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ON COMBINING EVENT-B AND WORKFLOW

In a state-based modelling method — Event-B, the next event to be executed is selected non-deterministically
among all the currently enabled events. The information about event ordering has to be embedded into guards
and before-after predicates of events. This results in entanglement of control flow and functional specification
plus the addition of extra variables resulting increased complexity and reduced readability of a model. In this
paper we consider Event-B and discuss how to complement the Event-B development process with a workflow
view. Proposed approach combines the elements of a workflow language and state-based modelling.
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Introduction

Application of formal modelling is important to
engineer safe and dependable systems. Using a formal
method, however, is not always easy. One of the reasons
is the fact that a modelling method dictates a specific
viewpoint on a system, as required by the conceptual
framework of a method. At times, such a viewpoint
does not fit well a modeller’s view and intuition about a
system, thus hindering or preventing the system
modelling,

We consider a state-based modelling method —
Event-B [1, 2] and discuss how to complement the
Event-B development process with a workflow view.
The approach assists in constructing models and
carrying out refinement by employing the visional
intuition of a workflow language. It although facilitates
the reasoning about models for which a high-level
workflow description is natural.

The approach combines the elements of a
workflow language and state-based modelling. The
workflow part describes the control flow of a system
while the state part details state evolution. System state
is described by a collection of variables constrained by
an invariant. State is transformed with the help of
events. In addition to the ordering imposed by the
workflow part of a model, an events also carriers a
guard expressing enabledness constrains as a predicate
on system variables. A workflow in this proposal is a
simple process algebra constraining the order of events
execution in an Event-B model.

2. Event-B Overview

An Event-B model characterises the state of a sys-
tem at any given moment and the way the system would
evolve further from that state. Mathematically, an

Event-B model is a state-mapping predicate defined by
a set events that are relations on the new and old system
states. An event is characterised by a guard, describing
the set of states from which an event may be executed,
and a post-condition, defining the states upon the event
execution. In addition, system states are constrained
with an invariant expressing the properties to be
maintained throughout the system lifetime. A system
state is given by a collection of named and typed
variables.

An Event-B model, called a machine, has the fol-
lowing general form:

SYSTEM name
VARIABLES V
INVARIANT I
INITIALISATION Ri
EVENTS

€ =...

ek — ...

where name is a model name, v is a vector of mod-
el variables, I(v) is a model invariant defined on model
variables v, Ri(v'") is an initialisation event computing an
initial model state (with referring to a previous, non-
existent, state v).

Model events e ..., e, have the following structure:
¢; = when G(v) then S(v, v') end. Here ¢; is an event
name; G(v) is a guard predicate defining the states when
the event is enabled; S(v,v') is a before-after predicate
relating a previous state v with a new state v'.

This is a simplified version of Event-B syntax. The
complete syntax has can be found in [1].

Theorem proving is the primary formal verification
technique for Event-B models. Proof obligations are
generated automatically and passed on to a collection of
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mechanised theorem provers. In most cases, automated
theorem proving would discharge the majority of proof
obligations but the remaining are to be proved with an
assistance of a modeller in an interactive proving
environment [3]. A model checking tool is available as
well [4].

3. Workflow

In Event-B, the next event to be executed is se-
lected non-deterministically among all the currently
enabled events. The information about event ordering
has to be embedded into guards and before-after
predicates of events. This results in entanglement of
control flow and functional specification plus the
addition of extra variables resulting increased
complexity and reduced readability of a model. One
way to decouple control flow from the rest of a
specification is by defining the control flow information
in a dedicated expression imposing ordering on actions.

3.1. A Workflow Language

An entity used to describe control flow
information is called a workflow. A workflow is
contained in a machine and is formulated separately
from the descriptions of events.

One way to reason about a workflow is to treat it
as a partial order on events. Hence, a workflow can be
characterised by a function mapping some current event
into the set next of events:

F:A——= P(A)

where A is the set of events of a machine. Such a
function is conveniently constructed using the following
simple process algebraic notation:

skip; implicit stuttering step with index i

e; action a with index i

p; q sequential composition
pllq non-deterministic choice
loop(p) loop

skip corresponds to an implicit event which does
not modify a model state. To distinguish between
different instances, each occurrence of skip in a
workflow expression is attached a unique index. Simi-
larly, a workflow action is composed from a name of an
event and index, distinguishing the occurrences of the
same event in a workflow expression.

The traces of a workflow, considered in isolation,
are given by function tr, defined below:

tr(skip) = {0 (V)13
(@) = {0, @) (@i |

tr(pq)={smt|sm<\/—>etr(p)/\tetr(q)}U
U{sm(e}|smtr(p)xxe¢f};

tr(pIlq) = tr(p) Utr(q) ;
tr(loop(p)) = tr((p; loop(p))[Tskip) .

Here <a,..., b> is a trace characterised by an ordered
set and V marks a successful termination of a work-
flow. A trace terminating with anything but V describes
a trace leading to deadlock. The ” operator extends a
trace with another trace: (sl ..., sn) * {tl,..., tm) =
{sl,...,sn, t1,...,tm).

—  —
— acl }—‘ ac2
. 4 b 4

4 G 1
aecd J—' ach
" r L. v

Fig. 1: A graphical representation of workflow
expression aci;ac2; (ac3II(ac4; ac5)); loop(ac6)

The F function, defined above, is computed for
some workflow expression wf by analys the expression
traces and building the list of all actions which may fol-
low a given action a;:

F(a;) =
fomciranosesnasi ]

The function is undefined for the termination mark V.
The coupling of the workflow with module state is
achieved by changing the tr (ai) rule to make it deliver
an empty trace for the states where the guard of action a
is not enabled.
The reference to a current state dis recorded along
with a trace and is passed as an argument to tr:

tr(d, skip) = {(6,0), (0, {v))})

tr(d, a;) = {(6, "))} md =Gy (8

tr(d, a;) = {(8 ). (a(d), {a;}), (a(d), 1(7 V) and Go(6)

tr(6,p;q) = {s~t[s~(a.{V}) etr(dp) ntctr(oq)}u
{~ — (a,{e})) | s ~ (o,{e)) etr(d,p) AeF# /}

tr(d,prq) = tr(d,p)Utr(d,q)

tr(d,loop(p)) = tr(d,p; loop( }), and VG:E\U)J( 7q(0)

tr(d,loop(p)) = tr(d,skip).and =V . \(P)(vﬂ(ﬁ)

Here Ga stands for the guard of an event a associ-
ated with an indexed action ai. An event name a plays a
dual role. It is recorded along with its index in a trace to
mark an occurrence of the event in the execution his-
tory. It also acts as a notational shortcut for the state
transformer implemented by the event and used to com-
pute a new state from some current state (the second and
third rules).
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Reasoning about the properties of a workflow re-
quires the notions of entry and exit workflow points. An
entry point of a workflow is an action initially enabled
when a workflow expression starts execution.

Similarly, an exit point is one of the possible ter-
mination actions. The sets of entry and exit points of a
workflow are computed by functions EN (entry points)
and EX (exit points), defined as follows:

EN(e) = {e} EX(e) = {e}

EN (p:q) = EN(p) EX(p;a) = EX(q)
EN(prq) = EN(p)JEN(q) EX(pngq) = EX(p)UEX(q)
EN(loop(p)) = EN(p) EX(loop(p)) = EX(p)

An Event-B model without a workflow is equiva-
lent to one having the following workflow attached:

goop(l—‘eEEe) s

where E is the set of events of a machine. The workflow
expression states that events are executed as long as
there is at least one enabled event left.

3.2. Interval and Point Constraints

A global invariant, characterising the global
module properties, must be maintained by every state-
transforming rule of a module. It may e also needed to
reason about properties of model fragments. Such a
property would clarify and document model parts or
even drive the development process by borrowing from
system requirements. Such additional knowledge about
model fragments provides an assistance in model
correctness proofs.

One way to reason about local properties is to
require a model to satisfy a given property at a certain
point of its history. Such property is called a point
constraint. Unlike a global invariant, characterising a
model state irrespective to the execution history, a point
constraint characterises a slice of states associated with
the specific histories of model execution. Evidently, for
some fixed point in a system history, it is possible to
formulate conditions that are stronger than those
spanning the whole system history.

States associated with a point constraint are
identified by extending the workflow expression
notation. A point constraint is marked in a workflow by
a predicate placed within square brackets: [P(v)].

An action preceding a point constraint must estab-
lish the condition expressed in the constraint. This is
results in a new obligation similar to that of invariant
preservation [1]. Symmetrically, an event following a
point constraint may rely on the condition expressed in
the invariant2. The notions of predecessor and successor
are defined on the traces of a workflow. An action pre-
cedes a point invariant if a silent action corresponding
to the point invariant follows the action in at least one of
the workflow traces. An action follows a point invariant
if the point invariant precedes the action in every

workflow trace.

A logical extension of the point constraint concept
is interval constraint. An interval constraint, as sug-
gested by its name, must be maintained during an inter-
val of a workflow trace. An interval constraint is
declared by attaching a predicate, expressing a desired
property, to a workflow sub-expression: [P(v)](wf). On
the preceding and following actions, an interval
constraint has the same effect as a point constraint.
Additionally, an interval constraint must be satisfied on
all the traces of the associated workflow expression.

3.3. Workflow Verification

Workflow/Guard Consistency It is required to
demonstrate that the combination of a workflow and
events is not contradictory and for every action in a
workflow there exists an enabled event among the set of
the next events computed by the workflow.

Voi(a; € dom(F) A I(v) A Go(v) A Selv,0") = 3y e Gnl(V'),
The above is equivalent to the following:

/\agedom(F!(I(l‘) A (;“(1.) A S“(T" Tf) = ane.F(a';_J G (\E")J

Ké&dom{F)(I(v) Ga(V) A Se(t,t/) =* Vn"FCai) ).
The statement above, formulated for some indexed
action a*, can be summarised as follows WF.GRD

I(v) N Gg ('U) N Sa ('l.-‘, t’;) = vﬂ JEF(a;) G?‘»('U!)a

which says that the after-state of an event a must imply
the disjunction of guards of the next events offered by
the workflow for this particular occurrence of the action
in the workflow expression.

Such rely, however, is conditional itself since an
event may occur in several places in a workflow and
thus not always it may benefit from a point constraint.
On the other hand, a point constraint must be satisfied
by an event even when not all of its occurence precede a
point constraint clause.

Interval and Point Constraints The semantics of
point and interval constraints is defined by the way they
affect the before and after state of an event. The
following condition must be satisfied for an event e
which is associated with an action followed by a point
constraint Pe:

Q(s,c) AI(e,8,v) AGe(c, 8,v) ASe(c, 8,v,0") = Pofc,s,0')

For an interval constraint, such obligation is gen-
erated for each action occurring in the attached work-
flow expression. An event associated with an action
immediately following a point or interval constraint Re
or an action associated with an interval constraint Re
assumes the constraint condition whenever it is enabled.
Since an event may be associated with more than one
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action with different point or interval constraints and
possibly no constraints at all the condition that an event
may rely on is the disjunction of all such constraint con-
ditions. An absence of any constraint is treated as a
constraint with a copy of the model invariant.

Q(s,¢) A (e, 8,0) A Geole,s,0) = Rl(e,s,v) V-V B¥(e, 5,0).

Combining the above, the following general form

is obtained WF_INV
Q(s,e) N (e, 8,v) A Gle,s,v)A

(Ri(c,8,v) V- -V RE(e,5,)) A Selc, 5,v,9") = Py(e, 5,0") »
where Pe is the property to be established to satisfy a
following point or interval constraint.

Rule WF_INV may be used to propagate a prop-
erty through a workflow expression without introducing
additional  variables and invariants.  Property
propagation may be needed to establish the cumulative
effect a group of events.

Convergence With the addition of the workflow
concept, the Event-B convergence condition ([1]) can be
reformulated. A workflow whose traces terminate with
V everywhere automatically imposes the convergence
condition. In fact, only the non-convergence of loop
may result in the non-convergence of the containing
action group3.

Thus, to demonstrate the convergence of an action
group it is enough to independently demonstrate the
convergence of each loop construct that brings the bene-
fit of being able to formulate a variant independently for
each new loop construct. The conv defines the

convergence computation rules:
conv(skip) true
conv(p; q)
conv(prg)
(

conv(loop(p))

conv(p) A conv(q)
conv(p) A conv(q)
con(p) A 3\ ar - (var(v) e NAYa g EN(p) - (
QL)AL ) MG ) AS,(... ) = var(v') < var(v)))

The convergence of a loop requires the conver-
gence of its body and the existence of a common well-
founded variant for the entry points of the loop body.

The termination condition - the fact that a
workflow always progress towards a successful
termination - is a corollary of the Workflow/Guard
Consistency and Convergence. Indeed, the former guar-
antees an unfailing workflow progress while the later
establishes that such progress has its end.

This matches the informal interpretation of new events
with non-trivial variants as loops in an Event-B model.

Discussion

The most strongly related works are those of com-
bining CSP [5] and B. In [6] B models are controlled by
CSP processes. A B model is seen as a passive collection
of event and the CSP part completely control the order of
event execution. Since a B model is passive, it may not

contain guarded command - only operations with precon-
ditions are allowed. It is not clear how this approach
could applied to Event-B which is based exclusively on
guarded events. Another closely related work is that of
[7] that discusses a way to transform a combination of a
subset of CSP and B into a plain B model.

The downside of the approach is that a resulatnt
B model would contain generation artefacts that
could make theorem proving tricky. [8] is a model
checker for a combination of B and CSP models. It
this approach a B model is treated as a CSP process
and a model checker verifies a parallel composition
of a B machine and a CSP expression.

Much work has been done in integrating the popu-
lar Z formalism with CSP. One of the more prominent
examples is the hybrid Circus modelling language [9]
which borrows from both Z and CSP and offers a re-
finement based development process. There are also a
number of works proposing verification mechanism for
a combination of a Z and a CSP models. CSP-Z [10]
translates a Z model into CSP to benefit from the avail-
ability of high-quality CSP model checkers; [11] dis-
cusses a model checking approach for a combination of
an Object Z and CSP.
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Penensent: n-p TexH. Hayk, npod. 5.M. Konopes, HarmonanbHslit aspokocmudeckuii yausepcurer um. H.E. XKy-
koBckoro «XAW», XapbkoB, YkpauHa.

OBBEJUHEHUE EVENT-B 1 IIOTOKA IIOCJIEZOBATEJIbHOCTH
BBIITOJIHAEMBIX IEMCTBUU

A. Hnwvacos

B merone monemupoBanust Event-B, crienytomee coObiTHe, KOTOPOE TOIDKHO BBIMOIHUTHLCS, BBIOUPASTCS CITydai-
HBIM 00pa3oM M3 BCEX JAOCTYITHBIX coObITHi. MH(popMaIms o opsaKe BBIIOIHEHHsT COOBITHH JJOJDKHA OBITH 3aJI0)KEHa B
TIpeMKaTaX COOBITUI C MPEILYCIOBHSIMH U MOCTYCIIOBHSMU. Pe3yibTaToM 3TOro sIBIIsIeTcsl 3aIlyTaHHOCTh TI0TOKA YIIpaB-
JIeHHs! ¥ (PYHKIMOHAIBEHOW CHEIM(HKALNY, K TOMY )K€ YBEIUYUBAETCS YHCIIO JOTOIHHUTENBHBIX TEPEMEHHBIX M PACTET
CIIO)KHOCTB, @ TAKKe MOHIKaeTcsl YnTabesbHOCTh Mozienu. B cratbe paccMarpuBaercst Event-B u o6cyxaercst Borpoc
pacmmpenust npotiecca pazpaborku Event-B ¢ Touku 3peHust 1MOTOKa IMOCIIENOBATENBHOCTH BBIMONHIEMBIX JIEHCTBH.
[pennokeHHbIH TOAX0M 00BEANHSET HIIEMEHTHI SI3bIKA OTOKA U MOJIETTMPOBAHHsI, OCHOBAHHOTO Ha COCTOSTHUSIX.

KmoueBsie ciioBa: hopmansHoe MozenpoBanue, Event-B, OTOK mocienoBaTebHOCTH BBITOIHIEMBIX IEHCTBHIA.

OB’€EJHAHHS EVENT-B TA IIOTOKY NOCJIILIOBHOCTI JAIH IO BUKOHYIOTHCS
A. Invsacos

B meroni monemoBanus Event-B, HacTynHa mofis, sika ITOBUHHA BUKOHYBATHCh, BHOMPAETHCS BUIAIKOBUM YHHOM
13 YCIX MOCTYIHMX TOMIii. [H(popMaltis po MOpsIOK BUKOHAHHS MOZiH MOBHHHA OyTH 3aK/IajcHa y MpeauKaTax MOmii 3
TIepelyMOBaMH Ta IIOCTY MOBaMH. Pe3ynbTaToM 1bOro € 3aruyTaHiCTh TOTOKY KepyBaHHsI 1 pyHKIIOHAIBHOI crienugika-
1ii, KpiM TOTO 30UTBIIYETHCS KUTBKICTh IOAATKOBUX 3MIHHHX 1 3pOCTa€ CKIIaIHICTb, @ TAKOXK 3MEHIITYETHCS YUTa0EbHICTh
MojieNi. Y CTaTTi pO3IJISIHYTI MUTaHHS PO3IIMPEHHS Tporiecy po3podku Event-B 3 mormsmy moToky mociigoBHOCTI Aiid
1110 BUKOHYIOThCSL. 3aIipOIIOHOBAHHH IMi/IX1]T 00’ €JHY€E €lIEMEHTH MOBH MOTOKY 1 MOJIEITIOBaHHS, 1110 0a3yeThCsl HA CTaHAX.
Kurouogi ciioBa: popmasbHe MonenroBanHs, Event-B, MOTiK MOCITiIOBHOCTI [Ti 1110 BUKOHYIOTBCS.
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