116

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

VK 681.518
V.A. SHEKHOVTSOV

National Technical University “Kharkiv Polytechnical Institute”, Ukraine

TOWARDS EVALUATING SERVICE-ORIENTED ARCHITECTURES BASED
ON STAKEHOLDER ASSESSMENTS OF SIMULATED SERVICE QUALITIES

The paper introduces an approach for development of service-oriented software systems aimed at evaluating
service-oriented architectures based on assessments of simulated service qualities by business stakeholders.
This approach is a part of ISAREAD-S framework aimed at involving business stakeholders in a software
process in a form of assessing the perceived quality of the service-oriented system (exemplified by service per-
formance and reliability) in its usage context. We investigate evaluation of both particular architecture as a
whole (snapshot evaluation) and particular architectural decisions (incremental evaluation). We propose
three-stage evaluation technique of converting the description of either architecture or the particular decision
into the set of values for the factors influencing simulation of the prospective system, obtaining stakeholder as-
sessments of simulated qualities, and deriving the evaluation marks from these assessments. The solution is
implemented as a high-level procedure (architecture evaluation policy) based on low-level procedures (mecha-
nisms) collecting stakeholder opinions on perceived service quality.

Key words: quality of service, service performance, service reliability, software architecture, architectural de-
cision, architecture evaluation, business stakeholders.

1. Introduction

The value of software architecture evaluation as a
process of assessing either the way of organizing the
software system from its components or the particular
decision related to such organization (architectural deci-
sion) has been widely shown in the current literature [1].
Alongside evaluation performed by IT specialists, an
important research challenge is to establish an evalua-
tion process performed by business stakeholders (not
necessary having any IT background). It should allow
the stakeholders and the development team (first of all,
software architects) to reach common ground in what
they expect from the system. This is especially impor-
tant for service-oriented systems as assessing service-
oriented architectures (SOA) requires knowledge of
their possible uses which is difficult to obtain without
the involvement of their prospective users.

Our research is put into context of a broader prob-
lem of stakeholder involvement into the development of
service-oriented systems. To address this problem, we
proposed ISAREAD-S framework (Interactive Simula-
tion-Aided Requirements Engineering and Architectural
Design for Services) [2, 3]. It is aimed at investigating
ways of supporting stakeholder involvement in the
software process by allowing business stakeholders to
assess the perceived qualities of the prospective service-
oriented system (exemplified by performance and reli-
ability) in its usage context.

To implement such support we plan to elaborate a
set of simulation-based methods aimed at making QoS
(quality of service) assessment mechanisms (according

to mechanism-policy separation principle we use the
term mechanism to refer to low-level procedures which
are not aware of their possible uses) accessible to the
business stakeholders and using their assessments as a
driving force for software process activities related to
requirements engineering and architectural design.

This paper is devoted to establishing architecture
evaluation policies (we use the term policy to refer to
high-level procedures based on specific mechanisms) to
be integrated into this framework. Their purpose is to
perform an evaluation of either architecture as a whole
(the consequences of applying the particular architec-
tural style) or the particular architectural decision as an
integrated assessment of its simulated qualities.

The structure of the paper is as follows. Section 2
describes the state of the art and formulates the problem
statement, Section 3 shows the principles of the existing
procedures (mechanisms) for organizing the interaction
with stakeholders; these mechanisms form the founda-
tion for the architecture evaluation solutions proposed in
the paper, Section 4 outlines the proposed approach
introducing higher-level procedure (policy) for evaluat-
ing service-oriented architectures based on stakeholder
assessments obtained as a result of applying the mecha-
nisms, Section 5 makes conclusions and describes the
directions for future research.

2. State of the art and problem statement

Software architecture evaluation has received con-
siderable attention in the software engineering literature
(a survey of the available techniques is in [4, 5]). Such

© V.A. Shekhovtsov

PAJIIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMM, 2010, Ne 2 (43)

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

117

techniques could be classified according to [1] into sce-
nario-based techniques, prototype-based techniques, and

simulation-based techniques. Some of these techniques
are listed in Table 1.

Table 1
State-of-the-art architecture evaluation techniques
Category Examples Desription Problems
Scenario- | Software Engineering Rely on scenarios of the system Manual scenarios cannot be
based Institute-based methods behavior which reflect the chosen made realistic;
evaluation | (SAAM [6], ATAM [7]), | variant of the system architecture Cannot be used to evaluate
SALUTA [8], ASAAM or the particular architectural deci- | quantified qualities such as
[9], DoSAM [10] sion. Users participate in these sce- | reliability.
narios and assess their experience.
Prototype- | Architectural prototyping | Use either horizontal or vertical Using prototype to obtain real-
based [11], architecture per- prototypes as a basis for the archi- | istic performance or reliability
evaluation | formance evaluation [12], | tecture evaluation. Users interact of the system requires access to
general prototype-based with prototype reflecting the cho- the target system which can be
techniques [1] sen architecture and assess their not feasible.
experience.
Model- Analytical models: Simulating or analytically model- Simulations and mathematical
based reliability [13, 14], ing the chosen software architec- models are usually non-
evaluation | performance [15, 16], ture (or the quality characteristic interactive; the results are col-
Simulation models: values reflecting this architecture) lected after the run. Could be
reliability [17, 18], and use the results to obtain as- cost-ineffective.
performance [19, 20] sessments.

The common problem of applying the above
methods to the problem of evaluating software architec-
tures is related to the fact that they, as a rule, are not
intended to be used by business stakeholders, targeting
IT specialists instead. As a result, the understanding of
the desired system architecture resulted from evaluation
process becomes biased towards the view of the IT peo-
ple: a problem known as “the inmates are running the
asylum”.

2.1. Problem statement

After analyzing the state of the art we can formu-
late both general and specific research questions which
determine the problem statement.

The general question is [21]: How to involve busi-
ness stakeholders into the development process for ser-
vice-oriented software systems as a means of control for
the performance and reliability of the produced arte-
facts? We address this question by introducing IS-
AREAD-S framework [2] offering mechanisms for in-
teractive assessment of simulated service performance
and reliability; we present an outline of this frame-
work’s assessment mechanisms in the next section.

Prior to introducing an architecture evaluation pol-
icy based on the proposed mechanisms, we address the
research problem of making simulations reflect the cho-
sen software architecture or partial architectural deci-
sion; it leads to the research question: How to make ser-
vice quality simulations depend on the software archi-
tecture? To answer, we need to investigate how the ar-

chitecture affects simulation parameters by addressing
the question: What is the dependency between the soft-
ware architecture and the factors influencing service
qualities? An example of such dependency could be the
situation when the chosen architectural decision (e.g.
introducing a caching solution) makes it possible to
increase performance by reducing the network load.

The knowledge obtained so far allows us to follow
the mechanism-policy separation principle by elaborat-
ing higher-level policies based on the proposed assess-
ment mechanisms. As a result, we can formulate the
specific research question related to the topic of this
paper: How to use the mechanism of interactive assess-
ment of simulated service qualities to perform an
evaluation of the software architectures or particular
architectural decisions? To answer this question, it is
necessary to establish the set of necessary procedures
which define architecture evaluation policy. 1t should
rely on both assessment mechanisms and the techniques
allowing simulations depend on the artefacts of the de-
velopment process.

The main benefit of establishing the evaluation
policy is that business stakeholders become directly
involved in diverse quality-related software engineering
activities alongside software development lifecycle. We
finally plan to establish a lifecycle simulation support
by asking the stakeholders to make assessments of
simulated qualities reflecting the current state of the
SUD as the development progresses with a purpose to
make these assessments drive the development; this

118

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

leads to the last research question: How fto organize
software development lifecycle to benefit from the
stakeholder assessment of simulated service perform-
ance and reliability?

3. Outline of the assessment mechanisms

In [2] we described the proposed approach to es-
tablish service-level and process-level assessment
mechanisms which allow business stakeholders to ex-
perience simulated qualities of the prospective SUD in
its usage contexts and formulate their opinions on these
qualities. In this section, following [21], we outline this
approach to the degree necessary to understand the pro-
posed architecture evaluation solution.

3.1. Service-level mechanisms

Service-level IAS mechanisms organize interactive
assessment of simulated service qualities at the level of
the particular service. According to the model-driven
methodology [22, 23] we define two mechanisms of this
kind: TASC (model composition mechanism) and IASE
(model execution mechanism). IASC inputs include the
set of qualities of interest (to be simulated and assessed)
and the set of factors influencing the simulation (simula-
tion parameters [2, 3]). To get the integrated quality
simulation model, we compose simulation modules cor-
responding to the qualities of interest and the necessary
parameters together with the base simulation structure.
Also, we integrate into this model the set of user inter-
action models depending on the qualities of interest,
types of the expected stakeholders, and the project cate-
gories. The resulting service-level simulation and as-
sessment model IASM becomes the IASC output trans-
ferred to IASE for standalone execution.

The input for every IASE run is the set of parame-
ter values corresponding to the parameters used to build
TIASM. As a result of the run, the set of simulated values
for the qualities of interest is obtained and presented to
the business stakeholder for assessment via interaction
processes described by user interaction models inte-
grated into IASM. The IASE outputs are this set of
simulated qualities and the set of assessment results.

3.2. Process-level mechanisms

Process-level IAP mechanisms organize interactive
assessment of simulated service qualities in context of
usage processes at the level of the particular process.
There are two such mechanisms: IAPC (model compo-
sition mechanism) and IAPE (model execution mecha-
nism). They rely on service-level IAS mechanisms deal-
ing with individual services.

IAPC forms the simulation model of the usage
process making it ready for interactive assessment of

service qualities. It combines the control flow model
(CFM) for the usage process (conforming to the net-
work BPM notation such as BPMN or Petri Nets) with
the role model for the usage process. The role model
includes the set of roles defined for process participants
(clerk, manager etc), the sets of interaction activities for
different roles (they make participants affect the state of
the process simulation), the sets of assessment activities
for different roles (they correspond to the services of
interest to be simulated and assessed by stakeholders)
and the sets of qualities of interest and necessary pa-
rameters defined for every service of interest.

While composing the integrated IAPM model for
the process, IASC creates the IASM model for every
service of interest; these models later become integrated
into IAPM. For every interaction activity, a mechanism
for constructing the interaction model is invoked and the
resulting models are also integrated into IAPM. The
integrated IAPM model will contain the simulation
logic defined by CFM for the usage process, the simula-
tion submodels of different IASM models (for the ser-
vices of interest), the assessment logic defined by inter-
action submodels of these IASM models, and the inter-
action logic defined for all interaction activities.

Every IAPE run is supposed to be driven by the
stakeholder belonging to the particular role. During the
run, the basic simulation flow is managed by the model
derived from the CFM of the usage process; when the
logic of the run requires invoking an activity represent-
ing the service of interest, the simulation of its qualities
and the assessment interaction logic are handled by
IASE invoked for its IASM. IASE inputs are parameter
values for all the slots of this service; when this logic
requires interacting with the simulation, the logic of this
interaction is handled by the corresponding interaction
mechanism. The outputs for IAPE run include the set of
all simulated quality values for all the services of inter-
est and the set of corresponding assessment results.

3.3. Iterative interactive assessment

Process-level mechanisms allow performing inter-
active assessments for the particular usage process. To
guarantee obtaining all the necessary assessments for
the particular SUD, we proposed to establish specific
“iterator-like” Iterative Interactive Assessment (IIA)
mechanism which externally controls the simulation and
allows iterating over usage processes, roles, and runs.

4. Outline of the proposed approach

Outlined low-level assessment mechanisms serve
as building blocks for high-level procedures (policies).
Most of these policies are supposed to be used at early
stages of the software development lifecycle such as
requirements elicitation [24] or validation [25]. The

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

119

proposed architecture evaluation policy is aimed at the
architectural design stage.

4.1. Architecture adapter

Prior to defining an architecture evaluation policy
we introduce the notion of assessment adapter mecha-
nism. Such adapters convert external information into
the inputs for an assessment mechanism.

For the purpose of this paper, we focus at one of
the possible adapters of this kind: the architecture
adapter.

Prior to establishing this adapter we investigate the
dependency between the description of the software
architecture or the particular architectural decision and
the factors influencing service qualities (examples are
e.g. [19, 26, 27]). This adapter is based on the knowl-
edge of this dependency; it converts the description of
the software architecture into the inputs for the assess-

O Services and qualities of interest
]

ment mechanisms: the set of services, the corresponding
QAPMS-S and the set of parameter values (assuming it is
possible to establish the rules connecting particular ar-
chitectural decisions to simulation parameters). It
should allow experimenting with an influence of differ-
ent architectural design decisions on the quality of the
prospective SUD.

4.2. Architecture evaluation policy

In this section, we propose software architecture
evaluation policy aimed at calculating integrated assess-
ments for the software architecture or particular architec-
tural decisions consisting of the three steps (Fig. 1):

1. adapting the architecture (snapshot evaluation)
or the particular decision (incremental evaluation);

2. assessing the simulated qualities reflecting the
adapted architecture or the particular decision;

3. calculating the integrated assessment value(s).

D Simulated qualities
\

Adapt i
architectural :
decision

Perform
assessments

Evaluate
architectural
decision

D Descriptioﬁ of architectural

Cr D Parameter values
decision

|
D Integrafed architecture

|
O Stakeholder
assessment

assessments

Fig.1. Architecture evaluation policy (incremental evaluation)

The first step is supported with an architecture
adapter. On the second step, we propose to execute IIA
mechanism to obtain the set of simulated qualities

mrt
sq °

qsim;’rcllIT and the set of stakeholder assessments qest
where

seS - a particular service of interest belonging to
the set S of all services comprising the SUD,;

q € Q°- a quality of interest (Q° < Q is the set of all
qualities of interest for the particular service s, Q is the
set of all defined qualities of interest);

meM® -a usage process (MS < M is the set of all
usage processes defined for SUD S, M is a set of all
defined usage processes);

reR™ -arole (R™ R is a set of all available
roles defined for the usage process m, R is the set of all
defined roles);

t e T - a simulation run driven by some stakeholder

(T" <= Tis a set of all available simulation runs for the

roler, T is the set of all available stakeholder sessions).
Based on these values, on the third step we can ob-

tain integrated assessments for the software architecture

or the particular architectural decisions. We define two
categories of such assessments:

1. Integrated (architecture-wide) assessment. It
corresponds to obtaining a scalar value characterizing
the architecture as a whole or the particular architectural
design decision in integral fashion. We denote such as-

sessment for the architectural decision d; as qassZ (d;).

2. Quality-related assessments. They are calcu-
lated for particular qualities (we can have this way e.g.
integrated assessments for the performance or reliabil-
ity). We denote these assessments for the architectural

decision d; as {qassg (dj).qe Q}

It is also possible to group assessments by other
dimensions such as the role or stakeholder type.

To obtain such assessment the simplest approach is
to use weighting technique. We illustrate this approach
with the simplified example where assessments are only

indexed by stakeholder run so we have qsim;q and

qestéq . In this case the weights whte TS, Z wt=1
teTS

are assigned to stakeholder runs reflecting their relative

importance for the project. We can also assign the

120

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

weights to the particular services s €S reflecting their
influence on the integral SUD quality; in this paper we
assume that all the services are of equal importance for
the quality of the prospective SUD.

In this case quality-related assessments for the ar-
chitectural decision d; could be calculated as follows:

b)
qassg d))= Z Z wtqest;q (d;),qeqQ
seSteTS

The weights w' and other evaluation-related in-
formation is planned to be encapsulated in an instance
of the evaluation influence model EIM. Such model is
supposed to be an input for the evaluation policy; its
goal is to facilitate reuse of the evaluation approaches.

We also plan to enhance the proposed relative
weights approach with more advanced assessment cal-
culation methods originated from different evaluation
techniques [1, 7, 28].

4.3. Lifecycle support for architectural design

To establish lifecycle simulation support we plan
to follow the idea of model calibration [29] when the
system model is supposed to evolve as the development
progresses. For this process, in this paper we limit our-
selves with an architectural design phase of the software
lifecycle. The schema of the quality-driven development
process for this stage is given on Fig. 2.

To achieve quality awareness for the architectural
design process, we plan to make new architectural de-
sign decisions reflected in the simulation model
(through the architecture adapter) and ask the stake-
holders to make assessments of the impact of these de-
cisions during the development (we call this process
incremental architectural assessment). If some design

D Services and qualities of interest

decision leads to the drop in the assessment marks this
can be the indication of the problems with this decision.

This way, it will be possible to check the opinions
of stakeholders before real implementation of the deci-
sion, thereby decreasing the risk of accepting the deci-
sions that could cause problems during the develop-
ment. On Fig. 2, it can be seen how every decision is
reflected in the simulation model and evaluated. Only
after that the final meta-decision related to the feasibil-
ity of its implementation is supposed to be made.

This technique could also be applied to other steps
of the software process. In general, we plan to establish
the unified Quality-Driven Software Process (QUP)
[30] which will be supposed to take into account opin-
ions of business stakeholders on the quality of the pro-
spective SUD as its development progresses over time.

6. Conclusions and future research

In this paper, we defined the principles of new
high-level procedures (policies) for evaluating software
architecture or particular architectural decisions based
on stakeholder assessments of simulated software quali-
ties. Their advantage as compared to known evaluation
methods is that stakeholders are able to experience the
prospective system before expressing the opinions on
the quality of its architecture as a whole or the chosen
architectural decision.

In future, we plan to elaborate the models underly-
ing the architecture adapter, investigate the applicability
of different methods for solving the problem of obtain-
ing evaluation marks from stakeholder assessments,
completely implement the evaluation policy, and estab-
lish the validation studies for the proposed technique.

D Simulated qualities

no:

Adapt kth | | Perform | Evaluate kth Implement kth
O 7777777 | architectural »| assessments »| architectural . —yesw| architectural O
T decision | B I decision decision
k=k+1

Stakeholder
assessments

Description of kth architectural

o D Parameter values
decision

D Assessment for kth decision

Fig.2. A proposal for a quality-driven architectural design

In addition, we see this particular solution as a par-
ticular case for more generic framework. In this frame-
work, architectural decisions could be seen as a particu-
lar instantiation of more generic concept of changing
the state of the project. This change could be any event
that could affect this state: adding resources, choosing
particular implementation strategy (as opposed to design

strategy) etc; an example of a connection between the
decisions considered during the implementation stage
(selecting code checking rules for static code analysis)
and the design decisions is shown in [31]. As a result,
we plan to eclaborate a generalized universal state
change adapter which could be instantiated as various
adapters including the one described in this paper.

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

121

References

1. Bosch J. Design and Use of Software Architec-
tures / J. Bosch. — Reading: Addison-Wesley. — 2000. —
370 p.

2. Shekhovtsov V.A. Interactive assessment of
simulated service qualities by business stakeholders:
principles and research issues / V.A. Shekhovtsov //
Ilpobonemu npoepamysanns. — 2010. — Ne 2-3. —
C. 288-298.

3. Shekhovtsov V.A. Constructing POSE: a Tool
for Eliciting Quality Requirements / V.A. Shekhovtsov,
R. Kaschek, S. Zlatkin // Proc. ISTA 2007. — LNI,
Vol. P-107. — Bonn: GIL. — 2007. — P. 187-199.

4. Babar M. Comparison of Scenario-Based Sofi-
ware Architecture Evaluation Methods / M.A. Babar,
1. Gorton // APSEC'04. — IEEE. — 2004. — P. 600-607.

5. Roy B. Methods for Evaluating Software Archi-
tecture: A Survey. Technical Report No. 2008-545 /
B. Roy, T.C.N. Graham. — Queen’s University at King-
ston. — 2008. — 82 p.

6. Kazman R. SAAM: A Method for Analyzing the
Properties of Software Architectures. / R. Kazman,
L. Bass, G. Abowd, M. Webb // Proc. ICSE'94. —
ACM. — 1994. — P. 81-90.

7. Kazman R. Experience with Performing Archi-
tecture Tradeoff Analysis / R. Kazman, M. Barbacci,
M. Klein, S.J. Carriere // Proc. ICSE'99. — ACM. —
1999. — P. 54-63.

8. Folmer E. Software Architecture Analysis of
Usability / E. Folmer, J. Gurp, J. Bosch // Proc. EHCI-
DSVIS'04. — LNCS, Vol. 3425. — Berlin-Heidelberg:
Springer. — 2004. — P. 321-339.

9. Tekinerdogan B. ASAAM: aspectual software
architecture analysis method / B. Tekinerdogan // Proc
WICSA'04. — 2004. — P. 5-14.

10. Bergner K. DoSAM - Domain-Specific Soft-
ware Architecture Comparison Model / K. Bergner,
A. Rausch, M. Sihling, T. Ternit // Proc. QoSA'05. —
LNCS, Vol 3712. — Berlin-Heidelberg: Springer. —
2005. — P. 4-20.

11. Bardram J.E. Architectural Prototyping: An
Approach for Grounding Architectural Design and
Learning / J.E. Bardram, H.B. Christensen, K.M. Han-
sen // Proc. WICSA'04. — 2004. — P. 15-24.

12. Martensson F. An Approach for Performance
Evaluation of Software Architectures using Prototyping
/ F. Martensson, H. Grahn, M. Mattsson // Proc.
SEA'03. — 2003. — P. 605-612.

13. Krishnamurthy S. On the estimation of reliabil-
ity of a software system using reliabilities of its compo-
nents / S. Krishnamurthy, A.P. Mathur // Proc.
SRE'97. — 1997. — P. 146-155.

14. Gokhale S. S. Architecture-Based Software Re-
liability Analysis: Overview and Limitations / S.S. Gok-
hale // IEEE Transactions on Dependable and Secure
Computing. — 2007. — Vol. 4. — P. 32-40.

15. Williams L.G. PASA: A Method for the Per-
formance Assessment of Software Architecture /

L.G. Williams, C.U. Smith // Proc. 3rd Workshop on
Software Performance. — 2002. — P. 179-189.

16. Cuum K.V. Dgppexmuenvie pewenus: npaxmu-
yecKoe PyKosooCmeo no CO30AHUI0 2UOKO20 U MaACumaou-
pyemoeo npocpammuozo obecnevenus / KY. Cmum,
JIL Yunvamc. — K.: Juanexmuxa, Bunvsmc. — 2003. —
448 c.

17. Gokhale S. S. Reliability Simulation of Compo-
nent-Based Software Systems / S.S. Gokhale, M.R. Lyu,
K.S. Trivedi // Proc. ISSRE’98. — 1998. — P. 192-201.

18. Cortellessa V. Reliability Modeling and Analy-
sis of Service-Oriented Architectures / V. Cortellessa,
V. Grassi // L. Baresi, E.D. Nitto (eds.): Test and
Analysis of Web Services. — Berlin-Heidelberg:
Springer. — 2007. — P. 339-362.

19. Cortellessa V. MOSES: MOdeling Software
and platform architEcture in UML 2 for Simulation-
based performance analysis / V. Cortellessa, P. Pierini,
R. Spalazzese, A. Vianale // QoSA 2008. — LNCS, Vol.
5281. — Berlin-Heidelberg: Springer. — 2008. —
P. 86-102.

20. Hennig A. Performance Prototyping - Generat-
ing and Simulating a Distributed IT-System from UML
Models / A. Hennig, A. Hentschel, J. Tyack // Proc.
ESM’2003. — I[EEE. — 2003. — P. 502-508.

21. Shekhovtsov V.A. Towards negotiating QoS re-
quirements originated from stakeholder assessments of
simulated service qualities / V.A. Shekhovtsov //
Paoioenexmponni i komn'tomepni cucmemu. — 2010. —
MNe 1(42). — C. 108-114.

22. Mellor S. MDA Distilled: Principles of Model-
Driven Architecture / S. Mellor, K. Scott, A. Uhl, D.
Weise. — Reading: Addison-Wesley. — 2004. — 176 p.

23. Pastor O. Model-Driven Architecture in Prac-
tice / O. Pastor, J. Molina. — Berlin-Heidelberg:
Springer. — 2007. — 302 p.

24. Shekhovtsov V.A. Towards eliciting QoS re-
quirements from stakeholder assessments of simulated
service qualities / V.A. Shekhovtsov // N.D. Pankratova
(ed.) System Analysis and Information Technologies. —
Kyiv: NTUU "KPI". — 2010. — P. 398.

25. Shekhovtsov V.A. Towards validating QoS re-
quirements using stakeholder assessments of simulated
service qualities / V.A. Shekhovtsov // Bocmoumno-
Eeponetickuti orcypran nepedogvlx mexuonocuil. —
2010. —Ne 2/9 (44). — C. 4-8.

26. Grassi V. Filling the gap between design and
performance/reliability models of component-based
systems: A model-driven approach / V. Grassi,
R. Mirandola, A. Sabetta // The Journal of Systems and
Software. — 2007. — Vol. 80. — P. 528-558.

27. Marzolla M. UML-PSI: the UML Performance
SImulator / M. Marzolla, S. Balsamo // Proc.
QEST’04. — [EEE. — 2004. — P. 340-341.

28. Babar M.A. Eliciting Better Quality Architec-
ture Evaluation Scenarios: A Controlled Experiment on
Top-Down vs. Bottom-Up / M.A. Babar, S. Biffl // Proc.
ISESE'06. — ACM. — 2006. — P. 307-315.

29. Ardagna D. Rethinking the Use of Models in
Software Architecture / D. Ardagna, C. Ghezzi,

122

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

R. Mirandola // Proc. QoSA'2008. — LNCS, Vol. 5281. —
Berlin-Heidelberg:Springer. — 2008. — P. 1-27.

30. lllexosyose B.A. Hcnonvzosanue kawecmea &
poau akmopa, ynpagisiouje2o npoyeccom papabon-
Ku npoepammnozo obecneuenus / B.A. Illexosyos,
O.B. Topuenok, A.I. Honeapes u op. // Cucmemmnuii
ananiz ma ingopmayituni mexnonozii. Mamepianu

X midicHapoOHoi nayko8o-mexHiunoi kongepenyii. — K.
HTYY "KII". — 2008. — C. 423.

31. Shekhovtsov V. Facilitating reuse of code
checking rules in static code analysis / V. Shekhovtsov,
Y. Tomilko, M. Godlevskiy // Proc. UNISCON 2009. —
LNBIP, Vol. 20. — Berlin-Heidelberg: Springer. —
2009. — P. 91-102.

Hocmynuna 6 peoaxyuio 3.06.2010

PeneHseHnT: a1-p TeXH. HayK, pod., 3aB. kad. ACY M.JI. I'omnesckuii, HanmoHaabHBIH TEXHUYSCKUI YHHUBEPCUTET
«XapbKOBCKHI MONUTEXHUYECKUNA HHCTUTYT», XaphKOB.

IHTET'PAJIBHE OLIIHIOBAHHSA CEPBUC-OPIEHTOBAHUX APXITEKTYP HA OCHOBI
KOPUCTYBAJIbBHUIIBKUX OIIHOK 3MOJIEJbOBAHUX XAPAKTEPUCTUK AKOCTI
IIPOI'PAMHUX CEPBICIB

B.A. Illexosuoe

Y po0oTi NpOMOHYETHCS MiAXIA O MPOEKTYBaHHS CEPBiC-OPi€HTOBAHUX MPOIPAMHUX CUCTEM, IO rependavae
IHTEerpaJibHe OLIHIOBAHHS CEPBIC-OPIEHTOBAHHUX apXITEKTYyp Ha OCHOBI OLIIHOK 3MOJETbOBAHUX XapaKTEPUCTHK SIKO-
CTI IPOrpaMHMX CEPBICIB 3allikaBIeHUMH ocobamu. Llei miaxia € yacTHHOI KoMIuiekcy pimeHb ISAREAD-S, me-
TOFO SIKOT'O € TIAKITIOYCHHS 3aIliKaBJICHUX OCi0 10 MpoIiecy po3poOKH MPOrpaMHOro 3a0e3MmeueHHs Yepe3 OliHIOBaH-
HS CIIPUHMAaHOI SIKOCTI cHcTeMH (Ha MpUKJIai i MPOXYyKTUBHOCTI W HAJIHMHOCTI) Y KOHTEKCTI i1 BUKOpUCTaHHI. Mu
JIOCITIJPKYEMO 1HTErpajbHe OIIHIOBAaHHS KOHKPETHHX BapiaHTIB peastizallii apXiTeKTypu B LIJIOMY (OILIHIOBaHHS 32
MPUHIMIIOM "MUTTEBHUX 3HIMKIB") 1 OLIHIOBaHHS OKPEMHUX apXITEKTYypHHUX pillleHb (IHKpEMEHTHE OILIHIOBaHHS). Mu
MIPOITOHYEMO TiJXiJ 10 IHTErpabHOTO OLIHIOBAHHS, IO CKJIAZA€ i3 TPHOX €TalliB: MEPETBOPEHHS OIMCY BapiaHTa
apXiTeKTypu a00 apXiTEKTYPHOrO pillleHHS B HaOip 3HaYeHb (DAKTOpIB, IO BIUIMBAIOTH HA BUKOHAHHS IMITAIliiHOL
MOJIETI CUCTEMH, 300py KOPHCTYBAIBHHUIBKUX OI[IHOK 3MOJENBbOBAHUX XapaKTEPHCTHK SKOCTI i BUBEIEHHS 1HTET-
PAJIBHHX OLIHOK i3 IIMX KOPUCTYBAJbHUIIKHUX OI[IHOK. 3alpoIIOHOBAaHE PIillIEHHS peai30oBaHe Yy BUIJISI MPOLEAYPH
BEPXHBOI0 PiBHs (TIOJITHKH OL[IHIOBAaHHS apXiTEKTYpH), 3aCHOBaHOI Ha MPOLEAypax HIKHBOI'O PiBHS (MeXaHi3Max),
METOIO SKUX € 301p JYMOK 3alliKaBJICHUX 0Ci0 100 CIPUIIMaHOI SKOCTI.

Karou4ogi ciioBa: skictb 00CTyroByBaHHs, IPOIYKTHBHICTh CEpPBICIB, HAAIWHICTh CEpPBiCiB, MPOrpaMHa apxire-
KTypa, apXiTeKTypHE PillleHHsI, OL[IHIOBAHHS apXiTEKTYpH, 3aIliKaBJIeHi 0COOU.

HUHTEI'PAJIBHOE OHEHUBAHUE CEPBUC-OPUEHTUPOBAHHBIX APXUTEKTYP HA OCHOBE
MHOJIb3OBATEJIbCKUX OHEHOK CMOJEJINPOBAHHBIX XAPAKTEPUCTUK KAYECTBA
INPOI'PAMMHBIX CEPBUCOB

B.A. Illexosuoe

B pabore npesiaraercst HoAXoA K MPOEKTHPOBAHHUIO CEPBUC-OPUEHTHPOBAHHBIX IPOIPAMMHBIX CUCTEM, MPE-
MoJIaraouii UHTETpajbHOE OLIEHMBAHHE CEPBUC-OPUEHTHPOBAHHBIX apXHUTEKTYp Ha OCHOBE OLIEHOK CMOJEIUPO-
BAaHHBIX XapaKTEPUCTHK KayecTBa MPOTrPaMMHBIX CEpPBUCOB 3aMHTEPECOBAHHBIMU JIMIaMH. J[aHHBIN oxxo sBIseT-
cs yacTeio koMIulekca pemeHnit ISAREAD-S, nenbio KoToporo siBiseTcs NOAKIIOYEHNE 3aHHTEPECOBAHHBIX JIUI] K
nporieccy pa3padoTKu MPOrpaMMHOIO OOECIIEUeHNUs Yepe3 OLEHHBAaHUE BOCIPHMHUMAEMOI0 KayecTBa CHCTEMBI (Ha
TpUMepe ee POU3BOJUTEIFHOCTH M HAaJI&KHOCTH) B KOHTEKCTE €€ MCIIOIb30BaHMs. MBI HCCllelyeM HHTErpajibHOe
OLIEHMBaHHE KOHKPETHHIX BAPUAHTOB PEANTU3aIMU APXUTEKTYPHI B 1IEJIOM (OLIEHHMBaHHUE MO PUHIIUITY «MTHOBEHHBIX
CHMMKOBY») M OLICHUBaHUE OTAENBHBIX apXWUTEKTYpPHBIX pelleHuid (MHKpEeMEHTHOe olleHuBaHue). Mbl npemiaraem
TOAXOJ K MHTErpajlbHOMY OLIEHHMBAHHIO, COCTOSIIMIA M3 TPEX ITAloB: MpeoOpa3oBaHMs ONHMCAHHS BapUaHTa apXH-
TEKTYPBI WIH apXUTEKTYPHOT'O pelIeHHs] B HA00p 3HaUeHHH (haKTOPOB, BIMSIOIIMX HA BBHINOJIHEHNE UMHTAIIMOHHOMN
MOJIETIH CHCTEMBI, COOpa MOJIb30BATENLCKUX OIL[EHOK CMOJICTMPOBAHHBIX XapaKTEPUCTHK KauecTBa M BBHIBOJ HMHTE-
IpajJbHBIX OLEHOK M3 3THX I0JIb30BAaTEIbCKUX OLEHOK. IIpeanoxkeHHoe pelleHne peain30BaHo B BUIE MPOLETYPHI
BEPXHEro YpOBHs (TIOJIMTUKU OLIEHUBAHMS APXUTEKTYpHI), OCHOBAHHOM Ha MpOLIEAypax HIKHEro YpOBHS (MEXaHU3-
Max), HEJIbI0 KOTOPBIX SIBJISETCS COOp MHEHHI 3aUHTEPECOBAHHBIX JIUI] OTHOCHTEFHO BOCIIPHHUMAEMOI'0 Ka4ecTBa.

KnrodeBble cjioBa: KauyecTBO OOCIY)KUBAaHUSA, IPOU3BOAUTENBFHOCTh CEPBUCOB, HAJEKHOCTH CEPBHUCOB, IIPO-
rpaMMHast apXUTEKTypa, apXUTEKTYPHOE PELICHNE, OLICHUBAHUE apXUTEKTYPbI, 3aHHTEPECOBaHHbIE JIUIIA.

lexoBuoB Biaagumup AHaTo/beBHY — KaHJ. TEXH. HayK, JOKTOpaHT, HalmoHalbHBIA TEXHUYECKUN YHH-
BepcUTeT «XapbKOBCKHH MOJUTEXHUYECKUI HHCTUTYT», XapbKoB, YKpauHa, e-mail: shekvl@yahoo.com.

