18 TI'apanmo3oamuicme cepesic-opicHmosanux cucmem

UDC 004.052

A.S. GONCHAROYV, A.A. FURMANOV

National aerospace university named after N.E. Zhukovsky «KHAI», Ukraine

MULTI VERSION SERVICE ORIENTED ARCHITECHTURES
DEPENDABILITY ANALISYS

This article is targeted on investigating the web-services dependability problem and, in particular, the reason-
ableness of multi version architecture usage to solve it and guarantee the customer he is safe while using the
web-service. It provides a reader with general information about web-services architecture, challenges that
such architecture faces and ways of solving such problems. The design of the model used for analysis of multi
version architecture is represented. Results of comparison of different model configurations are carried out
showing the vulnerabilities of each configuration. The efficiency of multi version service oriented architecture

is proved on a basis of the experimental research.

Key words: web-service, Service Oriented Architecture, SOA, dependability, vulnerability, intruders, multi-
version, majority element, web server, application server, database management system (DBMS).

Introduction

Companies have long sought to integrate existing
systems in order to implement information technology
(IT) support for business processes that cover all present
and prospective systems requirements needed to run the
business end-to-end. A variety of designs serve this end,
ranging from rigid point-to-point electronic data inter-
change (EDI) interactions to web auctions. By updating
older technologies, for example by Internet-enabling
EDI-based systems, companies can make their IT sys-
tems available to internal or external customers; but the
resulting systems have not proven flexible enough to
meet business demands that require a flexible, standard-
ized architecture to better support the connection of
various applications and the sharing of data.

Service Oriented Architecture (SOA) [1] provides
a design framework with a view to realizing rapid and
low-cost system development and to improving total
system-quality. SOA offers one such prospective archi-
tecture. It unifies business processes by structuring large
applications as a collection of smaller modules called
"services". Different groups of people both inside and
outside an organization can use these applications, and
new applications built from a mix of services from the
global pool exhibit greater flexibility and uniformity.
One should not, for example, have to provide redun-
dantly the same personal information to open an online
checking, savings or IRA account, and further, the inter-
faces one interacts with should have the same look and
feel and use the same level and type of input-data vali-
dation. Building all applications from the same pool of
services makes achieving this goal much easier and
more deployable to affiliated companies. For example:

interacting with a rental-car company's reservation sys-
tem from an airline's reservation system.

Web services face significant challenges because
of particular requirements. Applying the SOA paradigm
to a real-time system presents many problems, including
response time, support of event-driven, asynchronous
parallel applications, complicated human interface sup-
port, reliability, etc.

The other challenge is that almost all of business
task that should be integrated into services must be as
dependable as possible cause the end user should feel
himself the same as if he is speaking with the company
consultant or manager tete-a-tete. The problem is that
web-services as any other software solutions can pro-
vide unexpected result while processing customer’s
request because of any hardware failure, software fail-
ure or hacking attempt. If hardware failures can be
found nowadays quite rarely due to the fact that modern
hardware architecture is being known quite well, the
problem of an attack is growing day by day and the
accent is now targeted to breaking business critical
applications to get real profit on it, cause idle stand of
business-critical application for just one minute can turn
into millions of dollars loss.

The well known methods of protection from net-
work attacks are firewalls and hardware systems of
attack detection, but nowadays much time is spent on
developing the software architecture that could allow
increasing web-service dependability even more. This is
a multi version architecture based on usage of several
operating channels with different software and hardware
configuration. This solution should reduce the weight of
the platform issues in a scope of failure reasons.

In this artivle I will try to prove the resounabless of such

© A.S. Goncharov, A.A. Furmanov

PAJIIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMM, 2010, Ne 7 (48)



TI'apanmo3oamuicme cepesic-opicHmosanux cucmem 19

an architecture usage - actually I will try to check the
accuracy of results get earlier. Most works on this prob-
lem I have found while analyzing this branch [2] pro-
vide just simple models of such architecture that can be
used only once for the investigation, cannot be applied

to some real environment and even does not use actual
web-service interaction which, as for me, can distort the
result of the actual experiment environment that should
give more reliable results. The model used in the ex-

periment interacts with a real web service.
Environment
TTP—
End User
L
HTTP:
L
End User .
Web Server Application Server DBMS
&C—HHF—
End User

Fig. 1. Typical environment for SOA and its simplest way of interaction with end users

1. Dependable Service Oriented
Architecture analysis

Common service provider consists of three parts:
Web Server, Application Server and Database Man-
agement System (DBMS), running over Operating Sys-
tem and Hardware.

Fig. 1 represents the typical environment used for
SOA [1] that interacts directly with end users. Such
kind of interaction is not used in practice but it can
give us an understanding of what’s happening in ser-
vice. So end user sends a request to web-service using
http (or https) protocol and is waiting for response. On
the server side web server receives the response, that it
redirects the response to the application server which
interacts with the DBMS if needed and gives a result
to web server whose work now is just to translate the
result to the end user. In practice firewalls and other
protection elements are placed between the end user
and environment. But from this picture we can clear-
ly see that failures can take place on such levels:
environment hardware failure, environment software
failure, http transfer failure and effect of possible in-
truder between end user and environment. In this article
we’ll focus on the intruder affects the environment so
that it leads to a failure as aresult. The most frequent
way for the intruder to affect the environment is to per-
form a request pointed to software vulnerabilities on
atarget environment. Such request is called
an attack.

The proposed way of solving such a problem is
providing architecture more stable to attacks making the
intruders work harder by applying majority backup for the
request channels using the method shown on fig. 2 [3, 4].

The advantages of such architecture are:

— the tolerance to network attacks is much great-
er, because it is much harder for intruder to rise a fault
on every environment;

— availability is increased;

— performance is also increased due to hot restore
scheme usage.

But as any other solution it has some disadvantages:

— hardware complexity and high prices;

— software complexity;

— security problems because of just one environ-
ment hacking causes data loss.

2. Muli version architecture efficiency

2.1. Modeling system used in research

The design of the model used is represented on
fig. 3. The Generators part has access to the vulnarabili-
ties database.

The database used for the research is National
Vunarabilities Database (NVD) [5, 6]. TaskExecutor is
a web servis run on Apache web server under the AXIS
2 environment. The MajorityElement module emulates
the behavior of the multi version SOA using the “2 of
3” criteria.



20 TI'apanmo3oamuicme cepesic-opicHmosanux cucmem

Environment 1

Web Server 1 Application Server 1 DBMS 1

Environment 2

&

[End User

g

[End User

Majority [Element
e,

[End User

Web Server 2 Application Server 2 DBMS 2

Environment 3

Web Server 3 Application Server 3 DBMS 3

Fig. 2. Web-service building architecture with Majority Element usage

MajorityElement

Generators J]—>_T : GenericApplication

E GenericApplication
Configuration 1 (=}

I

TaskExecutor

i ey p2)
v Configuration2 (= > @ Edemaiwebsenice
{9}

VulnerabilitiesDatabase

[ ExtemalDatabase Configuration3 &— J

ResultsDatabase

Each and 2/-3 :_:,'i;. .;_:-i;: LE] ExternalDatabase

Fig. 3. Modeling system base architecture design

Each err.lulatc..ed configuration (cqmponent base.: - WS = {WSi}P_WS, 2)
CB), as described in a first stage, contains the following i=]
elements: Web Server (WS), Application Server (AS) AS = { Asi}?:/?S , (3)
and Database Management System (DBMS): N
CB = {WS;AS; DBMS} (1) DBMS = {DBMS; }; 1M . 4)
Each service consists of the components of all Each component contains the vulnerabilities set:

VSws;
k=1

types, so the different sets of components are available:

VWS, ~ VSys, ={Visk | (5)



TI'apanmo3oamuicme cepesic-opicHmosanux cucmem 21

Each attack is defined with a set of vulnerabilities
and repetition factor:

A={Aj ={R}.AV, cv}}. (6)

The attack influence on web-service is shown on
fig. 4.

T2 Ts |

|
|
|
| Ao
\
T
|
|
1

T [ B
Fig. 4. Attack influence on service:
t, — attack time, t,; — interval between attacks;
t, — task execution time, t; — interval between requests;
A; — attack; T; — executed task.

The component base configurations used during
the experiment are shown in table 1.

Table 1
Environment configurations
" Web Application DBMS
Server Server
1 Apache | Apache Tomcat MySQL
2 1IS BEA “i]fb Log- PostgreSQL
IBM Web Oracle8i Data-

3 thttpd

ks Sphere base Server

2.2. Model configurations analysis

After analyzing the NVD [5] the table 2 is built
showing the vulnerabilities of each configuration. From
the table we can see that the most dependable configura-

tion is Configuration 3.
Table 2

Investigated configurations vulnerabilities

Configuration Components Vulnerabilities Conﬁgur.afifm
vulnerabilities
Apache 17
Configuration 1 Apache 5 54
Tomcat
MySQL 32
IIS 6
Configuration 2 BEA We_ 61 83
bLogic
PostgreSQL 14
thttpd 4
Configuration 3 IBM Web- 30 44
Sphere
Oracle8i 10

It is supposed that the experiment will lead to the
same conclusion. It is also clear that the more complex
software component is — the more vulnerabilities are
found in it.

2.3 Experiment order

To run the experiment the modeling software has
been run in different configuration of such parameters
as:

— vulnerability replication factor;

— task execution time;

— request generation interval,

— attack effect time;

— attack generation interval.

Because of the experiment was hold mainly to
compare the results with the modeled service version
[2] the uniform distribution of parameters is used.
In each experiment the dependbility coefficient
was calculated for each configuration and for
majority element regarding the formula:

qucceded tasks
Coop, = —ozeled tasks (7
Qtasks

where Cgyq, — a dependability coefficient;
Qsucceded tasks — @ quantity of succeded tasks and;
Qusks — @ quantity of tasks generated.

2.3. Experiment results

Relationship between

— dependability coefficient and vulnerability rep-
lication factor is displayed on fig. 5;

— dependability coefficient and task execution
time represents fig. 6;

— dependability coefficient and request genera-
tion interval is displayed on fig. 7;

— dependability coefficient and attack effect time
shows fig. 8;

— dependability coefficient and attack generation
interval is displayed on fig. 9.

Conclusion

The experiment shows that the majority element
usage is reasonable in cases when the attack effect time
is short and attack generation interval is bigger than
request generation one. The vulnerability replication
factor also affects the majority element in a worse effi-
ciency. Majority element is extremely efficient in the
environments with short attack effect. The dependability
coefficient of the service itself depends on all the factor
token part in the experiment.



22 TI'apanmo3oamuicme cepesic-opicHmosanux cucmem

1 = = = =Configuration 1
r——
0,9 T
[l’s L] - C\]rlfu . .
= - - — giration 2
CdeP 0,7 74“—4_
0,6 AN
0,5 + r ; . ; . === = =Configuration 3
50 100 200 300
Majority
Element
Tiask

Fig. 5. Relationship between dependability coefficient
and vulnerability replication factor

= = = Configuration1

e —
- -

Cdep 087 — —

0,6

=== Confugiration 2

mmm== = Configuration 3
05 +——+——F—+———+—

—|\/| 3jOr ity

Ty Element

Fig. 6. Relationship between dependability coefficient
and task execution time

= = = «(Configuration1

097 ~ - —
C 0,8 1 N e
dep ~ ~
0,7 1

= mm Confugiration 2

0,6
= = = Configuration 3

05 +—F—+——+—
150 300 500 650

Majority
T. Element

Fig. 7. Relationship between dependability coefficient
and request generation interval

0,95 sssssss Configuration 1
03
0,85 -ﬁ‘—ﬁ
038 a——
Ciep 075 W st = Confugiration 2
07 A .
065 A r
06 4 = . .
0,55 = _"-': . —  + Configuration 3
05 + T + T + |

Majority
Element
Tai

Fig. 8. Relationship between dependability coefficient
and attack effect time

1

= = = Configuration 1
0,9 ~

cdep ij ~
0,6

0,5 1+

0 1 125 15 1,75 2

== Confugiration 2

mmm——_ = Configuration 3

R Majority Element

Fig. 9. Relationship between dependability coefficient
and attack generation interval

The results got during current experimental re-
search are quite close to the results retrieved earlier [2],
but the behavior of diagram curves is not so slight as in
theoretical researches so it makes me to believe that real
web-service environment usage made some corrections
to the results.

In future work it is reasonable to improve the in
vestigation including the research of different con-
figuration parameters parallel changing interaction,
using other distribution of input parameters and ex-
tending the model to make it multi leveled request-
response system.

References

1. Web Services Architecture [Dnexmpon. pecypc].
— Peocum oocmyna k pecypcy: http://'www.w3.org/
TR/ws-arch/.

2. @ypmanos A.A. Moodenuposanue eapanmocno-
COOHBIX CePBUC-OPUECHMUPOBAHHBIX APXUMEKMYD Npu
amakax ¢ ucnoiv3osanuem ysassumocmeil / A.A. @yp-
manos, M.H. Jlaxuoca, B.C. Xapuenxo // Padioenexm-
pouHi [ komn romepHi cucmemu. —Ne7 (41). — X.: XAU,
2009. — C. 65-69.

3. Secure, Reliable, Transacted Web Services:
Architecture and Composition [Dnexmpon. pecypc] /
D.F. Ferguson, T. Storey, B. Lovering, J. Shewchuk //
Microsoft and IBM Technical Report, Database. —
2003. — Peoicum Odocmyna x pecypcy: http://www-
106.ibm.com/developerworks/webservices/library/ws-
securtrans.

4. Dependability in the Web Service Architecture /
F. Tartanoglu, V. Issarny, A. Romanovsky, N. Levy. —
In: Architecting Dependable Systems. — Springer-
Verlag, 2003. — P. 89-108.

5. Furmanov A. A. The analysis of vulnerability
databases for selecting dependable service-oriented
architectures / A. Furmanov // Padioenrexmponni
i komn tomepni cucmemu. — X.: HAKY «XAly. — 2007. —
MNe 8 (27). — C. 15-19.

6. National Vulnerability Database [Dnexmpon.
pecypc]. — Peosicum odocmyna x pecypcy: hitp://nvd.
nist.govy/.



TI'apanmo3oamuicme cepesic-opicHmosanux cucmem 23

Tocmynuna 6 pedaxyuio 10.03.2010

PeneH3eHT: 1-p TeXH. HAyK, Mpod., 3aB. Kadeapbl KOMITbIOTEPHBIX chcTeM | cereit B.C. Xapuenko, HannoHamsHeli
aspokocmuueckuii yausepcuteT uM. H.E. XKykoBckoro « XAN», XaprkoB, YKpauHa.

AHAJII3 TAPAHTO3JATHOCTI BATATOBEPCIHHUX
CEPBIC-OPE€EHTOBAHUX APXITEKTYP

O.C. I'onuapos, 0.A. @ypmanos

Posrmsinaersest mpobieMa rapaHTo34aTHOCTI BeO-cepBicOB, 30KpeMa JOLIIbHICTh BUKOPUCTOBYBAaHHS Oarato-
BepCiiiHOI apXiTeKTypi [uist ii pillleHHs, THM caMuM 3a0e3nedyeHHs Oe3NeKH KITi€HTaM IiJl 4ac BUKOPHCTaHHS BeO-
cepBica. UnTaueBi HaJaeThCs 3araibHa iH(OPMALIis 110 0 apXiTEKTYpH BeO-CepBICiB, BUKIIHKIB, IO TX CTUKAETHCS
Taka apXiTeKTypa, Ta IUIIXW BUpIMIEHHS LUX npobsieM. OmucaHO MPOEKTYyBaHHS MOJENi, BUKOPUCTOBYBAHOI IS
aHaJTi3y OararoBepciiiHOi apxiTekrypu. [IpoiyumtocTpoBani pe3ynbTaTH IOPIBHSAHHS PI3HUX KOH(Iryparii Moneni,
TOKa3aHl Bpa3MBOCTI KOXKHOI KoHQirypamii. JoBomutbesi epeKTUBHICTH OaraToBepCiiHOI CepBiC-Opi€HTOBaHOL
apxiTeKTHpH Ha 0a3i pe3yJabTaTiB eKCIEPUMEHTAIEHOTO TOCH1 KEHHSI.

KorouoBi ciioBa: BeO-cepBic, cepBic-opieHTOBaHa apxiTekTypa, SOA, rapaHTO31aTHICTh, BPA3JIHBICTh, 3JIOMIIVK,
0araToBepCiiHICTh, Ma)KOPUTAPHUIA €JIeMEeHT, BeO cepBep, cepBep MPUCTOCYHKIB, CUCTEMa YIPaBJIiHHs 0a3aMU JAHHHX.

AHAJIN3 TAPAHTOCIIOCOBHOCTH JUBEPCHBIX
CEPBUC-OPUEHTUPOBAHHBIX APXUTEKTYP

A.C. I'onuapoe, A.A. @ypmanos

PaccmaTpuBaercst mpobieMa rapaHTOCIIOCOOHOCTH BEO-CEpBUCOB, B YACTHOCTH II€JI€CO00PAa3HOCTh UCTIONB30-
BaHUS JTUBEPCHON apXHUTEKTYPHI JUIsl €€ pelIeHus], TeM caMbiM oOecnedeHus: 0e30MacHOCTH KIMEHTaM TIpH padore ¢
BeO-cepBucoM. UuraTesro npenocTasisiercst oomas nHpopManus 00 apXUTeKType BeO-CepBUCOB, BBI30BaX, C KOTO-
PBIMH CTAJIKUBAETCS TaKasi apXUTEKTypa, W IMyTH PEUICHHs 3TUX mpobdiaeM. OnucaHo MPOEKTUPOBAHHE MOJIENH, UC-
TIOJIB3YEMOM ISl aHAJIM3a TUBEPCHOW apXUTEKTYpHI. [IpOMILTIOCTUPOBAHBI PE3YIbTaThl CPABHEHUS PA3IMYHBIX KOH-
¢durypanuii MojieNu, MoKa3aHbl YSI3BUMOCTH KaxJIoW KoHpuryparmu. Jloka3piBaercsi 3((PEeKTUBHOCTh ITUBEPCHOM
CepBHUC-OpPUETHPOBAHHON apXUTEKTYphl Ha 0a3e pe3yJbTaTOB IKCIIEPUMETATLHOTO UCCIICAOBAHUSI.

KnroueBsie ciioBa: BeO-cepBuC, CEpBUC-OpPHEHTHPOBAaHHAs apxuTekTypa, SOA, rapaHTOCIIOCOOHOCTb, YSI3BUMOCTb,
B3JIOMILIVK, TMBEPCHBIN, MaKOPUTAPHBIA JIEMEHT, BeO-CEPBHC, CEpBEP NMPUIOKEHHUH, CHCTEMa yIpaBlIeHUs 0a3aMu JlaH-
HBIX.

I'onuapoB Auexceii CepreeBud — CTy/IeHT QaKkyJabTeTa paJIMOTEXHUYECKUX CUCTEM JIETATENBHBIX allapaToB
HanmonansHoro aspoxocmuueckoro ynuepcurera uM. H. E. XKyxoBckoro «XAW», XapbkoB, YkpauHa, e-mail:
alexei.goncharov@gmail.com.

dypmaHoB Anlekceii ApKagueBHY — acCUCTEHT Kadeapbl KOMIIBIOTEPHBIX CHCTEM U ceredl HarnmonansHOro
aspokocmuueckoro yHuepcureta uM. H. E. XKykosckoro «XAWN», XappkoB, YKpauHa.



