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Some strong method of static code analysis, namely, analysis of physical dimensions of program variables is
researched in the paper. The formal model to analyze the dimensions of variables is built. Dimensions and di-
mensional distributions are presented in the paper in order to define invariants for program variables. The
method to analyze the model is described and grounded in the paper. The experimental results shown in the
paper make it possible to evaluate test-sensitivity at the rate of about 65%.

Key words: software dependability, static code analysis, dimensional analysis, control flow, control flow equation,

fixed point problem

Introduction

We say that a software system is a critical-mission
software system if a disastrous effect is a possible result
of its running failure. Software for flight-control sys-
tems, nuclear reactor control systems, power supply
control systems, medical equipment control systems and
similar systems afford examples of critical-mission
software systems.

We use the term “dependability” to designate those
software system properties that allow us to rely on a
system functioning as required [1]. Some of these prop-
erties allow checking by methods of static code analy-
sis. Reasons for using static code analysis for critical-
mission software verification are discussed in [2,3].

Authors and their partners expect that processing
results of running a set of static code analysis algo-
rithms provide assessment of software dependability
[4,5].

We can define two classes of static code analysis
methods, namely: weak methods and strong methods.
Principal characteristic of a weak method is using pro-
grams models which are focused on computing aspects
of a program. In contrast to this strong methods are
based on programs models which take into account facts
and relations of project scope.

Some strong method is considered in the paper.
The method deals with dynamical properties of physical
dimensions of variables. Namely, physical dimensions
of variables should be invariant for semantically correct
program [4].

Authors use the monograph of American physicist,

Nobel Winner P.W. Bridgman “Dimensional Analysis”
[6] as physical background of the paper.

Our aim is to build and to ground the method for
checking invariance of physical dimensions of vari-
ables.

1. Programs Models
1.1. Variables

Suppose X, Y and Z are finite disjoint sets.
Elements of the sets are called input, output and local
variables respectively.

By definition, put

v=XUYUZ. (1)

1.2. Basic Statements

Suggestion 1. Any permitted statement is an as-
signment statement

VZ=f(Vl,...,VS), (2)
where ve YUZ, and {vi,...,v;}cXUZ ,and f isa
polynomial over a set of basic operations.

Suggestion 2. A set of basic operations contains
the following operations and only them:

a) binary operations addition (v:=v;+v,), sub-
traction (v := vy —V, ), multiplication (v:=v;*v,) and
division (v:=v; /v, );

b) a countable set of unary exponential operations
(v=pow, (v)));
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¢) a countable set of unary rooting operations —
v :=root, (v).

The set of polynomials is defined by recursion:

1) a variable is polynomial;

2) if f(vy,...,v5) and g(Vgyp,....Vgy() are poly-

nomials, and {vi,..., Vg, Vg,1s..., Ve i | © XUZ then

F(Veos Vg )+ 8(Vertoeeos Vet ) » (3)
F(Vieos Vg )= 8(Veitoeeos Vest ) » “4)
£ (Vs Vg ) ¥ (Vi s Vest ) s (5)
F(Viseos Vs )/ (Voi1seees Vert) (6)
are polynomials;
3) if f(vi,eoosvg) is  polynomial,
{Vl,...,VS} cXUZ then
pow , (f(vl,...,vs)), (7)
root,, (£(vy....,vg)) (®)

are polynomials.
Suggestion 3. Any basic assertion is a comparison:

1) (v V) =8 (Vey1oeeos Ver )5

2) (Vs Vg ) > 8 (Vgypoeens Vit ) -

Suggestion 4. A set of assertions contains the fol-
lowing assertions and only them:

1) false (L) and truth (T );

2)if ¢ is an assertion then (—¢) is an assertion;

3) if ¢ and y are assertions then (@A) and

(¢ v y) are assertions.

1.3. Transition Systems and Control Flows

Let L be a finite set with two distinguished ele-
ments entry # exit € L, and T be a finite set. Elements

of L and T are called control points and transitions
respectively.
Let src and snk be maps from T to L. Suppose

w=1...7, € T", w is control flow from src(t;) to
snk (ty ) if for each i=1,...,k—1 the following condi-
tion holds
snk (t;) =src(Ti,;) - )

A system (L,T,src, snk: T — L> is a transition
system if the following conditions hold

1) snk™! (entry) =&, src”! (exit) =D ;

2) for each pe L\{entry, exit} there are control

flows w' and w"” from entry to p and from p to exit

respectively.

1.4. Programs Control Flows Graphs

A program control flow graph is used as a program
model in the paper.
A program control flow is a transition system

(L, T,src,snk : T — L) with maps y and act . The do-

main of these maps is the set T and ranges are the set
of assertions and the set of statements respectively. For
these maps the following conditions hold:

1) a set of variables for each y(t) is a subset of
Xuz;
2)if act(t)="v="1(v},...,vg)" and
if sre(

if sre(

t)=entry then {vj,...,v} = X,
t)#entry then {vy,...,vs} = XUZ,
if snk(t)#exit then veY,

if snk(t)=exit then veZ.

A control flow is a potential protocol of program
running. Realizability of such protocol depends on val-
ues of input variables, assertions and statements of tran-
sitions constituents.

2. Physical Dimensions of Variables
2.1. Dimensions and Dimensional Distributions

Let U be a finite set. Each element of the set is a
name of a physical dimensional unit.

Suggestion 5. Any element from U corresponds to
some basic dimensional unit.

Suggestion 5 provides the unique representation of

any physical dimension d in the form d=[] uta(®)
uelU
with independent multipliers [6].
Hence we can consider every dimension as a vec-
tor from linear space QY where Q is the field of ra-
tional numbers. In this case each dimension can be rep-

resented by vector Z 1g(u)u where u is a vector
uelU

representing the dimensional unit u .

A partial map from V to QY s called a dimen-
sional distribution on V .
Suppose m is a dimensional distribution. Denote

by [V]n the value of 1 on the variable v .

2.2. Dimensional Correctness of Polynomials

Suppose f is a polynomial, n is a dimensional

distribution. The aim of the section is to define a set of
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n-correctness conditions and m-dimension for the
polynomial f .

Denote by [f] a set of n-correctness conditions
and by [f]" a value of 1 -dimension for the polynomial
f . These concepts are defined by recursion:

1)if f=v then [f]=2 and [f]" =[v]";

2)if f=gxh then

[11=[e]U[nJU{[&]" =[0]"| and [¢]" =[¢]":

3)if f =g=*h then

[f]=[g]U[n] and [f]n = [g]n +[h]n;
4)if f=g/h then

[1]- [elU] and [£] - [e]" [0
5) if f = pow, (g) then

[£]=[e] and []" =n-[¢]";

6) if f =root, (g) then

[¢1=[e] and []" == [e]".

We shall say that the polynomial f is n-correct if
all conditions from the set [f] hold.

2.3. Dimensional Correctness of Assertions

Suppose ¢ is a basic assertion, n is a dimensional

distribution.
As above, define the set of m-correctness condi-

tions of the basic assertion ¢ . It is denoted by [¢].
If p=f =g where f and g are polynomials then

[o]=[1ULe]V{[]" = [e]"}.
Similarly, if ¢=f >g where f and g are poly-

nomials then

ol [ULEUT e

The set of m-correctness conditions of an arbitrary
assertion @ is defined as union of all such sets for its

basic constituents.
We shall say that the assertion ¢ is m-correct if

all conditions from the set [¢] hold.

2.3. Dimensional Correctness of
Assigning Statements

Suppose v :=f(vy,...,vg) is an assignment state-

ment, n is a dimensional distribution.

By definition, put

[vi=f (visv) | =[f (Vi vs) JU

{[v]n =[f(V1,---,vs)}”} (10)

2.4. Dimensional Correctness of
Flows and Programs

Suppose (L,T,src, snk,v, act) is a model of a pro-
gram, T is a transition and 7 is a dimensional distribu-
tion. Denote by [[r]] a set of m-correctness conditions
for the transition t. By definition, put

[<]=[v(x)]U[act(<)] (1)

Suppose T;...7} is a control flow for the transition
system (L, T,src,snk) .

Denote by [1;...7y ]| a set of n-correctness condi-

tions for the control flow ty...Ty .

Evidently,

[[rl...rk]]=g[[ti]]. (12)

Suppose P is a program and (L,T,src, snk, v, act)
is a model of the program P .

Denote by [P] a set of all [w] where w is a
control flow from entry to exit .

We shall say that program P is m-correct if all
sets of conditions from the set [P] are satisfied.

A program P is called dimensionally correct iff
there exist a dimensional distribution n such that P is

M -correct.

3. Dimension Flow Equation

To check dimensional correctness of a program P
we build some equation and call it dimension flow
equation.

Let (L,T,src, snk, v, act) be a model of a program.

As usual in static code analysis [7], consider some
data lattice. In this case any element of the data lattice is
a subset of the set of all subsets of the transitions set T .

For a control flow w denote by src(w) the ele-
ment p of L such that p=src(t), where w=1w’.
Similarly, denote by snk(w) the element p of L such
that p=snk(t), where w =w'r.

Let w be a control flow, denote by w the set of
all transitions generating w .
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Let p be an arbitrary element of L, denote by
F[p] the set of all control flows from entry to p. By
definition, put

Wp]={w|weF[p]} (13)

It is easily shown that for a control flow wt the
follows equation is satisfied

W= ;U{r}
Using equations (13) and (14), we get
W(p]= {%| t:snk(t)=p,we F[src(t)}} =

U {(wU{s}} =

‘r:snk(‘r):p,weF[src(‘r)]
U u U

p'eL weF[p'] usre(t)=p',snk(t)=p

J U U {wuid

p'eL sre(t)=p’,snk(t)=p weF[p’]

WlpT*{r}=
p'eL sre(t)=p’,snk(1)=p

U W[src(r)} *{1}

usnk(t)=p
where for X; et (i=1,...,m), X e2', and denote

by {X{,...,X[n}*X the element {X; UX,..., X, UX}

(14)

{;U{r}} =
(15)

T
of 22 .

T
Hence, the map W:L — 22 satisfies the equa-

tion
whl= U Wse@]+g  ao
usnk(t)=p
We say that equation (4) is a dimension flow equa-
tion.

For X:L — 22T by definition put
FIX](p)= U X[sre(v)]*{7}
usnk(t)=p
Equation (17) defines the operator F on the lattice

(17)

of maps from the set L to the lattice 22T .
It is easy to prove that the operator F is mono-
tonic.
In these terms equation (17) can be rewritten as
X =F[X] (18)
and the map W is the least fixed point of the operator
F.

T
Using finiteness of the lattice 22 , equation (18)
and Tarsky’s Theorem [8] we can compute the map W .

4. Method for Checking Program
Dimensional Correctness

The aim of the section is to describe and ground
the method for checking dimensional correctness of a
program.

The method has four phases:

1) a program model building;

2) a set of dimensional correctness conditions
computing;

3) a set of dimensional correctness conditions sim-
plifying;

4) a set of dimensional correctness conditions
checking.

We shall suppose that one can translate program to
three-address code [7]. In this case the phase of program
model building should provide an evident transforma-
tion tree-address code into a program model.

In the second phase the standard least fixed point
algorithm [8] is used for computing a set of dimensional
correctness conditions. Its correctness is grounded by
finiteness of the lattice of maps from the set L to the

. 2T
lattice 2° .
The general case of the least fixed point algorithm
is shown in Fig. 1.

1fp:= proc(
F: monotonic operator
)
old:= O ;
new:= F [old];
while new # old do
old:= new;
new:= F [new]
end do;
return new
end proc

Fig. 1. The least fixed point algorithm
(general case)

Describe the algorithm for computing the map F
defined by formula (17).

Let m be a dimensional distribution defined on
XUZ . We can consider the distribution as a dimen-

sional specification of external variables.
After running the least fixed point algorithm we
obtain the resulting map W .

The set W/exit] contains some sets of transitions

names.
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It is easily shown that
1) W[exit] = {;| wE F[exit]} ;

2) Wexit] is a finite set.

F:= proc(
(L,T,src,snk)

transition system,
S : map

for each pel do

Ulpl:= Slpl;
for each 1T such that

snk(T) =p
do
for each CeU[p] do
delete C from U[p];

insert CU{1}
into Ulp]
end do
end do
end do;
return U
end proc

Fig. 2. The algorithm to compute the map F

It is evident that [w]= {[[r]] |te W}, where w is
a control flow, and the program is dimensionally correct
iff for each w € W[exit] the conditions set [w] is sat-
isfiable.

In the third phase the set W [exit] is reduced.

To execute this process we shall use the following
rule:

if Xe W[exit] , Ye W[exit] and Y < X then

eliminating of the constraints set Y replaces W[exit]

with equivalent set of conditions set.

The proof of correctness the rule is trivial.

In the fourth phase final output of checking proc-
ess is defined.

Let {Cy,...,Cy} be the output of the third phase.
For each i=1,...,k the set Ciz{Ti,la---aTi,s,»}

generates the system of conditions

(19.9)

Each subsystem u }] is a linear system over the

T, j
field Q . Therefore system (19.1) is a linear system over
the field Q too.

Summing up we can say that to define dimensional
correctness of the program P it is necessary and suffi-
cient for all i=1,...,k to check existence of some solu-

tion of system (7.i). There are a lot of methods to do this
checking [9].

Conclusion

The method for checking the dimensional correct-
ness of program is built and grounded in the paper.

This method is a method of static source code
analysis. Effectiveness of checking the dimensional
correctness of a program for its semantic verification
was studied in [5]. Experimental results make it possible
to evaluate test-sensitivity at the rate of about 65%.
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Penensenrt: a-p. TexH. Hayk, npod., A.B. [Ipo3n, Onecckuii HaloHa BHBIA TEXHUYECKUH yHUBepeuTeT, Ofecca.

PO CTATUYECKHWI AHAJIN3 PASMEPHOCTHU NEPEMEHHBIX
JJIA ITPOTPAMMHOI'O OBECIIEYEHHU A KPUTHYECKOT'O NTIPUMEHEHUSA

C.C. bproxankoe, b.M. Konopee, M.C. Jlveos, I H. /Konmxeguu

B pa60Te HCCI€a0BaH HeKOTOpHﬁ CUJIbHBI METOJ| CTAaTHYECKOIO aHaJlu3a Koaa, a KUMCHHO: aHaJInu3 (1)1/131/1116-
CKOM PasMEPHOCTU NEPEMEHHBIX ITPOrpaMM. HOCTpOeHa (l)OpMaJ'H)HaH MOZCIb JId aHaJIn3a pa3MEPHOCTH IEPEMEH-
HBIX. Pa3MepHOCTI/I " pacrnpeaciacHus pa3MepHOCTeI>i MNpEACTaBJICHbI B CTATHC B LCIAX ONPECACICHUA WHBApPHUAHTOB
JJIA TICPEMCHHBIX. B cratbe omucan u 000CHOBaH MeTo aHaim3a Mojenu. ITokazaHbl OKCIICPUMECHTAJIbHBIC PE3YIIb-
TaTbl, KOTOPbLIC TO3BOJIAIOT OLICHUTH YYBCTBUTCILHOCTE TCCTA IOPAAKA 65%.

KuarwueBble cj10Ba: HaJACKHOCTh nporpaMMHOIro O6CCHC‘ICHI/IH, aHaJIN3 CTaTUYCCKOro Koja, MpoCTPpaHCTBCH-
HBIN aHaJIn3, MOTOK YIIPaBJICHUA, YPABHCHHUC ITOTOKA YIIPaBJICHU, npoGHeMa (I)PIKCPIpOBaHHOfI TOYKH.

PO CTATUYHMIA AHAJII3 PO3MIPIB 3MIHHUX
JJIAA ITPOTPAMHOI'O 3ABE3IIEYEHHS KPUTHNYHOT'O 3ACTOCYBAHHA

C.C. bproxankoe, b.M. Konopees, M.C. Jlveie, I .M. Konmkeeuu

Y poboTi TOCTIIKEHO ASSKHIA CHIIBHUI METOJ CTATUYHOTO aHaJi3y KOy, a caMe: aHalli3 (pi3UUHOI pO3MipHOC-
Ti 3MiHHMX niporpam. [ToOynoBaHa opmanbHa MOIENH IS aHAJi3y pO3MipHOCTI 3MiHHMX. Po3MipHOCTI Ta po3momin
PO3MIPHOCTEH PO3IJIAHYTI y CTATTi B IUISX BU3HAYCHHS iHBApIaHTIB 3MIHHUX. Y CTATTi OMKCAHO Ta OOTPYHTOBAHO
Meroq aHamizy Mogedi. [lokaszaHi ekcriepruMeHTaIbHI JaHi IO J03BOJISIIOThH OLIHUTH YYTJIUBICTh TeCTY B 65%.

Koarou4osi ciioBa: HamiiiHICTh IpOrpaMHOTo 3a0€3IeYeHHS, aHaNi3 CTATUYHOTO KOy, POCTOPOBUIl aHai3, HO-
TiK KepyBaHHS, PIBHSHHS IIOTOKY KepyBaHHsI, mpobiema (pikcoBaHOi TOUKH.
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