides the following benefits:

— expanding of the real possibilities of 1&C
systems developers and regulatory bodies to improve

— the reliability and accuracy of risk prediction of
1&C system abnormal functioning due to the faults in
critical software in the overall context of qualification
tests;

— provides evidential implementation of the
technological diversity principle of critical software
independent verification;

— provides an opportunity to perform the
independent verification directly on-site with no
intervention (breaking) in technological processes for
the modernization and completion of critical software
(due to static analysis mode of I&C system software
source code);

— provides the possibility to assess quantitatively
the limits and reduce the probability of latent faults
presence in critical software;

— presents methodological basis for solving the
actual problem of development of regulative and
methodological and instrumental support of evaluations
of dependability and functional safety of 1&C systems,
related to safety, in such critical areas as nuclear energy,
Space, transport, etc.

References

1. Kapnos, FO.I'. Model checking. Bepuguxayus
NApauienbHblX U PACAPEONCHHbIX — NPOSPAMMHBIX
cucmem [Texcm] / FO.I. Kapnos. — CIl6.: BXB-
Ilemepbype, 2010. — 560 c.

2. Konorev, B. Qualification Testing of the Critical
Software: Target Technology of Evidential Independent
Verification and Forecasting of Latent Faults [Text] /
B. Konorev, V. Sergiyenko, G. Chertkov // Proceedings
of CrISS—-DESSERT 2011; edited by V. Kharchenko,
T. Tagarev. — Kharkiv: “KhAI”, 2011. — V. 2. —
P. 265 - 268.

3. Brukhankov, S.S. About static analysis of
variables physical dimensions for critical-mission
software [Text] / S.S. Brukhankov, B.M. Konorev,
M.S. L'vov, G.N. Zholtkevych // Radioelectronic and
computer systems. —2010. — V. 6 (47). — P. 186 — 191.

4. ISO/IEC 9126-1:2001 Software engineering —
Product quality — Part 1: Quality model.

Iocmynuna 6 pedaxyuro 1.03.2012

Penensent: 1-p TexH. Hayk, npod. A.A. bapkanos, 3eneHorypckuii yHuBepcuTeT, 3erneHa ['ypa, [Tonbrma.

190 ISSN 1814-4225. PAAIOEJIEKTPOHHI I KOMIT’FOTEPHI CUCTEMM, 2012, Ne 5 (57)

KOHIEIIISI HE3AJIEJKHOT BEPU®IKALIT
KPUTUYHOI'O ITPOTPAMHOTO 3ABE3IEYEHHS
HA OCHOBI IHBAPIAHTO-OPICHTOBAHOTI'O
MODEL-CHECKING MIIXO1Y

b.M. Konopes, B.B. Cepzienko, I.M. Konmxkeeuu, I .M. Yepmrxos, FO.I. Anekcece

B po0oti mpencraBieHa KOHIEMIS He3aJeKHOI Bepu@ikalii KpUTHYHOTO NPOrpaMHOro 3a0e3reueHHs Ha
OCHOBI BUMIpIOBaHHsI iHBapiaHTIB (HE3MIHHHMX BJIACTUBOCTEH MPOrPaMHOr0 3a0e3NeueHHs] NPOTSATOM JKHUTTEBOTO
LUKIY) B PEXHMi CTaTUYHOTO aHANi3y BHXIJIHUX TEKCTiB MporpaMHOro 3abesnedyeHHs . Bukopucranas model-
checking migxomy (Bepudikamiss Momeneld mnporpamMHOro 3a0e3nmedyeHHs, OPIEHTOBAHMX Ha BUMIpPIOBaHHS
IHBapiaHTIB), a TaKOX EKCIIEPUMEHTAIILHOTO KalliOpyBaHHS UYYTIMBOCTI Ta CTYNEHS PI3HOMAHITTS METOMIB IJIs
BUMIpDIOBaHHSI 1HBapiaHTIB, JO3BOJIIE ICTOTHO IiJBUIIUTH HAIIHHICTh pe3yIbTaTiB He3aJle)KHOI Bepudikarii
KPUTUYHOT'O TPOrPaMHOro 3a0e3eYeHHS .

KirouoBi ciioBa: sKkicTh NMporpaMHOro 3a0e3leveHHs, He3aleKHa Bepudikallis, inBapiant, model-checking
IiAX11, KamiOpyBaHHsI, NPUXOBaHi NeQEeKTH.

KOHIEINIMSA HE3ABUCUMOI BEPUOPUKAILIUU
KPUTUYECKOI'O ITPOI'PAMMHOI'O OBECITEYEHU A
HA OCHOBE UHBAPUAHTO-OPUEHTHUPOBAHHOI'O

MODEL-CHECKING IOAXOJA

b.M. Konopes, B.B. Cepzuenxo, I .H. Konmkeeuu, I . H. Yepmxkos, I0.I'. Anexcees

B pabore npesicraBieHa KOHIENIUS HE3aBUCUMOW BepH(UKAIMN KPUTHYECKOTO IIPOrPaMMHOI0 00ecTIed eHHs
Ha OCHOBE M3MEpPEHHs MHBAPHAHTOB (HEM3MEHHBIX CBOMCTB MPOIPAaMMHOIO O0ECHEUYEeHHUs] B TEUCHUE YKHU3HEHHOTO
LIMKJIA) B PEKUME CTaTHYECKOTO aHaIIM3a UCXOIHBIX TEKCTOB IPOrpaMMHOro odecrniedenus. McnonszoBanue model-
checking moaxoma (Bepuduxamusi Mozenell mporpaMMHOrO oOecrieueHHs , OPUEHTUPOBAaHHBIX Ha H3MEpEHHE
WHBAapHaHTOB), a TAKXKE JKCIEPUMEHTAIFHON KaJIMOPOBKH YYBCTBUTEIHHOCTH M CTENEHU Pa3HOOOpa3Hs METO/IOB
JUIE M3MEPEHHs WHBApPHAHTOB, IIO3BOJSIET CYIIECTBEHHO TMOBBICUTH HAJEKHOCTh pE3YIbTAaTOB HE3aBUCUMOMN
BepU(pHUKAIUH KPUTHYECKOTO MPOrpaMMHOr0 00ECIICYSHUS .

KnaroueBble c1oBa: kauecTBO MPOrpaMMHOIO OOECIIeUeHUs], He3aBUCHMasl BepuduKalys, HHBapuanT, model-
checking nmoaxon, kanuOpPoOBKa, CKPHITHIE IE(PEKTHI.

Konopes bopunc MuxaiijioBu4 — J1-p TexXH. HayK, npod., rnaBHbli HaydHblid coTpyaHuk XXI1 « CEPTLentp
ACY», XappkoB, YKpauHa.

Cepruenko Biaagumup BiagumupoBuy — pykoBonurens ucnbiratenbHoi nadoparopun XXI1 « CEPTLenTp
ACYVY», XapbkoB, YkpauHa. e-mail:admin@scasu.com.

Koarkesuu I'puropmii HukosaeBu4 — 1-p TeXH. HayK, npod., 3aB. Kadeapoil TeOpeTUIeCKON 1 PUKIIAIHON
nHpopMaTuKy, IekaH MexaHhuKo-MaTemaTndeckoro gakynsrera XHY um. B.H. Kapa3zuna, XaprkoB, YkpanHa.

Yeprros I'eopruii Huxonaesuu — qupextop «CEPTLentp ACY», XapbkoB, Ykpausa.

Aaexcees IOpnii I'appuinosny — HauansHUK oTaena XXII « CEPTLentp ACY», XappkoB, YKpauHa.

