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AN INVESTIGATION INTO THE EFFECT OF RULE COMPLEXITY
IN ACCESS CONTROL LIST

An Access Control List (ACL) is an ordered list of rules which specify the action to take for any packet which is
tested and matched against it. The list is arranged in order of decreasing priority, therefore if a match is made on
a particular rule the packet is either permitted or denied and no further rules are evaluated. When configuring
firewall rules it is possible to specify varying levels of granularity when examining the fields of a packet header.
The most basic form of checking is on the source Layer 3 address. However there are more complex forms of the
rule which enables further fields to be checked. This paper investigates the effect on the performance of a router
when using these complex rules. In particular it concentrates on the checking of the port number field in
TCP/UDP. A specialized simulator was built to help understand the process undertaken by the router. There are
results of the investigations and a recommendation on how to improve performance in certain areas.
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Introduction

Infrastructure security within a domain is normally
implemented in either firewalls or routers containing
Access Control Lists (ACLs). An ACL is an ordered list
of rules which accepts or rejects a packet based on one
or some of its characteristics. Typically, a packet may
be considered on the basis of its source, destination or
protocol, although other features may be relevant [1].
Fig. 1 gives an example of a typical ACL in the syntax
of the Cisco Internetwork Operating System (IOS). The
use of the terms permit and deny reflect the original role
of ACLs in passing or blocking traffic.

deny tcp 91.182.189.193 0.0.0.3 135.59.89.54 0.0.0.3 eg 80
permit ip 194.247.4.143 0.0.0.3 157.54.173.200 0.0.0.15 gt 1023
deny udp 98.99.186.58 0.0.0.7 202.86.156.57 0.0.0.63

deny udp 164.101.111.116 0.0.0.63 any eq 129

permit udp 4.92.186.57 0.0.0.15 110.165.54.241 0.0.0.63 eq 53
permit udp 199.150.89.32 0.0.0.15 177.148.27.103 0.0.0.
permit udp any 48.184.250.133 0.0.0.15

permit ip 211.151.242.98 0.0.0.3 195.172.11.133 0.0.0.15
deny udp 43.15.152.198 0.0.0.7 148.144.102.233 0.0.0.3
permit ip any any

Fig. 1. Typical Domain allocation

Each packet to be tested against an ACL is com-
pared with the first rule, then the second, and so on,
until a rule matches its profile. The packet is then per-
mitted or denied accordingly and no more rules are con-
sidered.

There is an implicit ‘deny all’ rule terminating
each list to deal with packets not matched by any other
rule. A precise treatment of rule and packet formats and
profiles is given in [2]. This level of analysis is not re-
quired, here, except in its final formulation of the prob-

lem. However, it is necessary to note that rule order is
critical in an ACL.

Rules are defined in a number of different for-
mats depending on the hardware and operating system
utilized e.g. Cisco I0S[2], Juniper Networks JUNOS
(firewall filters) [3] or Linux (IPTables) [4] Fig. 1.
Despite the differences in format the functionality is
very similar; a packet is either forwarded or discarded
based on the matching of fields in the packet with the
specified rules. Rules are created from a permit or
deny statement followed by variables which can in-
clude source address, destination address, protocol or
port addressing within the packet. Since every packet
has to be tested significant delays can result from the
introduction of such techniques due to the filtering
requirement [5].

Cisco Access Control List
access-1list 101 deny tcp 192.168.1.10 host 10.0.0.1 host 23

Linux IPTables list
iptables -A INPUT -s 192.168.1.10 -d 10.0.0.1 -p tcp -dport
23 -j DROP

Junos Firewall filter
firewall {
family inet{

filter filter- 1 {

term allow-webserver-connections {
from {

destination-address {
192.168.1.10/32;

}
protocol tcp;
destination-port [ http 80 ];

}
then
accept;
}
}

}
}
}

Fig. 2. Typical Domain allocation
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Attempts have been made to use various tech-
niques to optimize the delay through routers caused by
ACLs [6]. Optimization of packet filtering performance
has been the subject of intense research for the past dec-
ade [7]. A number of studies have identified rule rela-
tions within an ACL which may result in redundant or
conflicting rules [8].

This paper investigates the significance of the de-
lays encountered through the use of various ACL tech-
niques. Factors which contribute to the delay incurred
by packets passing through a router are identified and
subsequently, a number of experiments were conducted
to quantify these. Suggestions were made to help in the
construction of ACLs to improve performance based on
experimental results. Only delays through network
equipment were considered in this paper.

1. Rule Complexity

When checking packet header fields for security
purposes it is usually necessary to examine additional
fields in the IP and transport layer headers. This type of
ACL is known as extended by Cisco but similar filtering
can be configured using IPTables or other manufac-
turer’s format. As a minimum a rule in an extended
ACL will allow the destination IP address of a packet to
be examined using a single or group of addresses.

Table 1
IP Packet
Ethernet e.g. TCP
Header IP Header Header Data|Checksum

1. Source Address 1. Port
2. Destination Address|Number
3. Protocol

Additionally, it is possible to test against the source
address and/or source and/or destination port values and
other fields such as flag bits in the TCP header and vari-
ous ICMP message types. When performing tests on port
values, it is possible to specify different operators de-
pending on the tests to be made on a packet. Typically
packet filtering schemes such as those implemented by
Cisco will be able to check port values using the opera-
tors equal, not equal, greater than, less than or an arbi-
trary range of port values. An extended ACL in Cisco
format is shown in the figure below using rules contain-
ing various types of operators, fig. 1.

1.1. Testing

An experimental test-bed was set up to perform
tests using real world filtering hardware to determine if
the results were consistent with those found when using
a simulator. The network consisted of a single router
with a source and destination host connected to either

interface. The filtering rules were applied to the ingress
port of the router and a packet generator was used on
the source host to provide the appropriate packet types.
Using ICMP packets was not suitable for this experi-
ment as TCP/UDP packets were required with matching
IP addresses and non-matching port numbers. Of course
the final rule in the ACL will be the permit all which is
the rule that will be matched. This was to ensure that at
a minimum, the source and destination fields of the IP
header would be checked.

The tests were performed using both a Cisco router
and a Linux machine running IPTables. Cisco tests were
conducted on the same router hardware using two ver-
sions of the Cisco IOS, basic and advanced functional-
ity. Previous studies have shown that the processing
time associated with a packet filter varied considerably
depending on the IOS versions used [9].

Consistent equipment was used for all the experi-
ments and a single monitoring machine to ensure that a
synchronized clock is used for timing the delay. The
number of rules in the ACL was kept to 100. To calcu-
late the delay, the packets were captured on the monitor-
ing station using Wireshark on a dual ported monitoring
station. Timestamps are obtained at times T1 and T2
and the difference is used to determine the processing
time for a particular ACL type. In addition, the experi-
ment was repeated without any filtering applied to the
interface so a benchmark could be obtained. The topol-
ogy used in the experiment is shown in fig 3.

ACL Applied L
Source L Destination
B L y
Hub Hub

-..;;,_:.,:.; Monitor
Fig. 3. Test Network

1.2. Delay caused by packet routing

When a packet is passed through a router the IP
header has to be checked against the Routing Table to
find out which port of the router the packet should be
transmitted out to. This will happen whether an ACL
has been used or not.

To get some idea of the effect of simple routing
test where done with no ACL in a Cisco router and no
[PTables configured on a Linux machine.

Fig. 4 shows the result of these tests. It can be seen
that the Linux machine is much faster to carry out rout-
ing and the time taken is more predictable. The Cisco
router with an advanced operating system was by far the
slowest and there was quite a spread in the times ob-
served.
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Fig. 4. Delay through router with different OS

2. Simulator

In previous work an attempt was made to use off
the shelf network simulators e.g. ns 2-3, Opnet but for
various reasons this was not a success [10]. For this
paper a specialized simulator was written to investigate
the action undertaken by a router. This was a simple
program that used programming techniques to undertake
the same functions as a router would take to interpret
the ACL. This simulator was capable of loading up the
same ACL that was loaded into the Cisco routers. A
packet format was then defined which was the same as
that used in iperf [11] for the real network tests and this
was tested against the ACL to check the performance.
Timestamps were used before the start of a rule and then
again after the rule.

Due to the proprietary nature of Cisco equipment it
was not possible to make modifications to the Cisco
IOS to allow exact time measurements to be taken for
each filtering rule. It was considered too time consum-
ing to modify the code on open source packet filters
such as [PTables. The Layer 4 protocol field is first ex-
amined to determine a match and subsequently, Layer 3
IP address fields are examined followed by source or
destination port values if specified. Results from the
simulation are useful as they serve as an indication of

the expected results when a packet is checked against
lists of rules with varying complexity. The rule check-
ing process used in the simulator can be summarized
using pseudo-code fig. 5. The process uses three helper
functions: match protocol, match IP and match port to
perform the checks for IP addresses, port values and
protocol number values. Match protocol function is a
simple comparison using the protocol number contained
in the packet header with the protocol value of the rule.
Match IP function takes three parameters, the source IP
address of the packet and rule along with the mask for
the rule specified using the Cisco wildcard format. A
bitwise check of the packet address is carried out for
only those bits which have a corresponding binary zero
in the wildcard mask. Each bit in the address must be
equal for a match to occur. Match port function also
requires three parameters: the port value from the packet
and rule and also the rule operator for the rule e.g.
equal, greater than, less than since the operator will
change the range of values to be tested. If a checking
function such as match protocol returns a false value,
i.e. there is no match, then the rest of the fields are not
checked and the next rule is evaluated. The process con-
tinues for all other rules in the list until the last rule has
been evaluated. At this point, if a match has not been
found then the packet is denied by default.

Input: rules, packet
Output: result

1: for each rule in rules do
if !MatchProtocol (packet.ProtocolNumber
endif
if !MatchIP(packet.SourceAddress
endi
if !MatchIP (packet.DestAddress
endif
if
endif
if
endif
: result = rule.Type
: endfor
: result = Deny

rule.
rule.
!MatchPort (packet.SourcePort, rule.SourcePort, rule.Operator

!MatchPort (packet.DestPort, rule.DestPort, rule.Operator

rule.ProtocolNumber) then continue

SourceMask) then continue
DestMask) then continue
then continue

then continue

Fig. 5. Pseudocode for rule checking process

2.1. IP Packet

The simplest packet to be tested by an extended
ACL is an IP packet (fig. 6). This is because the proces-

sor has to check the protocol and the source and destina-
tion addresses only.

Results for the Linux machine show that a delay of
around 200 p secs is observed.
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Fig. 6. Delay through router for IP Packet

However when the results were analyzed for the
Cisco router the delay using a Basic OS was twice that
of the Linux machine and using an Advanced OS even
longer averaging around 500 psecs. Additionally the
variation in the delay is much larger in the Cisco router.
The simulator created for this paper showed results that
were remarkably close to the Linux machine.

2.2. Operators in ACL Rules

Further work was carried out to investigate the de-
lay experienced by packets for UDP packets that forced
a comparison to be carried out on the Port Number. A
series of results was collected were the packets were

matched against the operators equal, greater than, less
than or an arbitrary range of port values. Additionally
some OS support the ability to specify explicit Port
Numbers Fig. 7.

The results obtained for the real equipment are
very much as expected i.e. the delays for testing with
operators equal, greater than, less than produce identical
delays. Additionally the delays from an arbitrary range
of port values show a longer delay as does using a num-
ber of explicit Port Numbers. A significant conclusion
can be drawn from this, 5 individual rules checking for
a Port Number would take around 7750 psecs but ex-
plicitly specifying 5 Port Number in one rule would take
about 1700 usecs an improvement of 350%.
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300
1V
b
200
)
100 \
\
o \ S
1400 1900 2000

Fig. 7. Delay through router with Basic OS

2.3 Simulator results for Rule Delay

The results obtained from the simulator provide
delay values for every rule that is being checked so to
get results that are compatible with that from the real
network is to just consider the time for the last rule i.e.
100™ rule, fig. 8. It would be very easy to make the re-
sults obtained from the simulator to be the same as those
obtained from the Linux machine since the difference is
just a time difference, fig 9. This could be implemented
by inserting a delay in the loop. To simulate the Cisco
results is a bit more complex to achieve but it is still
possible. Clearly a delay is required which is much
greater than the delay for Linux but additionally a
spread of the times needs to be catered for. This could
be done by choosing a random number within a range
+100 psecs of the value. The increase in the delay for a

Basic OS would be of the order of 250% and for an Ad-
vanced OS 700%. The simulator would have an option
to select for the type of OS and so this would then make
the results more comparable.

Conclusion

When implementing security on routers it is im-
portant to consider the consequences of the type of rule
invoked as well as the number of rules. Some rules are
much more complex than others and can take longer to
run resulting in a longer delay through the router.

To investigate this statement a series of tests were
performed on a real network to prove the point and to
quantify the values. Experiments were carried out to test
rules using different operators i.e. equals, greater than,
less than and range.
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Additionally there are further parameters that can
be specified that enable a number of explicit values to
be checked. The testing was carried out with a Linux
machine running Fedora and a Cisco router running 2
different versions of the OS. These were then compared
with a specialized simulator to understand the process
adopted within the Cisco OS.

The results showed that when one operator was
used e.g. =, >, < then the results were consistent, when
the range operator was used then the delay was larger
and when a number of explicit Port numbers wee tested
then the delay was again much greater.

However on important conclusion was that by using a
number of explicit Port numbers it was much quicker than
insert more rules. By explicitly adding 5 different Port
Numbers to 1 rule rather than using 5 separate rules a sav-
ing of the order of 350% could be gained.

A series of test were undertaken to compare the re-
sults obtained by the specialized simulator and those
measured in a real router. The results of the simulator
were very similar to that found in the Linux tests. How-
ever there was quite a large discrepancy between these
results and those found in Cisco routers. The spread of

the times in the simulator and the Linux machine were
very similar the spread being around 5% however the
difference in the times between the simulator and the
Cisco router with the Basic OS was250% and for the
Advanced OS is around 700%.

It is intended to carryout further work to make the
simulator more realistic, clearly this will have to have
an option that allows the OS type to be selected.
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JOCJIIKEHHS BIVIMBY CKJIAJJHOCTI ITIPABUAJI B ACCESS CONTROL LIST
.H. /legic, Il. Komepghopo, B. I paym, H. Peauosa, O. Kopx

Access Control List (ACL) npezacrariisie co000 MOCITIAOBHICTD MPABWI, SIKI BU3HAYAIOTH il HAJ OyIb-SIKHM
MAKEeTOM, 1110 HaXOIUTh Ha MapuipyTuzarop. Ha mpakTuili BUKOpHCTOBYIOThCS cKiaHi Gopmu koHpiryparii ACL,
0 mepeadavyaroTh MepeBipKy MOJATKOBHUX IONIB 3aroJIOBKY HMakeTy. B poOOTI AOCHIIKYEThCS BIUIMB CKIIAIHOCTI
npaBui1 ACL Ha IpoAyKTHBHICTh MapIlIpyTU3aTopa. YBara CKOHIIEHTpOBaHa Ha mepeBipui Homepa nopra TCP/UDP.
3 MeTor MoCiiKeHHs mporecy nepeBipku npaBwi ACL pospo6iieno ACL simulator. B craTTi npencrasieHi pe-
3yJIBTAaTH JIOCTIKEHb Ta PEKOMEH/IAIIIT IO MTOKPAIICHHIO MPOYKTUBHOCTI MapIIPyTH3aTopa.

Karwuosi caoBa: ¢inbrpanis [P-nakeris, ckiaagnicts ACL, NpogyKTUBHICTh MEPEXi, 3aTPUMKa B MapILIPyTH-
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HUCCJIEJOBAHUE BJIUSIHUSA CJOXKHOCTHU TPABUJI B ACCESS CONTROL LIST
.H. /lesuc, I1. Komepghopo, B. I'paym, H. Peauesa, O. Kopx

Access Control List (ACL) npezacraBiseT co00l MOCIe0BATEIEHOCTh MPABKJI, ONPEACIIFOIINX NCHCTBUSA HA
JIIOOBIM MTaKeTOM, KOTOPBIN MPUXOMUT HAa MapIIpyTH3aTop. Ha mpakTHKe MCIIOIB3YIOTCS CIOKHBIC (POPMBI KOHGU-
rypanun ACL, mpenmomararoliye MpoBEpPKY JOIOTHHUTEBHBIX IOJICH 3arojioBka makera. B pabore uccrmemyetcs
BIUSHHE CINOXHOCTH MpaBwil ACL Ha mpoOM3BOTUTEIBHOCTh MapIIpyTH3aTOpa. BHUMaHHE CKOHIICHTPHPOBAHO Ha
npoBepke Homepa mopta TCP/UDP. C nenbto uccnenoBanue mporecca mpoepku npaBmin ACL paspadoran ACL
simulator. B craThe mpeacTaBiICHBI PE3yIbTATHI UCCICAOBAHUA U PEKOMEHIAIMH 110 YITYUIICHUAIO TIPOU3BOIUTEIIb-
HOCTH MapIIpyTH3aTOpa.
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