154

Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii

UDC 510.64:004.052

S.B. OSTROUMOV', L.V. LAIBINIS?, E.A. TROUBITSYNA?

"National aerospace university named after N.E. Zhukovsky “KhAI”, Ukraine

?4bo Academy University, Finland

EVENT-B PATTERNS FOR DEVELOPING FPGA-BASED HARDWARE

The paper describes the first step of methodology for designing dependable hardware which is based on field
programmable gate array technology. This step means the development of patterns using Event-B language
useful thanks to mathematical proofs of a model. The report shows and describes the patterns developed ac-
cording to synchronism technique because a great number of systems are synchronous. The patterns describe
different component interconnections which are often used in hardware design. These patterns are the neces-
sary condition to convert correctly developed model into hardware description language (e.g. VHDL).

Key words: Formal development, Event-B, invariant, patterns, hardware, design, FPGA, Rodin

Introduction

Nowadays many companies increasingly use
FPGA chips because of their flexibility and simplicity
as well as impressive computational power. Further-
more, there are various kinds of chips with different
parameters of radiation, stress, power consumption, size
etc., which allow to use them in diverse critical areas
such as aviation, space and nuclear power [1]. More-
over, modern FPGA chips enable to use hard logic
along with the soft-processor core with flexible soft-
ware. The core has RISC processor architecture and is
used when a great performance or calculation is re-
quired [2]. Therefore, it is reasonable to use such a
modern technology as FPGA for developing critical
control systems of high complexity.

The main problem with developing critical sys-
tems using FPGA and hardware description languages
(such as VHDL) is hazards connected with design
faults. Classical approaches to safety and fault tolerance
help to defend a system from physical faults using dif-
ferent forms of redundancy (doubling, tripling etc.) in-
cluding internal redundancy (e.g. doubling inside a
chip) and external one (e.g. two or more chips are used),
and their combinations [3]. However, these approaches
are unable to guarantee protection against design errors.

That is why a new technique is required to struggle
with such a problem. The solution can be found in using
formalism to create mathematically proved specification
[4-6] which, in its turn, will be converted into a hard-
ware description language. This approach uses invari-
ants — constant properties which are to be true at all
stages of system development and exploitation.

There have been several attempts to implement
such an approach, but nobody has managed to develop
this approach for using it without restrictions. For in-
stance, Boulanger describes the BHDL tool [7] which is

supposed to be helpful for developing hardware based
on VHDL. However, this tool uses VHDL code as a
source for model checking approach and cannot be used
for initiative development. Another example [8] de-
scribes an attempt to develop a technique for translating
classical B model into VHDL code; nevertheless, this
approach has no practical results.

Therefore, the purpose of the article is to show the
first stage of the approach for developing FPGA based
hardware systems. The main idea of the stage is the
creation of patterns using Event-B method in accor-
dance with synchronization.

1. Event-B specification and
hardware description

Event-B language is the next stage of the B-
method development. It was created by Jean-Raymond
Abrial [4]. The main idea of this language is the use of
Abstract Machine Notation (AMN), which describes the
behavior of a system. AMN is a set of events in a sys-
tem performed. The major problem is that a developer
can define the events in different ways. That is why the
first step of design hardware using Event-B is the de-
velopment of patterns. They characterize a system as a
component at the abstract level and interconnections
between hardware components which compose the sys-
tem during refinement.

A great number of control systems are synchro-
nous because we have to know when and what is exe-
cuted at the moment; thus, we have created patterns
according to synchronization. We have developed an
abstract model in accordance with the refinement ap-
proach to show the use of different patterns at refine-
ment steps (Fig. 1). All the patterns can be used as many
times as needed.

© S.B. Ostroumov, L.V. Laibinis, E.A. Troubitsyna

PAJIIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMU, 2010, Ne 6(47)

Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii

155

HWWite Abstract machine
event
Inputs _| [Outputs
CLK | RelFunc

First refinement

Inputs
HWWrite1 | HWWhrite2
event event
Outputs
RelFunc | WiresComp1 | RelFunc
CLK_| 1 2

e
<L

Second refinement

Inputs
HWWrite 11 HWWrite12 HWWhrite2
event event event
’] Outeuts
Comp WiresComp2 Comp [WiresComp1| RelFunc

CLK_I Func4 CLK_Int Func3 2

—

<

Third refinement
HWWrite21
event

Inputs
4 . ,
HWWrite 11 HWWrite12 —
event event Func5
b

Outeuts
® Comp |

o Comp | WiresComp2 | Comp [WiresC n%

CLK_| Func4 Func3

CLK_Int

HWWrite22
event

Outputs

Comp
Funcé

Fig. 1. The example of HW components refinement

First of all, at the abstract level we define inputs
and outputs of a system and a special input called global
clock signal (CLK I). This signal controls the behavior
of the system according to ticks going from clock gen-
erator, which changes this signal from logical zero to
logical one (rising edge). Then, during refinement steps
we apply patterns taking into consideration that we pack
all the operations into one global tick. Also, we define
the dependency outputs on inputs, but using common
rules instead of precise ones because we will add all the
necessary functions and concrete principles of outputs
assignment during the refinement steps.

To define all the signals, we have to define a set of
their states. The set is called STD LOGIC according to
FPGA terminology and contains the following elements:
U — uninitialized, X — forcing Unknown, LOGIC 0 —
forcing 0, LOGIC 1 — forcing 1, Z — high impedance, W
— weak unknown, L — weak 0, H — weak 1, DC — don't
care [9]. All the signals have X state from the very begin-
ning which means that they are initialized by X state in a
machine. As the machine starts working, it changes the
states of signals because the clock signal tells the ma-
chine when to read and change the value of inputs.

Secondly, we have to declare a set of global clock
to perform a sequence of events. This set is called
CLKFLAGSET and has two states (Fig. 2). It helps to

interconnect events describing synchronous scheme,
which has the following progression. First, CLK I
changes from LOGIC 0 to LOGIC 1 (rising edge), then
a writing operation is performed and then CLK I
changes from LOGIC 1 to LOGIC 0 (falling edge).
When CLK I signal has rising edge, all the inputs are
read (CLKRisEdge event); so, CLK Flag variable has
the state which is called Read. After that writing opera-
tion produces outputs according to inputs read and the
flag changes to Written state (HWWrite event) and then
CLK I has falling edge (CLKFalEdge) (Fig. 3).

context CComp1HW
constants Read Written
LOGIC_1 ZWLHDC

U X LOGIC.0

sets CLKFLAGSET STD_LOGIC

axioms
@axmoO0
partition(STD_LOGIC,{U},{X},{LOGIC_0},
{LOGIC_1},{Z}{Wh{L}{H},{DC}

@axm?2
partition(CLKFLAGSET ,{Read},{Written})
end

Fig. 2. The definitions of the sets used
in abstract machine

156

Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii

machine Comp1HW sees CComp1HW
variables CLK_I Inputs Outputs CLK_Flag

invariants
@inv1 CLK_I € STD_LOGIC
@inv2 CLK_Flag € CLKFLAGSET
@inv3 Inputs € STD_LOGIC
@inv4 Outputs € STD_LOGIC

events
event INITIALISATION
then
@act1 CLK_I = LOGIC_0
@act2 CLK_Flag = Written
@act3 Inputs = X
@act4 Outputs = X
end

event CLKRisEdge
where
@grd1 CLK_I = LOGIC_0
then
@act1 CLK_I :== LOGIC_1
@act2 CLK_Flag = Read
@act3 Inputs :| Inputs' € STD_LOGIC A
Inputs' = DC A Inputs' = U A Inputs' = X
A Inputs' # W A Inputs' += Z
end

event HWWrite
where
@grd1 CLK_I = LOGIC_1
@grd2 CLK_Flag = Read
@grd3 (Inputs = LOGIC_1) Vv (Inputs =
LOGIC_0) v (Inputs = H) Vv (Inputs = L) //
Here is | define dependency outputs on in-
puts */
then
@act1 CLK_Flag :€ CLKFLAGSET
@act2 Outputs :| Outputs' € STD_LOGIC
// This is just a simplest operation, but can
be a function
end

event CLKFalEdge
where
@grd1 CLK_I = LOGIC_1
@grd2 CLK_Flag = Written
then
@act1 CLK_I :== LOGIC_0
end

end

Fig. 3. The events describing abstract behavior

In this example we restrict states of input signals
to a few values generally used in programmable
logic. They are chosen by a non-deterministic as-
signment, limited with LOGIC 0, LOGIC 1, Hand L
(CLKRisEdge event). The machine reads the current
state of input signals and then process them in the
further events.

The dependency between inputs and outputs has to
be written in the following way. In the guards section
we write inputs which influence outputs and in the ac-
tions section we write all the outputs which have to be
changed accordingly to the state of inputs written in
guards section (grd3, act2 in HWWrite event). Thus, we
can have not only one Write event, but also many
events. They will describe all possible states of declared
outputs in accordance with the states of inputs because,
basically, a system has many inputs and outputs. Be-
sides, we can also define invariants describing possible
combinations of inputs and outputs, both separately and
together, because sometimes inputs as well as outputs of
a system have forbidden combinations and we have to
check whether events have them or not.

Finally, we can also write invariants showing the
main limitations and properties of a system to prove its
correctness correspondently to refinement approach.

After writing down all the signals and invariants of
a system and receiving an abstract model with mathe-
matical proofs of its correctness, we begin refining the
model correspondingly to one of the following patterns
depending on a purpose we want to achieve.

2. Event-B patterns

2.1. A sequence of components with global clock

Quite often components have to be interconnected
into a sequence where outputs of the first component
influence inputs of the second one and both of them
have a global clock signal (Fig. 1, the first refinement).
Although these two components are clocked by one
rising edge of clock signal at the moment, there is a dif-
ference between them in time. Firstly, the second com-
ponent produces outputs correspondently to the state of
the first component outputs. Then, the first component
generates its outputs using inputs altered during
CLKRisEdge event execution.

To describe such a sequence we defined a set
called REFCOMPSSTEP2, which includes two states
Compl and Comp?2 (Fig. 4).

context CComps2 extends CComp1HW

constants Comp1l Comp?2
sets REFCOMPSSTEP2

axioms

@axm1 partition(REFCOMPSSTEP2,
{Comp1},{Comp2})

end

Fig. 4. The context of the sequence pattern

During the execution of events a variable of the set
type (RefCompsStep2) contains a state of a component

Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii

157

being executed at the moment (the current component)
(Fig. 5). After being performed, the first component
modifies the value of the variable to make it possible to
execute the next component (@act3 in HWWrite2
event).

machine Comps2_global_CLK refines

CompTHW sees CComps2

variables CLK_I CLK_Flag Inputs Outputs
WiresComp1 RefCompsStep?2

invariants
@inv1 WiresCompl € STD_LOGIC
@inv2 RefCompsStep2 € REFCOMPSSTEP2

events
event INITIALISATION extends INITIALISA-
TION
then
@act5 WiresCompl := X
gDaCtG RefCompsStep2 = Comp?2
en

event HWWrite2 refines HWWrite
where
@grd1 CLK_I = LOGIC_1
@grd2 CLK_Flag = Read
@grd3 (Inputs = LOGIC_1) v (Inputs =
LOGIC_0) v (Inputs = H) Vv (Inputs = L)

@grd4 (WiresCompl1 = X \%
(WiresCompl = Z7) v (WiresCompl =
LOGIC_1) v (WiresCompl = LOGIC_0) Vv

(WiresComp1l = H) v (WiresCompl = 1)

@grd5 RefCompsStep2 = Comp?2

then

@act2 Outputs :| Outputs' € STD_LOGIC
A Outputs' = DC A Outputs' = U A Outputs'
+ X A Outputs' = W

((j@act3 RefCompsStep2 = Compl

en

event HWWritel refines HWWrite
where
@grd1 CLK_I = LOGIC_1
@grd2 CLK_Flag = Read
@grd3 (Inputs = LOGIC_1) v (Inputs =
LOGIC_0) v (Inputs = H) v (Inputs = L)
l‘fr.i>grd4 RefCompsStep2 = Compl
then

@actl CLK_Flag :| CLK_Flag' €
CLKFLAGSET
@act3 RefCompsStep2 :| RefComp-

sStep2' € REFCOMPSSTEP2 A

sStep2' = Comp2
@act4 WiresCompl

STD_LOGIC

end

end

RefComp-

;| WiresCompl' €

Fig. 5. The components sequence with global clock

The same operation is done by the second compo-
nent in its turn (@act3 in HWWritel event). To allow
an execution accordingly to the described sequence
scheme, we have to add the check of the variable in
guards section of each event (@grd5 and @grd4 corre-
spondently).

Therefore, to use a sequence of two components
which have global clock we have to define a set of
states which describe components. Then we use a vari-
able that helps to specify components execution. In ad-
dition, we have to remove the action which modifies
clock flag (@actl, Fig. 3) from the actions section of
the second component because if the second component
finished working, the first one will work before falling
edge. Besides, we have to remove the action which pro-
duces outputs (@act2, Fig. 3) from the action list of the
first component and add the action which assign values
of internal wires (@act4, Fig. 5) because the first com-
ponent must not produce outputs but internal signals.

2.2. A sequence of components with internal clock

The next combination of components is a sequence
where the first component influences the second one not
only by internal signals, but also by internal clock signal
(Fig. 1, the second refinement). The internal clock sig-
nal is produced by a function Internal CLKFunc, which
generally takes some or all inputs and generates a state
in compliance with STD LOGIC set (Fig. 6).

context CComps3 extends CComps2
constants InternalCLKFunc

axioms

@axm1 InternalCLKFunc € INPUTS —
STD_LOGIC
End

Fig. 6. The definition of internal clock function

This pattern contains two cases. The first one pre-
supposes that the second component is not executed, so
a falling edge comes after the first component has done
its operations. Alternatively, the first component modi-
fies internal clock signal from logical zero to logical
one, which makes the second component perform; so,
we have straight sequence and a falling edge comes
after both components have been executed.

To implement this sequence scheme we have to
use two variables (CLK Int and CLK IntFlag) (Fig. 7).
The first variable depends on a rule which makes a
predicate dependening on inputs; the last one shows
which component has to work at the moment. If
CLK Int is modified from logical zero to logical one,
CLK IntFlag variable will allow the second component
to work and then to perform a falling edge.

158 Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii

machine Comps3_internal_CLK refines
Comps2_global_CLK sees CComps3
variables CLK_Int CLK_IntFlag
WiresComp?2
invariants

@inv1 CLK_Int € STD_LOGIC

@inv2 CLK_IntFlag € CLKFLAGSET

@inv3 WiresComp2 € STD_LOGIC
events

event INITIALISATION extends INITIALISA-
TION

then

@act7 CLK_Int = LOGIC_0
@act8 CLK_IntFlag = Written
@act9 WiresComp?2 := X

end

event HWWrite11 refines HWWritel
where

@grd4 RefCompsStep2 = Compl

@grd5 CLK_IntFlag = Written

then

@actl CLK_Flag :| (Inputs # LOGIC_1 =
CLK_Flag' # Read) A(Inputs = LOGIC_1 =
CLK_Flag' = CLK_Flag)

@act3 RefCompsStep2 :| (Inputs =
LOGIC_1 = RefCompsStep2' = Comp2)
Allnputs = LOGIC_1 = RefCompsStep2' =
RefCompsStep?2)

@act4 WiresComp2 :| WiresComp2' €
STD_LOGIC

@act5 CLK_Int :| CLK_Int' € STD_LOGIC
A CLK_Int" = Inputs

@act6 CLK_IntFlag :| (Inputs = LOGIC_1
=>CLK_IntFlag' = Read) A (Inputs = LOGIC_1
=>CLK_IntFlag' = Written)

end

event HWWrite12 refines HWWritel
where

@grd4 RefCompsStep2 = Compl]

@grd5 CLK_Int = LOGIC_1

@grd6 CLK_IntFlag = Read

@grd7 WiresComp2 € STD_LOGIC

then

@act1 CLK_Flag :| CLK_Flag' + Read

@act3 RefCompsStep2 = Comp2

@act4 WiresCompl :| WiresCompl' €
STD_LOGIC A WiresCompl' = DC A
WiresCompl' = U A WiresCompl' = X A
WiresCompl' = W

@act5 CLK_IntFlag = Written

end

end

Fig. 7. The components sequence
with internal clock

Therefore, if we want to use a sequence of compo-
nents with internal clock signal, we have to define a
function which has the rule of internal clock creation.
We also have to use two variables: one of them permits
the second component to be executed, the other one
shows the operation executed.

2.3. Concurrent components execution

Another possible combination is concurrent com-
ponents execution (Fig. 1, the third refinement). This
scheme works in the following way. We do not know
which of the components works first. That is why we
have an AbsComp state, which shows that neither of the
components has been executed (Fig. 8). We also have
two states showing which of the components has been
performed (in our case CompStep4l and CompStep42
states).

context CComps4 extends CComps3
constants AbsComp CompStep41 Comp-
Step4?2
sets CLKPARALLELSET
axioms

@axm1 partition (CLKPARALLELSET, {Ab-
ngmp},{CompStepM 1L{CompStep42})
en

Fig. 8. The definition of a set for defining parallel
components

What we do next is to check whether components
have worked or not in guards section of each component
(Fig. 9). Consequently, we have two events available at
the same time. Depending on the state of CLK ParFlag
variable each event assigns different values to it. For
instance, if the first component finished its function, the
second one will assign the AbsComp state to permit a
fulfillment at the next iteration cycle of system execu-
tion (Fig. 9, @act4 in HWWrite22 event). The first
component will do the same thing if the second one fin-
ished operations (Fig. 9, @act4 in HWWrite21 event).
But if neither of them has worked yet, the first to be
executed will assign the value of its state to the
CLK ParFlag variable. It shows the other component
that the former has been performed. It allows to exclude
the executed component and enables the remaining one.

Thus, to use the concurrent scheme of components
performance, we have to define a set of states that in-
cludes each component and an abstract one to permit
events to be available at the same time. Besides, we
have to add the check of a variable of defined set into
guards section of each component and add actions
which change the value of the variable correspondingly
to the execution rule.

Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii 159

machine Comps4_parallel refines

Comps3_internal_CLK sees CComps4
variables ... CLK_ParFlag

invariants
@inv1 CLK_ParFlag € CLKPARALLELSET

events
event INITIALISATION extends INITIALISA-
TION
then
((j@act] 0 CLK_ParFlag = AbsComp
en

é-\-/ent HWWrite21 refines HWWrite2
where

@grd5 RefCompsStep2 = Comp?2

@grd6 CLK_ParFlag = AbsComp V
CLK_ParFlag # CompStep41

then

@act2 Outputs :| Outputs' € STD_LOGIC
A Outputs' = DC A Outputs' = U A Out-
puts' = X A Outputs' = W

@act3 RefCompsStep2 :| (CLK_ParFlag

CompStep4?2 = (RefCompsStep?2' =
Compl)) A (CLK_ParFlag = AbsComp =
(RefCompsStep2' = RefCompsStep2))

@act4 CLK_ParFlag :| ((CLK_ParFlag =
AbsComp = CLK_ParFlag' = CompStep41) A
(CLK_ParFlag + AbsComp = CLK_ParFlag' =
AbsComp))

end
event HWWrite22 refines HWWrite2
where
@grd5 RefCompsStep2 = Comp?2
@grd6 CLK_ParFlag = AbsComp V

CLK_ParFlag = CompStep42
then
@act2 Outputs :| Outputs' € STD_LOGIC
A Outputs' = DC A Outputs' = U A Out-
puts' = X A Outputs' = W
@act3 RefCompsStep2 :| (CLK_ParFlag
CompStep41 = (RefCompsStep2'
Compl)) A (CLK_ParFlag = AbsComp
(RefCompsStep2' = RefCompsStep2))
@act4 CLK_ParFlag :| ((CLK_ParFlag
AbsComp = CLK_ParFlag' = CompStep42)
(CLK_ParFlag + AbsComp = CLK_ParFlag'
AbsComp))
end

b

>l

end

Fig. 9. Parallel components execution

Conclusion

In the article we have shown an example of differ-
ent interconnections of hardware components and their
implementation as patterns using Event-B modeling
language. We have also displayed the use of the patterns
during refinement process. The developed approach
makes it possible to design FPGA based hardware using
mathematical proofs for ensuring correctness of system
and diminishing common mode failure caused by design
faults. The next step of the methodology is the transla-
tion from completed specification to hardware descrip-
tion language [10]. Patterns shown can be converted
into HDL precisely because they use a strict definition
in accordance with hardware design and describe any
possible interconnection between components. More-
over, there is a possibility to use library elements of
computer-aided design (CAD) system that improve the
performance of a system and reduces the use of differ-
ent resources of a chip.

The future research will be connected with the de-
velopment of a mechanism for injecting library ele-
ments of CAD into formal specification and creation of
translation algorithms and their implementation for
Rodin platform.

References

1. Mikrin E. On-board spacecrafi control complexes
and software development for them / E. Mikrin. — M.:
MSTU, 2003.

2. Soft microprocessor [electronic resource] —access
mode http://en.wikipedia.org/wiki/Sofi_microprocessor.

3. Prokhorova Y. Dependable SoPC-based On-
board Ice Protection System: from Research Project to
Implementation / Y. Prokhorova, V. Kharchenko,
S. Ostroumov, S. Yatsenko, M. Sidorenko, B. Ostroumov //
DepCoS-RELCOMEX. — 2008. — P. 135-142.

4. Abrial J.-R. The B-Book: Assigning Programs to
Meanings / J.-R. Abrial. - Cambridge: Cambridge Univer-
sity Press, 1996.

5. Schneider S. The B-Method: An Introduction /
S. Schneider. — UK: Palgrave, Cornerstones of Computing
series, 2001.

6. Event-B and the Rodin Platform [electronic re-
source] — Access mode http://www.event-b.org/

7. Boulanger J.L. Formalization of digital circuits
using the B method / J.L. Boulanger, A. Aljer and G.
Mariano // Computers in Railways. — 2002. — Vol. VIII. —
P. 691-700.

160 Mooenv-opicnmosani mexnon02ii po3pooku ma eepugixauii

8. Seceleanu T. Systematic Design of Synchronous 10. Prokhorova Y. An application of Event-B for de-
Digital Circuits / T. Seceleanu // TUCS Dissertations, veloping systems on programmable logic / Y. Prokhorova,
Turku Centre of Computer Science. — 2001. — Vol. 32. S. Ostroumov, E. Troubitsyna, L. Laibinis. // Radioelec-

9. IEEE STD LOGIC 1164. Package tronic and computer systems. — 2009. — Vol. 6(40). —
STD LOGIC 1164 P. 230-235.

Tocmynuna 6 pedaxyuio 15.01.2010

PeneHseHnT: 1-p TeXH. HayK, mpod., 3aB. kadeapoil KOMIBIOTEPHBIX cucteM u ceteir B.C. Xapuenko, Hanmonass-
HBII a’pokocmuueckuit yHuBepcuteT uM. H.E. JKykoBckoro « XAM», XapbKoB.

EVENT-B ITIABJIOHBI IUIAA PASPABOTKH
OTKA30YCTOMYUBBIX AIIIMAPATHBIX CPEJICTB

C.b. Ocmpoymos, JI.B. Jlaiiobunuc, E.A. Tpyouyuna

B cratee paccMOTpeH MepBbli mIar METOJOIOTHH 110 pa3padOTKe rapaHTOCIOCOOHBIX alapaTHBIX CPEJICTB HA
OCHOBE TEXHOJIOTUH ITPOrPaMMHUPYEMBIX JIOTHYECKUX MHTErpajibHbIX cxeM. CyIIHOCTh 3TOrO IIara 3akiiodaercs B
pa3paboTke malIOHOB C MCHONB30BaHUEM s3blka (popmanbHON crienmpukanuu u Bepudukanuu Event-B, morp
KOTOpPOT'O COCTOUT B HCIIOJIB30BAaHUU MaTEMaTHYECKHX JOKA3aTeNLCTB MPaBHIBHOCTH Mojenu. CTaTbs paccMaTpH-
BaeT U ONUCHIBAET MIA0IOHBI, pa3paboTaHHbIE COITTACHO CUHXPOHU3MY, T.K. OONBIIOE KOTHYECTBO CHCTEM SBJIAETCS
CUHXpOHHBIMHU. [11a0IOHBI OMUCHIBAIOT pa3iUyHbIE BAPUAHTBHI COSTMHEHUH KOMIIOHEHT, KOTOpbIE YacTO MCIONb3Y-
I0TCS TIPH TIPOEKTUPOBAHKUH arnmaparypbl. PazpaboTanHble ma0I0HbI SBISIOTCS HEOOXOMUMBIM YCIOBHEM JUIsi KOp-
PEKTHOM TPaHCISIMU pa3padoTaHHOM MozienH (crnenu(rKanum) B 361K ONKUCaHUs armaparypsl (Hanpumep, VHDL).

KmioueBbie cioBa: ¢opmansHas paspaborka, Event-B, mHBapmaHT, 1ma0noHsl, anmaparypa, NpOEKTHPOBAaHHE,
FPGA, Rodin.

EVENT-B ITABJIOHHU V1A PO3POBKHU
BIIMOBOCTIMKHNX AITAPATHUX CPEJICTB

C.b. Ocmpoymos, JI.B. Jlaiioinic, O.A. Tpyoiyuna

VY cTaTTi pO3IIISHYTO MEPIINH IIar METOJ0I0rii po3po0KH TapaHTO3aTHUX arapaTHUX 3aC00iB HA OCHOBI TeX-
HOJIOTIT MPOrpaMOBaHUX JIOTTYHUX 1HTErpajgbHUX cxeM. CyTh BOTO HIary € po3poOka IabIoHIB 3 BUKOPUCTAHHSIM
MoBH (hopMmanibHOI crenudikanii Ta Bepudikarii Event-B, 1o BHUKOpHCTOBYE MaTeMaTH4HI JAOBOMU KOPEKTHOCTI
Mozeni. CTaTTs po3IyIiiae Ta OMUCYE IA0IIOHU, PO3POOIICHI 3TiHO 3 TEXHIKOK CHHXPOHI3MY OCKUIBKH OlIBIIICT
cucreM cuHXpoHHi. [11a0oHN ONMKUCYIOTH Pi3HI BapiaHTH 3’€IHAHHS KOMITOHEHT, 1[0 YaCTO BUKOPUCTOBYIOTHCS TIPU
MIPOCKTYBaHHI amapaTypu. Po3po0ieHi 1mabloHH € HeOoOXiTHOK YMOBOIO JUIS KOPEKTHOI TPAaHCIAMIT po3po0IeHOl
Moeni (crienmikalii) y MoBy onucy anaparypu (Hanpukinan, VHDL).

Karouosi cioBa: ¢popmanbaa po3podka, Event-B, inBapianT, ma6ionu, anaparypa, npoekryBanus, FPGA,
Rodin.

OctpoymoB Cepreii BopucoBuu — aciupanTt kadeapsl KOMIBIOTEPHBIX CHCTEM U cerell HanmonansHoro as-
poxocmuueckoro — yHuBepcurera uM. H.E. JKykoBckoro «XAW», XapwekoB, VYkpaumHa, e-mail:
S.Ostroumov@csac.khai.edu.

Jlaiiounuc Jlunac BaagaBuy — KaH/A. TEXH. HayK, CT. HAYYHBIH COTPYIHHK Kadeaps! HHOOPMAIMOHHBIX TeX-
nonoruii Abo Akademi University, Typky, ®unnsaaaus, e-mail: Linas.Laibinis@abo.fi.

Tpyonubina Enena AnatosibeBHa — KaHJ. TeXH. HayK, JOLEHT Kadenpbl MHPOPMAIMOHHBIX TEXHOJIOTHIA
Abo Akademi University, Typky, ®unnsnaus, e-mail: Elena. Troubitsyna@abo.fi.

