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ON COMBINING EVENT-B AND WORKFLOW 
 

In a state-based modelling method – Event-B, the next event to be executed is selected non-deterministically 
among all the currently enabled events. The information about event ordering has to be embedded into guards 
and before-after predicates of events. This results in entanglement of control flow and functional specification 
plus the addition of extra variables resulting increased complexity and reduced readability of a model. In this 
paper we consider Event-B and discuss how to complement the Event-B development process with a workflow 
view. Proposed approach combines the elements of a workflow language and state-based modelling. 
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Introduction 

 
Application of formal modelling is important to 

engineer safe and dependable systems. Using a formal 
method, however, is not always easy. One of the reasons 
is the fact that a modelling method dictates a specific 
viewpoint on a system, as required by the conceptual 
framework of a method. At times, such a viewpoint 
does not fit well a modeller’s view and intuition about a 
system, thus hindering or preventing the system 
modelling. 

We consider a state-based modelling method – 
Event-B [1, 2] and discuss how to complement the 
Event-B development process with a workflow view. 
The approach assists in constructing models and 
carrying out refinement by employing the visional 
intuition of a workflow language. It although facilitates 
the reasoning about models for which a high-level 
workflow description is natural. 

The approach combines the elements of a 
workflow language and state-based modelling. The 
workflow part describes the control flow of a system 
while the state part details state evolution. System state 
is described by a collection of variables constrained by 
an invariant. State is transformed with the help of 
events. In addition to the ordering imposed by the 
workflow part of a model, an events also carriers a 
guard expressing enabledness constrains as a predicate 
on system variables. A workflow in this proposal is a 
simple process algebra constraining the order of events 
execution in an Event-B model. 

 
2. Event-B Overview 

 
An Event-B model characterises the state of a sys-

tem at any given moment and the way the system would 
evolve further from that state. Mathematically, an 

Event-B model is a state-mapping predicate defined by 
a set events that are relations on the new and old system 
states. An event is characterised by a guard, describing 
the set of states from which an event may be executed, 
and a post-condition, defining the states upon the event 
execution. In addition, system states are constrained 
with an invariant expressing the properties to be 
maintained throughout the system lifetime. A system 
state is given by a collection of named and typed 
variables. 

An Event-B model, called a machine, has the fol-
lowing general form: 

 
SYSTEM name 
VARIABLES V 
INVARIANT I 
INITIALISATION Ri 
EVENTS 
e1 = … 
… 
ek = … 
 
where name is a model name, v is a vector of mod-

el variables, I(v) is a model invariant defined on model 
variables v, Ri(v') is an initialisation event computing an 
initial model state (with referring to a previous, non-
existent, state v).  

Model events e1 ..., en have the following structure: 
ei = when G(v) then S(v, v') end. Here ei is an event 
name; G(v) is a guard predicate defining the states when 
the event is enabled; S(v,v') is a before-after predicate 
relating a previous state v with a new state v'.  

This is a simplified version of Event-B syntax. The 
complete syntax has can be found in [1]. 

Theorem proving is the primary formal verification 
technique for Event-B models. Proof obligations are 
generated automatically and passed on to a collection of 
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mechanised theorem provers. In most cases, automated 
theorem proving would discharge the majority of proof 
obligations but the remaining are to be proved with an 
assistance of a modeller in an interactive proving 
environment [3]. A model checking tool is available as 
well [4].  

 
3. Workflow 

 
In Event-B, the next event to be executed is se-

lected non-deterministically among all the currently 
enabled events. The information about event ordering 
has to be embedded into guards and before-after 
predicates of events. This results in entanglement of 
control flow and functional specification plus the 
addition of extra variables resulting increased 
complexity and reduced readability of a model. One 
way to decouple control flow from the rest of a 
specification is by defining the control flow information 
in a dedicated expression imposing ordering on actions. 

 
3.1. A Workflow Language 

 
An entity used to describe control flow 

information is called a workflow. A workflow is 
contained in a machine and is formulated separately 
from the descriptions of events. 

One way to reason about a workflow is to treat it 
as a partial order on events. Hence, a workflow can be 
characterised by a function mapping some current event 
into the set next of events: 

F : A P(A) 
where A is the set of events of a machine. Such a 

function is conveniently constructed using the following 
simple process algebraic notation: 

skipi implicit stuttering step with index i 
ei action a with index i 
p; q sequential composition 
p П q non-deterministic choice 
loop(p) loop 
skip corresponds to an implicit event which does 

not modify a model state. To distinguish between 
different instances, each occurrence of skip in a 
workflow expression is attached a unique index. Simi-
larly, a workflow action is composed from a name of an 
event and index, distinguishing the occurrences of the 
same event in a workflow expression.  

The traces of a workflow, considered in isolation, 
are given by function tr, defined below: 

 tr(skip) ,    ; 

 i i itr(a ) , a , a ,     ; 

  
 

tr(pq) s t | s tr p t tr(q)

s e | s tr(p) e ;

      

    




 

tr(p q) tr(p) tr(q)   ; 
tr(loop(p)) tr((p; loop(p)) skip)  . 

Here <a,..., b> is a trace characterised by an ordered 
set and V marks a successful termination of a work-
flow. A trace terminating with anything but V describes 
a trace leading to deadlock.  The ^ operator extends a 
trace with another trace: (s1 ..., sn) ^ {t1,..., tm) = 
{s1,...,sn, t1,...,tm). 
 

 
 
 
 
 
 
Fig. 1: A graphical representation of workflow  
expression aci;ac2; (ас3П(ас4; ас5)); loop(ac6) 

 
The F function, defined above, is computed for 

some workflow expression wf by analys the expression 
traces and building the list of all actions which may fol-
low a given action ai: 

  
i

i

F(a )

n | hd a n tl tr(wf) n .



        

The function is undefined for the termination mark \/. 
The coupling of the workflow with module state is 

achieved by changing the tr (ai) rule to make it deliver 
an empty trace for the states where the guard of action a 
is not enabled.  

The reference to a current state δis recorded along 
with a trace and is passed as an argument to tr: 

 

 
 

Here Ga stands for the guard of an event a associ-
ated with an indexed action ai. An event name a plays a 
dual role. It is recorded along with its index in a trace to 
mark an occurrence of the event in the execution his-
tory. It also acts as a notational shortcut for the state 
transformer implemented by the event and used to com-
pute a new state from some current state (the second and 
third rules). 
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Reasoning about the properties of a workflow re-
quires the notions of entry and exit workflow points. An 
entry point of a workflow is an action initially enabled 
when a workflow expression starts execution. 

Similarly, an exit point is one of the possible ter-
mination actions. The sets of entry and exit points of a 
workflow are computed by functions EN (entry points) 
and EX (exit points), defined as follows: 

 
An Event-B model without a workflow is equiva-

lent to one having the following workflow attached: 
, 

where E is the set of events of a machine. The workflow 
expression states that events are executed as long as 
there is at least one enabled event left. 

 
3.2. Interval and Point Constraints 

 
A global invariant, characterising the global 

module properties, must be maintained by every state-
transforming rule of a module. It may e also needed to 
reason about properties of model fragments. Such a 
property would clarify and document model parts or 
even drive the development process by borrowing from 
system requirements. Such additional knowledge about 
model fragments provides an assistance in model 
correctness proofs. 

One way to reason about local properties is to 
require a model to satisfy a given property at a certain 
point of its history. Such property is called a point 
constraint. Unlike a global invariant, characterising a 
model state irrespective to the execution history, a point 
constraint characterises a slice of states associated with 
the specific histories of model execution. Evidently, for 
some fixed point in a system history, it is possible to 
formulate conditions that are stronger than those 
spanning the whole system history. 

States associated with a point constraint are 
identified by extending the workflow expression 
notation. A point constraint is marked in a workflow by 
a predicate placed within square brackets: [P(v)]. 

An action preceding a point constraint must estab-
lish the condition expressed in the constraint. This is 
results in a new obligation similar to that of invariant 
preservation [1]. Symmetrically, an event following a 
point constraint may rely on the condition expressed in 
the invariant2. The notions of predecessor and successor 
are defined on the traces of a workflow. An action pre-
cedes a point invariant if a silent action corresponding 
to the point invariant follows the action in at least one of 
the workflow traces. An action follows a point invariant 
if the point invariant precedes the action in every 

workflow trace. 
A logical extension of the point constraint concept 

is interval constraint. An interval constraint, as sug-
gested by its name, must be maintained during an inter-
val of a workflow trace. An interval constraint is 
declared by attaching a predicate, expressing a desired 
property, to a workflow sub-expression: [P(v)](wf). On 
the preceding and following actions, an interval 
constraint has the same effect as a point constraint. 
Additionally, an interval constraint must be satisfied on 
all the traces of the associated workflow expression. 

 
3.3. Workflow Verification 

 
Workflow/Guard Consistency It is required to 

demonstrate that the combination of a workflow and 
events is not contradictory and for every action in a 
workflow there exists an enabled event among the set of 
the next events computed by the workflow. 

.
 

The above is equivalent to the following: 

K&dom{F)(I(v) Ga(V) A Se(t,,t/) =* Vn^FCai) ^')). 
The statement above, formulated for some indexed 

action a*, can be summarised as follows WF.GRD  

, 
which says that the after-state of an event a must imply 
the disjunction of guards of the next events offered by 
the workflow for this particular occurrence of the action 
in the workflow expression. 

Such rely, however, is conditional itself since an 
event may occur in several places in a workflow and 
thus not always it may benefit from a point constraint. 
On the other hand, a point constraint must be satisfied 
by an event even when not all of its occurence precede a 
point constraint clause. 

Interval and Point Constraints The semantics of 
point and interval constraints is defined by the way they 
affect the before and after state of an event. The 
following condition must be satisfied for an event e 
which is associated with an action followed by a point 
constraint Pe: 

.
 

For an interval constraint, such obligation is gen-
erated for each action occurring in the attached work-
flow expression. An event associated with an action 
immediately following a point or interval constraint Re 
or an action associated with an interval constraint Re 
assumes the constraint condition whenever it is enabled. 
Since an event may be associated with more than one 
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action with different point or interval constraints and 
possibly no constraints at all the condition that an event 
may rely on is the disjunction of all such constraint con-
ditions. An absence of any constraint is treated as a 
constraint with a copy of the model invariant. 

.
 

Combining the above, the following general form 
is obtained WF_INV 

, 
where Pe is the property to be established to satisfy a 
following point or interval constraint. 

Rule WF_INV may be used to propagate a prop-
erty through a workflow expression without introducing 
additional variables and invariants. Property 
propagation may be needed to establish the cumulative 
effect a group of events. 

Convergence With the addition of the workflow 
concept, the Event-B convergence condition ([1]) can be 
reformulated. A workflow whose traces terminate with 
V everywhere automatically imposes the convergence 
condition. In fact, only the non-convergence of loop 
may result in the non-convergence of the containing 
action group3.  

Thus, to demonstrate the convergence of an action 
group it is enough to independently demonstrate the 
convergence of each loop construct that brings the bene-
fit of being able to formulate a variant independently for 
each new loop construct. The conv defines the 
convergence computation rules: 

 
The convergence of a loop requires the conver-

gence of its body and the existence of a common well-
founded variant for the entry points of the loop body. 

The termination condition - the fact that a 
workflow always progress towards a successful 
termination - is a corollary of the Workflow/Guard 
Consistency and Convergence. Indeed, the former guar-
antees an unfailing workflow progress while the later 
establishes that such progress has its end. 

This matches the informal interpretation of new events 
with non-trivial variants as loops in an Event-B model. 

 

Discussion 
 

The most strongly related works are those of com-
bining CSP [5] and B. In [6] B models are controlled by 
CSP processes. A B model is seen as a passive collection 
of event and the CSP part completely control the order of 
event execution. Since a B model is passive, it may not 

contain guarded command - only operations with precon-
ditions are allowed. It is not clear how this approach 
could applied to Event-B which is based exclusively on 
guarded events. Another closely related work is that of 
[7] that discusses a way to transform a combination of a 
subset of CSP and B into a plain B model.  

The downside of the approach is that a resulatnt 
B model would contain generation artefacts that 
could make theorem proving tricky. [8] is a model 
checker for a combination of B and CSP models. It 
this approach a B model is treated as a CSP process 
and a model checker verifies a parallel composition 
of a B machine and a CSP expression.  

Much work has been done in integrating the popu-
lar Z formalism with CSP. One of the more prominent 
examples is the hybrid Circus modelling language [9] 
which borrows from both Z and CSP and offers a re-
finement based development process. There are also a 
number of works proposing verification mechanism for 
a combination of a Z and a CSP models. CSP-Z [10] 
translates a Z model into CSP to benefit from the avail-
ability of high-quality CSP model checkers; [11] dis-
cusses a model checking approach for a combination of 
an Object Z and CSP. 
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ОБЪЕДИНЕНИЕ EVENT-B И ПОТОКА ПОСЛЕДОВАТЕЛЬНОСТИ  

ВЫПОЛНЯЕМЫХ ДЕЙСТВИЙ 
А. Ильясов 

В методе моделирования Event-B, следующее событие, которое должно выполниться, выбирается случай-
ным образом из всех доступных событий. Информация о порядке выполнения событий должна быть заложена в 
предикатах событий с предусловиями и постусловиями. Результатом этого является запутанность потока управ-
ления и функциональной спецификации, к тому же увеличивается число дополнительных переменных и растет 
сложность, а также понижается читабельность модели. В статье рассматривается Event-B и обсуждается вопрос 
расширения процесса разработки Event-B с точки зрения потока последовательности выполняемых действий. 
Предложенный подход объединяет элементы языка потока и моделирования, основанного на состояниях. 

Ключевые слова: формальное моделирование, Event-B, поток последовательности выполняемых действий. 
 

ОБ’ЄДНАННЯ EVENT-B ТА ПОТОКУ ПОСЛІДОВНОСТІ ДІЙ ЩО ВИКОНУЮТЬСЯ 
А. Ільясов 

В методі моделювання Event-B, наступна подія, яка повинна виконуватись, вибирається випадковим чином 
із усіх доступних подій. Інформація про порядок виконання подій повинна бути закладена у предикатах подій з 
передумовами та посту мовами. Результатом цього є заплутаність потоку керування і функціональної специфіка-
ції, крім того збільшується кількість додаткових змінних і зростає складність, а також зменшується читабельність 
моделі. У статті розглянуті питання розширення процесу розробки Event-B з погляду потоку послідовності дій 
що виконуються. Запропонований підхід об’єднує елементи мови потоку і моделювання, що базується на станах. 

Ключові слова: формальне моделювання, Event-B, потік послідовності дій що виконуються. 
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