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DETERMINATION OF DISTRIBUTION LAWS OF DELAYS
CONTRIBUTING TO WEB-SERVICES RESPONSE TIME

The paper reports results of finding distribution laws representing Web-Services response time and delays con-
tributing. Theoretical investigations provided are based on real-live statistics. Results of hypotheses checking
are reported. Response time simulation approaches are described. Experimental investigation and mathemati-
cal analysis of response time are reported. Our experiments have shown that delays arising in Service-
Oriented Architecture have unstable characteristics make them really difficult to describe theoretically over

a long period of time.
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Introduction

Web Services are becoming a critical technology
in building modern distributed information systems for
e-business, e-science, e-medicine applications, etc.
Concerning e-science, the use of Web Services is espe-
cially prominent in Bioinformatics and Systems Biology
projects that focus on processing large datasets, and
sharing and exchanging them across different organiza-
tions and institutes.

Different Web Services are orchestrated into work-
flows describing experiments that carry out in silico
what used to be conducted in vivo in laboratories, but
involve the use of computational resources such as data
repositories and analysis/simulation programs available
on the Internet [1]. Such in silico experiments may be
long-lived due to the large volumes of data being ana-
lysed, whilst there may also be requirements on the
timeliness of the workflow enactment.

As far as Service-Oriented Systems are mainly
built as overlay networks over the Internet their depend-
able construction and composition are complicated by
the fact that the Internet is a poor communication me-
dium (has low quality and is not predictable). They can
be vulnerable to internal faults from various sources and
casual external problems such as communication fail-
ures, routing errors and network traffic congestions.
Therefore, the performance of such system is character-
ised by high instability [2], i.e. it can vary over a wide
range in a random and unpredictable manner.

Inability of the WSs involved to guarantee a cer-
tain response time and performance and the instability
of the communication medium can cause timing fail-
ures, when the response time or the timing of service
delivery (i.e., the time during which information is de-

livered over the network to the service interface) differs
from the time required to execute the system function. A
timing failure may take the form of early or late re-
sponse, depending on whether the service is de-livered
too early or too late [3]. For complex bioinformatics
workflows incorporating many different WSs some us-
ers may get a correct service, whereas others may per-
ceive incorrect services of different types due to timing
errors. These errors may occur in different system com-
ponents depending on the relative position in the Inter-
net of a particular user and particular WSs, and, also, on
the instability points appearing during the execution.
Thus, timing errors can become a major cause of incon-
sistent failures usually referred to as the Byzantine fail-
ures.

In this work we use the general synthetic term un-
certainty to refer to the unknown, unstable, unpredict-
able, changeable characteristics and behaviour of WS
and SOA, exacerbated by running these services over
the Internet. Understanding uncertainty arising in SOA
is crucial for choosing right recovery techniques, setting
timeouts, and adopting system architecture and its be-
haviour to such changing environment like the Internet
and SOA. The purpose of the paper is to find a way to
predict and represent the performance uncertainty in
Service-Oriented Architecture by employing one of the
theoretical distributions, used to describe such random
variables like the WS response time. A motivation for
this is the fact shown by many studies (e.g. [4, 5]) that
the Exponential distribution does not represent well the
accidental delays in the Internet and SOA. This work
aims at estimating and predicting of evident perform-
ance instability existing in these Service-Oriented Sys-
tems and affecting dependability of both, the WSs and
their clients.
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1. Response Time Statistics

Our theoretical investigations reported in this pa-
per are based on real-live statistics gathered during
long-term benchmarking of BASIS (Biology of Ageing
E-Science Integration and Simulation System) Web
Service [6] deployed at Newcastle University’s Institute
for Aging and Health as part of our research into de-
pendability of WSs and SOA.

BASIS WS has been invoked by the client soft-
ware placed in five different locations (in Frankfurt,
Moscow, Los Angeles and two in Simferopol) every
10 minutes during eighteen days starting from Apr, 11
2009 (more than 2500 times in total). During each invo-
cation we fixed four times the stamps that helped us to
measure two main delays contributing to the WS re-
sponse time (RT): network round trip time (RTT) and
request processing time (RPT) by the Web Service.

After processing statistics for the all clients located
in different places over the Internet we found the same
uncertainty tendencies. Thus, in the paper we report
results obtaining only for the one.

Performance trends of RPT, RTT and RT and its
probability distribution series captured during eighteen
days by Frankfurt client are shown at the fig. 1. Distri-
bution series were built with the help of Matlab
histfit (x) function.

It can be seen that RTT and especially RPT have

significant instability that contribute together to the in-
stability of the total response time RT. Sometimes, de-
lays were twenty times (and even more) longer than
their average values. Besides, we could see that about
5% of RPT, RTT and RT are significantly larger than
their average values. It is also clear that the probability
distribution series of RTT has two extreme points and
more than five percents of RTT have value that is 80ms
(1/5) less than the average one. All these factors makes
doubt about real distribution of overall response time
and different delays contributing to it.

2. Hypothesis Checking Technique

In this section we provide results of hypotheses
checking about distribution law of WS response time
(RT) and its component values RPT and RTT. In our
work we use the Matlab numeric computing environ-
ment (www.mathworks.com) and its Statistics Toolbox
(a collection of tools supporting a wide range of general
statistical functions, from random number generation, to
curve fitting).

The techniques of hypothesis checking consist of two
basic procedures. First, values of distribution parameters
are to be estimated by analyzing experimental sample.

Second, the null hypothesis that experimental data
have a particular distribution with certain parameters
should be checked.
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Fig. 1. Performance statistics and probability distribution series: RT, RTT and RPT
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To check hypothesis itself we used the kstest func-
tion: [h, p] = kstest (x, cdf) performing a Kolmogorov-
Smirnov test to compare the distribution of random
variable x (i.e. response time statistic) to the hypothe-
sized distribution defined by matrix cdf.

The null hypothesis for the Kolmogorov-Smirnov
test is that x has a distribution defined by cdf. The alter-
native hypothesis is that x does not have that distribu-
tion. Result h is equal to “1” if we can reject the hy-
pothesis, or “0” if we cannot reject that hypothesis. The
function also returns the p-value which is the probability
that x does not contradict the null hypothesis. We reject
the hypothesis if the test is significant at the 5% level (if
p-value less than 0.05).

Bellow we present an example of checking a hy-
pothesis that the vector of ten samples x has the Expo-

X

e e 1
nential distribution y =f(x|p)=—e *.
u

>x =[4;8;85;11;15;1;25;54;14;1]

> mu=expfit(x)

mu= 21.8000

> [h,p] = kstest(x, [x expcdf(x, mu)])

h= 0

p= 07574

As we can see, we cannot reject that hypothesis
(h=0) and the p-value is good enough.

3. Goodness-of-Fit Analysis

In our experimental work we have checked six hy-
potheses that experimental data conform Exponential,
Gamma, Beta, Normal, Weibull or Poisson distribu-
tions. These checks were performed for the request
processing time (RPT), round trip time (RTT) and re-
sponse time (RT) as a whole. Our main finding is that
none of the distributions fits to describe the whole per-
formance statistics, gathered during 18 days. Moreover,
the more experimental data we used the worse approxi-
mation were provided by all distributions! It means that
in the general case an uncertainty existing in Service-
Oriented Architecture can not be predicted and de-
scribed by analytic formula.

Our further work focused on finding the distribu-
tion law that fits the experimental data within limited
time intervals. We have chosen two short time intervals
with the most stable (from 0:24:28 of Apr, 12 until
1:17:50 of Apr, 14) and the least stable (from 8:31:20 of
Apr, 23 until 22:51:36 of Apr, 23) response time.

The first time interval includes 293 request samples.
Results of hypothesis checking for RPT, RTT and RT are
given in Tables 2, 3 and 4 respectively. The p-value, re-
turned by the kstest function, was used to estimate the
goodness-of-fit of the hypothesis. As it can be seen, Beta,
Weibull and especially Gamma (1) distributions fit the
experimental data better than others. Besides, RPT is ap-

proximated by these distributions better than RT and RTT.

1 _
=f(x|a,b)= x37le b 1
y=tlxiab)= s : ()

Typically, the Gamma probability density function
(PDF) is useful in reliability models of lifetimes. This
distribution is more flexible than the Exponential one,
which is a special case of the Gamma function (when
a=1). It is remarkable, that the Exponential distribution
in our case describes experimental data worst of all.
However, close approximation even by using the
Gamma function can be achieved only within the lim-
ited sample interval (25 samples in our case). Moreover,
RTT (and sometimes RT) can hardly be approximated
even under such limited sample length.

For the second time interval all six hypotheses
failed because of the low confidence of the p-value (less
than confidence interval of 5%). Thus, we can state that
the deviation of experimental data significantly affects
goodness of fit. However, we also should mention that
the Gamma distribution also gave better approximation
than other five distributions.

4. Response Time Simulation

In many theoretical and experimental studies of the
performance and dependability of distributed queuing sys-
tems it is necessary to simulate response time. It can be
easily done if we know a distribution law describing this
random variable. However, we have to remember that in
practice (in accordance with our current study and [4])
theoretical distributions can approximate the response time
in service-oriented systems well only within a limited time
frame. Nevertheless, two simulation approaches are possi-
ble. Firstly, RT can be directly simulated by using a par-
ticular distribution function (i.e. Gamma) with the certain
parameters. Secondly, we can take into account the fact
that RT = RPT + RTT, where RPT and RTT are independ-
ent variables. In this case we deal with so called “composi-
tion” (2) of two distribution laws f} (RPT) and f, (RTT). In
this section we are trying to answer the question what
simulation approach is more accurate.

g(RT) = g(RPT,RTT) = f ;(RPT)f ,(RTT) =
= j f (RPT)f ,(RT —RTT)dRPT = )

—00

+00
= j f(RT=RTT)f (RTT)dRTT
—0
As observed in the previous section, the Exponen-
tial distribution does not fit the stochastic processes
happening in the Internet and Service-Oriented Systems.
Within the limited time interval the Gamma distri-
bution gives the best approximation of RPT, RTT and
RT as a whole. Thus, f; (RPT) and f, (RTT) can be
Gamma functions with individual parameters.
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Table 1

RPT Goodness-of-fit approximation

Number of Approximation goodness-of-fit (p-value
requests Exp. Gam. | Norm. | Beta Weib. | Poiss.
293 (all)  [/.8E-100| 1.1E-06 | 9.5E-63| 9.3E-25 | 2.3E-11 | 4.9E-66
First half | I.1E-99| 0.0468 | 1.2E-62| 0.0222|0.00023 | 1.1E-65
Second half| 1.3E-47| 0.2554|5.1E-30| 0.2907| 0.0729| 1.6E-31
First 50 6.9E-18| 0.2456|2.3E-11| 0.2149| 0.0830| 7.5E-12
First 25 2.3E-09| 0.9773|5.1E-06| 0.9670| 0.5638| 2.9E-06
Second 25 | 2.5E-09| 0.2034| 5.2E-06| 0.1781| 0.0508| 3.1E-06
Table 2

RTT Goodness-of-fit approximation

Number of Distribution’s goodness-of-fit (p-value)
requests Exp. Gam. | Norm. | Beta | Weib. | Poiss.
293 (all)  |2.1E-94 | 5.1E-30|4.4E-59 | 7.0E-39 |5.0E-38 |7.5E-85
First half |6.5E-52 | 2.6E-17|9.1E-33 | 1.1E-16 |2.6E-19 |1.0E-45
Second half|5.0E-44 | 2.5E-11| 1.8E-27 | 4.6E-16 |4.6E-13 [8.1E-40
First 50 8.1E-18 | 1.9E-04|2.1E-11 | 2.9E-04 |2.0E-07 |2.1E-15
First 25 2.7E-09 0.004/4.2E-06 | 0.0043 | 0.0133 [4.6E-08
Second 25 |1.6E-09 | 6.0E-04|4.0E-06 | 5.4E-04 |3.5E-04 |4.8E-08
Table 3

RT Goodness-of-fit approximation

Number of Distribution’s goodness-of-fit (p-value)
requests Exp. Gam. | Norm. | Beta Weib. | Poiss.
293 (all)  |1.6E-96 |1.8E-14 |4.4E-60 | 4.4E-29 | 1.0E-19 |4.0E-67
First half |2.6E-52 | 0.0054 |9.4E-33 | 0.0048 | 1.1E-06 |2.6E-35
Second half| 1.0E-45 |9.8E-08 |1.9E-28 | 5.2E-15|9.1E-09 |2.2E-32
First 50 6.1E-18 | 0.1159 |2.1E-11| 0.1083| 0.1150 |6.1E-12
First 25 2.4E-09 | 0.8776 |4.2E-06 | 0.8909| 0.7175 |2.7E-06
Second 25 |1.9E-09 | 0.0843 |4.5E-06| 0.0799| 0.0288 |2.8E-06

To simulate g(RT) directly with the help of the
Gamma distribution we should fit its parameters beforehand
in a way similar to that described in section 4.2. Matlab
function gamfit (x) can be used here. Another Matlab func-
tion gamrnd (a,b) that generates vector of gamma random
numbers with parameters a and b can be used to simulate
RT. An accuracy of simulated RT as compared to actual data
obtained experimentally can be evaluated by use of the
kstest2(x, y) function. This function performs a two-sample
Kolmogorov-Smirnov test to compare the distributions of
values in the two data vectors x and y. The null hypothesis
for this test is that x and y have the same continuous distribu-
tion. The whole sequence of Matlab commands implement-
ing the first simulation approach is as it shown bellow.

> RTpar = gamfit(RT)

>y = gamrnd(RTpar(1),RTpar(2),25,1)

> [h,p] = kstest2(y,RT)

The second simulation approach composing RPT
and RTT can be easily implemented in the Matlab envi-
ronment as well:

> RPTpar = gamfit(RPT)

> RTTpar = gamfit(RTT)

> x = gamrnd(RPTpar(1),RPTpar(2),25,1)

+ gamrnd(RTTpar(1),RTTpar(2),25,1)
> [h, p] = kstest2(x,RT)

Here, RT, RPT and RTT are vectors of the first 25
samples of the response time, the request processing
time and the round trip time gathered experimentally
starting from 0:24:28 of Apr, 12.

Average p-values corresponding to the first and the
second simulation approaches are 0.69 and 0.57. They
were estimated after performing thirty rounds of random
generation. This shows that both simulation approaches
can be used, however the first one provides better ap-
proximation to the experimental data.

Conclusion

Our main finding is that none of the distributions fits
to describe the long-termed performance statistics. The
more experimental data we used the worse approximation
were provided by all distributions. It means that, in the
general case, an uncertainty existing in SOA can not be
predicted and described by analytic formula. According to
section 3, goodness of fit was significant only within short
time intervals which include no more than 20-30 samples.

Based on our experimental investigation and
mathematical analysis reported in the paper we can state
that RPT has higher instability than RTT, however, in spite
of this RPT can be better represented using a particular
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theoretical distribution. At the same time the probability
distribution series of RTT has unique characteristics mak-
ing it really difficult to describe them theoretically. Among
the existing theoretical distributions the Gamma, Beta and
Weibul capture our experimental response time statistics
better than others.

The Matlab numeric computing environment pro-
vides powerful toolboxes and functions for statistical
analysis of the experimental data in the types of the ex-
periments we have been conducting. However, improving
the prediction of WS performance needs more sophisti-
cated procedures for experimental data processing (e.g.
using dynamic time slots, rejecting some extreme samples,
etc.) beforehand.

Our work supports the claim that dealing with the un-
certainty inherent in the very nature of SOA and WSs, is one
of the main challenges in building dependable SOA. Uncer-
tainty has two consequences. First, it is difficult to assess the
dependability and performance of services, and hence it is
difficult to choose between them and gain confidence in
their dependability. Secondly, it is difficult to execute fault
tolerance mechanisms in a (close to) optimal manner, since
too much data is missing to make good decisions and exploit
all features of the dependability mechanisms.

Uncertainty of the Internet and service performance
instability are such that on-line optimization of redundancy
can make a substantial difference in perceived depend-
ability, but currently there are no good tools available
for the company to carry out such optimisation in a rigor-

ous manner. We believe that uncertainty can be resolved
by two means: uncertainty removal through advances in
data collection and uncertainty tolerance through smart
algorithms that improve decisions despite lack of data (e.g.,
by extrapolation, better mathematical models, etc.).
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BU3HAYEHHS 3AKOHIB PO3IOALTY 3ATPUMOK, CKJIAJJAIOUUX YAC BIAKJIUKY WEB-CJIY Kb
A.B. I'opoenko

VY cratTi NpeACTaBIeHO PE3YABTATH TONIYKY 3aKOHIB PO3ITOILTY, 10 OMKCYIOTh Yac BiIKIUKY Web-ciryx0 Ta fioro
cknaoBi. TeopeTuuHi TOCHIHKEHHA 0a30BaHi Ha peabHild CTaTUCTHI. [IpeacTaBieHi pe3yabTaTi MepPEBIPEHUX TIoTe3.
OrvicaHi MIX0au 0 MOJCTIOBAHHS CUMYIIALIT Yacy BiaKInKy. OOrpyHTOBAHO EKCIIEPUMEHTAIBHE JOCIILKEHHS 1 TIpo-
BeJIeHH MaTeMaTHYHUI aHalli3 4acy BiIKIMKY. Bru3HaueHo, 1110 3aTpiMKH, ki BUHUKaloTh y CepBic-OpientoBannx Cuc-
TeMaxX MAloTh Jy)Ke HEBHU3HAUCHI CTATHCTUYHI XapaKTEePHUCTHKH, 10 3HAYHO YCKIAJHIOIOTH iXHE MPEICTABICHHS BIPO-
JIOBYK TPUBAJIOTO Yacy 3a JOMOMOrO0 TEOPETUYHUX 3aKOHIB PO3IIO/ILTY BUIA IKOBOI BETHIHUHH.

Kurouosi ciioBa: Web-cimyx0a, cepBic-opieHTOBaHa apXiTEKTypa, 4ac BIAKIUKY, 3aKOH PO3MOILTY.

OINIPEAEJIEHUE 3AKOHOB PACITPEJIEJIEHUSA 3AJEPKEK,
COCTABJAIOIIUX BPEMSA OTKIIMKA WEB-CJIYKB

A.B. I'opoenko

B craThe npeacTaBieHbl pe3yinbTaThl MOMCKA 3aKOHOB pacrpeesieHUs] BpeMEHU OTKIIMKA U IPYTUX BPEMEHHBIX
xapakrepuctuk Web-ciyx0. Teoperndeckue UcclieoBaHUsI OCHOBAaHBI Ha PEaNbHON CTaTHUCTHKe. [IpencraBieHb
Pe3yABTATHI IPOBEPEHHBIX THIOTE3. ONMUCAHBI MOIXOABI K MOACIMPOBAHUIO CUMYJIAIIUN BpeMeHU OTKIHKa. O6oc-
HOBAHO 3KCIIEpUMEHTAJIFHOE HCCIIE0BaHUE U MIPOBEJCH MaTeMATHUECKUI aHaJIN3 BPEMEHH OTKJIMKA. Y CTAHOBJICHO,
4TO 3aJiepkKH, BosHUKatomue B CepBuc-OpueHTupoBaHHbIX CHcTeMaxX UMEIOT BHICOKYIO CTEIIEHb HEOIpeIeIeHHO-
CTH CTaTUCTUYECKHUX XapaKTEPUCTHUK, YTO CYIIECTBEHHO 3aTPYIHSIET UX OMHUCAHUE C ITOMOIIBI0 TEOPETHUECKUX 3a-
KOHOB pacIipe/ieieHus ClTy4ailHOW BETUUHHBI.

KmioueBsie ciioBa: Web-cityx0a, cepBrUC-OpHEHTHPOBAHHAS! APXUTEKTYpa, BPEMsI OTKIINKA, 3aKOH PacIIpe/iesIeHHs.
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