82 Komn’tomepni cucmemu ma ingpopmauiitni mexuonocii

UDC 519.1:51-74
K. GRONDZAK, P. KORTIS

University of Zilina, Zilina, Slovakia

MODIFIED MAXIMUM CLIQUE EXACT ALGORITHM

A lot of practical problems can be formulated in terms of graph theory in as wide range of areas as theory of
coding, data classification, computer vision and computational biology. Among them, the problem of finding
maximum or maximal clique is often used. In this paper a modification of exact maximum clique algorithm is
proposed and implemented. Results obtained on set of DIMAC benchmark problems are discussed. The results
demonstrate the potential of modified algorithm to reduce computational burden when solving maximum clique
problem. Main advantage of this modification is the possibility of usage as either heuristic or exact algorithm.

Keywords: combinatorial problems, maximum clique algorithm, heuristic algorithm.

Introduction

Combinatorial problems are still a big challenge
for researchers. The NP-completeness of many of them
is a source of limitations to the size of the problem,
which can be solved. Recently new type of processors,
equipped with several cores appears on the market.
Clusters of such a computers are combined together to
create powerful supercomputers. On such supercompu-
ters, it is possible to expand the size of combinatorial
problems. Using such approach, some of the combinato-
rial problems were solved for reasonable large.

Let us mention two very impressive results.
Applegate at al. 0 have announced exact solution of the
Symmetric Traveling Salesman Problem (TSP) for more
than 10000 cities (respectively, 13,509 and 15,112 cit-
ies; instances usal3509, d15112).

To find solution, 48 workstations were involved in
the calculation, exploring in parallel a tree of 9539
nodes.

Second story of success is the solution of the
Quadratic Assignment Problem (QAP). In 2001 and
2002, successful solution of benchmark instances up to
size 32, Nugent 30 (900 variables) and Krarup 32 (1024
variables) was announced by Anstreicher, Brixius,
Goux, and Linderoth, respectively 2, 3. The instance
Nugent 30 (30 firms to be assigned to 30 sites) needed
the exploration of a tree with 11892208412 nodes and a
network of 2510 heterogeneous machines with an aver-
age number of 700 working machines (Pc, Sun, and SGI
Origin2000). These machines were distributed in two
national laboratories (Argonne, NCSA), five American
universities (Wisconsin, Georgia tech, New Mexico,
Colombia, Northwestern), and was connected to the
Italian network INFN. The time spent was approxi-
mately 1 week.

Other attractive combinatorial problems are the
problems of finding maximum clique of graph, or
evaluating all maximal cliques of the graph. There are
many practical applications associated with these prob-
lems in science and engineering.

Problems solved by theory of coding, data classifi-
cation, computer vision, economics and information
retrieval lead to the maximum clique search.

Many problems of the computational biology re-
quire enumeration of maximal cliques of certain graph.
Let us mention applications in genome mapping, 3-D
protein structure alignment, etc.

Maximal clique exact algorithm

Let us consider undirected graphG =(V,E),
where V is a set of vertices and Ec VxV is a set of
edges. If we denote E'c E a subset of edges set we can
define a subgraph as a graph G'=(E,V").

Set V' contains only vertices incident with edges
from set E'.

A graph G is complete if and only ifE=VxV,
e.g. all the vertices are pairwise adjacent. Complete
subgraph of graph G is called clique. It is quite obvious,
that generally there can be many complete subgraphs of
graph G. In fact, any single edge is a trivial clique of
graph G. These are usually of no interest. For many
purposes, cliques exhibiting some special properties are
required.

Maximal clique of graph G =(V,E) is a clique,
which cannot be expanded using vertices from set V. In
another words, it is a clique, which is not part of larger
clique, hence the name maximal. Evaluation of maximal
cliques is essential for applications like gene expression
analysis or detection of social hierarchies.

© K. Grondzak, P. Kortis

PAJIIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMU, 2010, Ne 2 (43)

Komn’romepui cucmemu ma ingpopmauiini mexuonozii 83

Among maximal cliques, there are some con-
structed by using the largest amount of vertices. These
are called maximum cliques. Maximum clique evalua-
tion is applied in theory of coding. To construct a larg-
est binary code consisting of binary words, that can
correct a certain number of errors, one has to find
maximum clique of specially constructed graph.

To determine maximum clique of some graph G, it
is necessary to construct all possible subgraphs of it. For
each constructed subgraph we have to check, if it is a
clique and record maximal solution. It is NP-complete
combinatorial problem.

Simple and elegant exact serial algorithm was pub-
lished by Carraghan and Pardalos 4. Later, Pardalos et
al developed and published parallel version, using Mes-
sage Passing Interface (MPI) 5. It runs on any of the
distributed memory supercomputer architectures. They
have tested it on graphs containing up to 500 vertices
and 75000 edges. Maximum execution time on four
processor cluster was approximately 3000s 5.

The main idea of this algorithm is as follows. Let
us order somehow vertices of set V to get an ordered
listL = {v{,v,,..., Vi } , where k is number of vertices of

graph G. Then we apply following steps:

1. Set actual solution to empty set.

2. Construct all possible subgraphs containing
first vertex of list L.

3. Evaluating subgraphs find maximum clique.

4. If maximum clique is larger than actual solu-
tion, record new actual solution.

5. Remove first vertex from list L and from set V.

6. Iflist is not empty, continue with step 2.

7. Actual solution contains maximum clique of
graph.

This algorithm is guaranteed to find maximum so-
Iution. As was mentioned above, the NP-completeness
limits the size of problem, solvable using this algorithm.

Essential for parallelization of this algorithm are
the changes of list L.

This algorithm generates a
lists L; = {v;,Viy1>--- Vi },1=12,...k . It is obvious, that

sequence of

the size of list decreases by one vertex each time we
construct all subgraphs containing first vertex of the list.
Because of it, sets of subgraphs constructed in step 2 of
the algorithm are disjunctive.

This property can be used to design simple parallel
algorithm. Generating a sequence of lists L; and distrib-
uting it among a set of processors, algorithm is executed
in parallel. Comparing sizes of results obtained by dif-
ferent processors, the largest clique is determined. The
final computational time of parallel algorithm is shorter
when compared to serial algorithm, because of imple-
mented parallelism, but this simple form of parallelism

is not sufficient for extremely computational complex
problems. The problem is, that the number of operations
necessary to find clique strongly depends on the cardi-
nality of lists L; . The higher is the cardinality ||Ll|| the

higher is the computational complexity.
Obtained results

As was mentioned above, the main disadvantage
of the exact maximum clique algorithm is the computa-
tional complexity. To overcome it, we proposed a re-
versed order of generating sequence of lists L; . Algo-

rithm starts with list L; for i=k -1, e.g. with only two

nodes. All possible subgraphs are constructed and
maximum clique is determined. Then the list is ex-
panded by one vertex. The procedure is repeated until
the listL; , containing all the vertices is reached.

Advantage of this approach is obvious. We are get-
ting partial solutions sooner than with the original ap-
proach. It means it can be used as a simple heuristic
method to get some estimation of the maximum clique.
If the algorithm is executed for all possible lists L; , the

solution is exact.

To test behavior of proposed algorithm, we have
tested it on a set of benchmark problems. This set con-
tained five graphs with number of nodes ranging from
100 to 500 and density approximately 50% 6. The graph
density is defined as follows:

vl

Three different algorithms were used to find
maximum clique of those graphs. First, the reference
algorithm provided with benchmark data 6 (algl) was
executed. Next the exact algorithm proposed by Car-
raghan and Pardalos was used (alg2). As a third one,
modified exact algorithm (alg3) was executed [6]. For
each algorithm, size of maximum clique, number of
maximum cliques and execution time were recorded.
Results were obtained on a single computer equipped
with processor Intel Pentium D 3.00 GHz, IGB RAM
and operating system GNU/Linux.

Because values of maximum clique size and num-
ber of solutions agreed for all algorithms, these are
presented only once. Fastest is the benchmark algo-
rithm. Following is modified exact algorithm. Slowest is
the exact algorithm.

The achieved speedup of alg3 with respect to alg2
is in the fact, that amount of constructed and processed
subgraphs significantly differs for these two algorithms
(there are no available data for algl). To demonstrate
this behavior, we have counted number of subgraphs

Komn’romepui cucmemu ma ingpopmauiini mexuonozii

Table 1
Summary of obtained results for three different algorithms
Graph parame- | Graph file r100.5.b r200.5.b r300.5.b r400.5.b r500.5.b
ters Nodes 100 200 300 400 500
Edges 2508 10036 22361 40061 62161
Density 0.5016 0.5018 0.496911 0.500762 0.497288
Max1mum Nymber of 31 16 5 3 41
clique parame- | cliques
ters Clique size 9 11 12 13 13
alel E’]‘ecut“’“ time 0.015 0.08 0.6 3.65 13.96
alg2 E’]‘ecut“’“ time 0.025 0.213 1.64 9.78 37.2
alg3 E’]‘ec““"“ time 0.023 0.141 1.18 6.15 25.8
6e+006 ‘
alg2 +
L alg3 <
5e+006 []
(&3 Jrj: .
4e+006 |
B
§ 3e+006
3
I+
2e+006
1e+006 T
0
0 50 100 150 200 250 300 350 400 450 500
of vertex

Fig. 1. Number of iterations with respect to the vertex number

constructed and processed during calculation (denoted
as iterations) for each listL;,i=1,2,...k . The lower is

the cardinality of list; the lower is the amount of con-
structed subgraphs (Fig. 1). This behavior is quite natu-
ral and expected. But it also demonstrates the significant
difference between amount of iterations to process the
same list of vertices by alg2 and alg3.

Difference is caused by the fact, that alg3 evalu-
ates list in reversed order.

To achieve better performance, both algorithms
apply pruning, e.g. they consider actual maximum
clique (AMC) size value and do not consider cliques,
which are smaller than this value. Larger number of
iterations is needed to process lists with larger cardi-
nality.

Let us consider the evaluation of list L; . Value of
AMC for alg2 is zero and it has to be updated during the
evaluation of list L; . Situation is different for alg3. With
high probability the size of AMC is equal to the optimal
value (or is very close to it) and it can prune more sub-
graphs during the iteration process.

Conclusion and Future Work

In this paper, modification of Carraghan and Par-
dalos exact algorithm was proposed, implemented and
tested. We have demonstrated the potential of the modi-
fication to reduce computational time on the set of DI-
MAC benchmark problems. Reasons for achieving
speedup were proposed and demonstrated.

Komn’romepui cucmemu ma ingpopmauiini mexuonozii 85

This algorithm can be used both as a heuristic al-
gorithm to achieve estimation of the optimal solution, or
it can provide optimal results, when run completely.

This algorithm is very suitable for parallelization.
To improve the scalability of it, version suitable for
GRID architectures is to be developed.

Acknowledgement

This work was partially supported by national
VEGA Grant No. 1/0761/08 "Design of Microwave
Methods for Materials Nondestructive Testing" and
national VEGA Grant No. 1/0796/08 “Large Data Mod-
eling and Processing”. Results presented in this paper
were obtained when realizing the project “Centre of the
translation medicine” in the framework of the Operation
program Research and Development sponsored by
European Regional Development Fund.

2. Anstreicher K.M. A new bound for the quad-
ratic assignment problem based on convex quadratic
programming / K.M.Anstreicher, N.W. Brixius // Math.
Prog. —2001. —Ne 89, 3. — P. 341-357

3. Solving large quadratic assignment problems
on computational grids / J.P. Goux, K.M. Anstreicher,
N.W. Brixius, J. Linderoth// Math. Prog. — 2002. —
M 91, 3. — P. 563-588.

4. Carraghan R. An exact algorithm for the
maximum clique problem / R. Carraghan, P.M. Par-
dalos // Operations Research Letters. — 1990. — Ne 9. —
P. 375-382.

5. Pardalos P.M. An exact parallel algorithm for
the maximum clique problem/ P.M. Pardalos, J. Rappe,
M.G.C. Resende // High performance algorithms and
software in nonlinear optimization. — Norwell, Massa-
chusetts, 1997. — P. 279-300.

6. Johnson D.S. Network Flows and Matching:
First DIMACS Implementation Challenge/ D.S. John-

son, C.C. McGeoch // DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. —
Providence, Rhode Island, 1993, Volume 12. — 592 p.

References

1. On the solution of traveling salesman problem

/ D. Applegate, R.E. Bixby, V. Chvatal, W. Cook // Doc.
Math. — 1998. — ICM(I1I). — P. 645-656.

Iocmynuna 6 pedaxyuro 2.06.2010

PenenseHT: 1-p TexH. Hayk, mpod., npodeccop, 3aBemylomiuil kadeapodl KOMIBIOTEPHBIX CHCTEM U ceTeil
B.C. Xapuenko, HarrionansHs1it aspokocmrrdeckuii yausepeuteT M. H.E. XKyxoBckoro « XAN», XapbkoB, YkpauHa.

MOJU®UKALIUSA TOYUHOTI'O AJITOPUTMA MIOUCKA KIIMKU MAKCUMAJIBHOI'O PABMEPA
K. I'ponoscax, I1. Kopmuc

Psn npukiamHbIX 3a7ad B TAKUX OOJIACTSX 3HAHUHA KaK TCOPHs KOXMPOBAHUS, KIACCU(PHKAIMA JaHHBIX, Ma-
IIMHHOE 3peHue U OronHpopmaTuka GopMyaupyercs B TepMUHAxX Teopuu rpados. IIpu pemieHnn 3TUX 3a1a4 J0C-
TaTOYHO YaCTO BO3HUKACT HEOOXOJUMOCTD IMOMCKa MAaKCHMATBHOTO YUCIIA KITUK B rpad)e Wi KIUKH MaKCUMAaJIbHO-
ro pasMmepa. B maHHol pabore mpemnaraeTcs MOAM(UKALNSA TOYHOrO aarOpUTMa MOMCKA KIUKH MaKCHMATbHOTO
pa3sMmepa. [lomydeHHBIH anroputM ObUT anpoOUpoBaH Ha MHOKeCTBE AaHHBIX DIMAC. AHanu3 peuieHui s yKa-
3aHHOIO0 MHOXKECTBA IMOKAa3aJl, YTO MPEJIOKCHHBIA aJrOpUTM TO3BOJIAET COKPATUTHh BBIYUCIUTEILHYIO CIIOKHOCTD
TOYHOT'O AJITOPUTMA MOUCKA KIMKH MaKCHMAaJIbHOTO pasMepa B rpade. BaKHBIM JOCTOMHCTBOM MPEAIOKCHHOTO
aJITOPUTMA SIBJIICTCS TO, YTO OH MOXKET OBITh MCIIOJIB30BaH KaK JUIsl TOYHOTO, TaK U JUIA SBPUCTUUCCKOTO PEIICHHUS
3a]1auy MOUCKa KIIMKA MaKCUMaJIbHOIO pa3Mepa B 3aJlaHHOM Trpade.

KiroueBble cjioBa: KOMOMHATOPHKA, KITMKAa MAKCUMAJIBHOTO pa3Mepa, SBPUCTHYCCKUNA alTOPHUTM.

MOJUPIKALISA TOYHOI'O AJITOPUTMY NOIIYKY KJIKH MAKCUMAJIBHOT' O PO3MIPY
K. I'ponoscax, I1. Kopmuc

Psin mpakTuyHuX 3aqa4 y Takux cdepax 3HaHb K TEOpis KOAyBaHHS, Kiacuikalis TaHUX, MAIIMHHHUN 3ip 1
OioiH(popMaTHKa (POPMYITIOETHCS Y TepMiHax Teopii rpadis. [Ipu BupilIeHHI ITUX 3a7a4 JOCTATHHO YACTO BHHHUKAE
HEOOXiTHICTh MOIIYKY MaKCHMaJbHOTO YHCNa KK y rpadi ado KIiKM MakCUMaJbHOTO po3Mipy. Y maHiid cTarTi
MIPOITOHYETHCST MOAM(IKALSI TOYHOTO AITOPUTMY TOMIYKY KIIIKW MaKCUMaJbHOro po3Mipy. OTpuMaHuii anroputm
OyB anpoOoBaHuit Ha MHOXHHI JaHuX DIMAC. AHai3 pillieHb U1 03HAYSHOT MHOKMHHU HaJIaB MOKJIUBICTh BH3HA-
YHUTH, 110 3aIPONOHOBAHUN AJTOPUTM JO3BOJISIE 3MEHIIUTH OOUUCITIOBANIEHY CKIIQJHICTh TOYHOTO AITOPUTMY I10-
IIYKY KIIIKA MaKCUMAaJbHOrO po3Mipy y rpadi. BaxxauBoro mepeBaroro 3ampornoHOBaHOTO aITOPUTMY € T€, IO BiH
MOXe OyTH BUKOPUCTAHHUH SIK JJIsl TOYHOT'O, TaK 1 JUIsl EBPUCTHYHOrO PIllIeHHsI 33/1a4i MOMYKY KKK MaKCHMaJbHO-
r'o po3Mipy y 3aaHoMy rpadi.

Koarou4ogi ciioBa: komOiHaTopHKa, Kilika MAKCHMAJIBHOTO PO3Mipy, eBPUCTHYHHHN aJITOPHTM.

Grondzak Karol — PhD, assistant professor, University of Zilina, e-mail: Karol.Grondzak@fri.uniza.sk.
Kortis Peter — PhD, assistant professor, University of Zilina, e-mail: Peter.Kortis@fel.uniza.sk.

