Cucmemu KOHmMPOII0 Ma OiAZHOCMY6AHHA

109

UDC 681.518

D.E. IVANOV

Institute of Applied Mathematics and Mechanics NAS of Ukraine, Donetsk

PARALLEL FAULT SIMULATION ON MULTI-CORE PROCESSORS

In this paper we propose a fault simulation algorithm that utilizes all cores in multi-core processors. We adapt
for multi-core workstation our early proposed distributed fault simulation algorithm. Proposed algorithm uses
multi thread execution. The algorithm is based on the well-known «master-slavey approach in which one
thread is nominated as a master and controls the calculation on all the other cores of processor. To maximize
utilization of the cores a scheme with static fault list partitioning is used. The speed-up coefficient of the
simulation time obtained during machine experiments is up to 3.44 times on the quad core system.

Key words: digital circuit, sequential circuit, fault simulation, parallel simulation, multi-core processor,

execution thread.

Introduction

Fault simulation is one of the most computation-
intensive tasks in technical diagnostics. Main goal of
fault simulation is to determine the quality of the input
sequence. With the increase of the circuit’s size several
approaches were developed to speed up the simulation
time.

1. Event-driven simulation [1] that enables to
simulate only small part of the circuit in which activity
is performed contrary all circuit.

2. Parallel simulation where in each bit of the
processor word is simulated own copy of modified
circuit [2-4]; this approach was of prime importance for
fault simulation that need a huge amount of processor
time. All of the abovementioned algorithms used the
strategy of parallel fault propagation. Also many
optimizing approaches are known that allow further
decrease of simulation time (for example dynamic fault
compressing).

But the fault simulation problem remains one of
the most important. One of the possible ways to speed-
up this process is generalization of the existing
algorithms to work on multi processor systems
(clusters) and multi-core workstations. So we have third
approach.

3. Distributed simulation.
approaches are possible:

— circuit fragmentation: each part of circuit is
modeled on its own processor in cluster [5]; here it is
necessary to construct synchronizing protocols [6];

— fault list fragmentation [7-8]; it is used for fault
simulation. An algorithm of this type was reported
earlier by the author [9]. Experiments were done in
regular 100Mbit local intranet. The speed-up coefficient
was reported to be up to 7.92 for big circuits on 8 PC in

Here two main

local network.

In this paper an attempt is made to modify our
previously developed algorithm to use on multi-core
workstation.

Our investigation has three stages. At first we run
the existing algorithm on calculation cluster. At the
second stage we run the same algorithm on quad-core
workstation. Further we eliminate redundant phase of
algorithm that carries out circuit data exchange among
the processors in cluster (circuit description, fault list,
input sequence) and again run it on quad-core
workstation. Then we compare the results obtained on
all the stages.

This paper has the following structure. In the first
section we underline actuality of problem. In the second
section an algorithm of distributed fault simulation for
the calculation cluster is described briefly as a
background. An adaptation of this algorithm for multi-
core processor systems is described in section 3. In
section 4 we describe evaluated experiments in the
different environments and compare obtained results. In
the section 5 we make the conclusions and outline
further development.

1. Distributed fault simulation

The goal of our fault simulation algorithm is to
measure the quality of a given input sequence,
particularly fault coverage for single stuck-at faults. The
main idea of algorithm is to divide list of faults to be
simulated into several small lists. Complete fault list is
partitioned proportionally to the number of slave
processors. Then each of these small lists of faults is
simulated on own computer. Figure 1 shows the
interaction between master and slave computers. Figure
2 shows pseudo-code of master algorithm. On client’s

© D.E. Ivanov

PAZJIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMU, 2009, Ne 6 (40)

110

Cucmemu KOHmMPOII0 Ma OiAZHOCMY6AHHA

processors a home-built PROOFS-like fault simulation
algorithm [4] is implemented.

files
circuit description, report file VO
test sequence level
master
circuit description, <:| TCP/IP sockets
short fault list level
undetected faults
slave Nel slave NelN

Fig. 1. Data flow diagram for distributed fault
simulation

distributed sinmulation(circuit,test)

{

nunber _of sl aves=
search_of sl aves();

i f(nunmber_of _slaves !'=0)
{
i nput _circuit_description();
i nput _test();
make full _fault_list();
partitioning_fault_list(nunber_
of _sl aves);
for(i=0;i<nunber_of sl aves;i++)
{
send to client i _data();
}
for(i=0;i<nunber_of sl aves;i++)
{
receive_list_of undetected
_faults();
}
make_report ();
}

Fig. 2. Master process algorithm
for distributed simulation

2. Modification for multi-core processors

The algorithm described in previous section is
oriented on the cluster calculation environment. In this
system each processor has its own local memory and
complete data exchange is performed using
interconnection network and communication protocol
(in current case TCP/IP). Figure 2 underlines this aspect
by picking out the procedures of data exchange:
“send to_client i_data()”.

While adapting this algorithm for multi-core
system it is necessary to take into account that all cores

have common system memory. So the abovementioned
procedures can be eliminated and replaced by passing
only pointers to local data (circuit description, input
sequence, fault list). The procedure of looking for
clients can be eliminated as well.

Each client procedure is organized as a regular
calculation thread. Varying the number of client threads
we can estimate speed-up coefficient. It is expected that
the biggest coefficient of speed-up of the simulation
time should be achieved when we choose the number of
simulation threads equal to the number of processor
cores.

3. Experimental results

We carried out three types of experiments.

Case 1. At first we run our algorithm on local
network with homogeneous computers. In first
experiment we use local network with 100Mbit/s speed
and Intel Celeron 2,0Ghz processors and 256Mbyte
system memory.

Case 2. Next we start the same algorithm on quad-
core PC. We use ordinary PC workstation with Intel
Core 2 Quad E6600 2,4Ghz CPU and 2Gbyte of system
memory. Notice that this quad-core CPU in fact
contains two dual-core processors that layout on the one
chip.

Case 3. Finally we test our algorithm on the same
quad-core PC with modifications described in previous
section (circuit description transfer was eliminated).

All approbation was performed on the ISCAS-89
circuits [10] with more than thousands logical gates. In
all cases we use previously random generated test
sequences with 1000 input vectors.

To compare speed-up coefficient of our algorithm
in mentioned three experimental environments we
choose medium-size circuit s9234ben. Figure 3 shows
speed-up of the simulation process in all our
experimental cases. We don’t report the simulation time
because workstations in case 1 and cases 2-3 are not
homogeneous. It is necessary note that we have
essential fall of performance in case 2, which is caused
by redundant data exchange on TCP/IP protocol.

This produced unnecessary CPU utilization.
Situation is improved in case 3 where this data exchange
eliminated. But the performance grows approximately
only up to case 1 level. Obviously the simulation threads
create the throng in the common cores cache. Figure 4
shows the speed-up of the simulation time depending on
the number of thread of simulation in cases 2 and 3. As is
expected maximum acceleration was achieved in cases
with four simulation threads. It is obvious that the
utilization of CPU’s cores in this case is maximal. This fact
also confirms the system monitor information. So further
in case 3 we use for experiments four simulation threads.

Cucmemu KOHmMPOII0 Ma OiAZHOCMY6AHHA

111

35
3 a
8
g 25
s 2
= 154
8
a 11
n
05
0
1 2 3 4
Number of clients / simulation threads
—&—|ocal network
—l—quad-core processor with data exchange
—&—quad-core processor without data exchange
Fig. 3. Speed-up of the simulation time
g 35
50 I/\
2
& 25
g 2
215
5 /
S
S 05 A
a
& 0

1 2 3

Number of simulation threads

4

5 6 7 8

—&— with data exchange —l— without data exchange

Fig. 4. Speed-up of the simulation time depending on the simulation threads number

Also in Table 1 we bring the speed-up coefficient for
different benchmark circuits in environment 3. The speed-
up coefficient is varying between 2.81 and 3.44 times.

Table 1
Experimental data for ISCAS-89 circuits
time of time of
. simulation, | simulation, | speed-up,

circuit .

sec., 1 sec., 4 times

thread threads
S9234 104 33 3.15
S13207 303 88 3.44
S15850 390 135 2.89
S35932 886 315 2.81
S38417 2473 781 3.17

Conclusions

In this paper the problem of utilizing of all cores
performance in multi-core PC is discussed. We propose

an effective algorithm for fault simulation of digital
circuits on multi-core workstation.

This algorithm allows to speed-up the fault
simulation time up to 3.44 times for large benchmark
circuits. Also in further investigation we expect that the
chosen approach allow effective scalability of algorithm
with further increasing of the number of processor’s
cores.

References

1. Breuer M.A. Diagnosis and reliable design of
digital systems. M.A. Breuer, A.D. Friedman / Potomac
Computer Sc. Press. - 1976. — 308 p.

2. Niermann T.M. PROOFS: A Fast, Memory-
Efficient Sequential Circuits Fault Simulator. /
T'M. Niermann, W.-T. Cheng, J.H. Patel // IEEE Trans.
CAD. — 1992.— P. 198-207.

3. Kung C.P. HyHope: A Fast Fault Simulator
with Efficient Simulation of Hypertrophic Faults. / C.P.
Kung, C.S. Lin // Proc. of International Test
Conference. - 1994. - P. 714-718.

112

Cucmemu KOHmMPOII0 Ma OiAZHOCMY6AHHA

4. Ivanov D.E., Parallel Fault Simulation for
sequential circuits. / D.E. Ivanov, Yu.A, Skobtsov //
Artificial Intelligence. — 1999. - Ne . — C. 44-50.

5. Ghost S. NODIFS: a novel, distributed circuit
partitioning based algorithm for fault simulation of
combinational an sequential digital design on loosely
coupled parallel processors / S. Ghost // tech. rep.,
LEMS, Division of Engineering, Brown University,
Providence. - RI. - 1991.

6. Ladyzhensky Yu.V. A Program system for
synchronization protocol investigation under distributed
logical simulation. / Yu.V. Ladyzhensky, Yu.V. Popov //
Proc. of Donetsk State Technical. University, Series
“Computers and Automation”. - 2004. - Vol Ne74. -
C.201-209.

7. Marcas T. On distributed fault simulation. / T.
Marcas, M. Royals, N. Kanopoulos // IEEE Compute. -
Vol. 7. -1990. - P. 40-52.

8. Duba P.A. Fault simulation in a distributed
environment / P.A. Duba, R.K. Roy, J.A. Abraham, W.A.
Rogers // Proc. of the 25th ACM/IEEE Design
Automation Conference. — 1988. - P. 686-691.

9. Skobtsov Y.A. Distributed Fault Simulation and
Genetic Test Generation of Digital Circuits / Yu. A. Skob-
tsov, El-Khatib, D.E. Ivanov // Proceedings of IEEE East-
West Design&Test Workshop(EWDT 06). - 2006.- Sochi.

10. Brgles F. Combinational profiles of sequential
benchmark circuits / F. Brgles, D. Bryan, K. Kozmin-
ski // International symposium of circuits and systems,
ISCAS-89. — 1989. — P. 1929-1934.

IHocmynuna 6 pedaxyuio 19.01.2009

PenensenT: a-p TexH. Hayk, rpod., mpod. kadeapsl aBTOMaTH3NpPOBaHHBIX cucTeM yrpasieHus H0.A. CkoOnos,
JloHenkuil HalMOHANIBHBIN TEXHUYECKUH yHUBEpCUTET, JloHeLK, YkpauHa.

IMAPAJIEJIBHE MOJE/JITIOBAHHSA IU®POBUX CXEM 3 INIOIKOJXKXEHHAMUA
HA BATATOAJEPHUX CUCTEMAX

J.E. Ieanos

B crarTi nporoHyeThCsl aNrOpUTM MOJIEITIOBAHHS U(PPOBUX CXEM 3 MOIIKOKEHHIMH, SIKHHA PO3PaxoBaHO Ha
BUKOPHCTaHHS B OOYMCIIOBAJILHUX CHCTEMax 3 OaraTosiiepHHMMH Hpolecopamu. J[aHWH anropuTM € aganTaiiero
Juisl 0araTosiIEepHUX CHUCTEM PO3NOAIICHOTO ajrOPUTMY MOJIEIIOBAHHS IIM(POBUX CXEM 3 MOIIKOKCHHIMH, SKUH
OyJ10 3ampPONIOHOBAHO aBTOpaMH paHime. J[aHnii anropuT™ BUKOPHCTOBY€E 0AaraTolnoTOKOBE BUKOHAHHS. AJTOPUTM
0a3yeThcs Ha BXKE BIJOMOMY IMIAXOHi “Xa3sfiH-TPAIiBHUK, TIPH SIKOMY OJUH BHKOHABYMHA MOTIK MPHU3HAYAETHCS
TOJIOBHUM Ta CIIIKY€ 3a PO3IOAUICHHSIM OOYHCIEHb MO sapax mporecopy. Jns migBumieHHS KoedilieHTiB
3aBaHTAXKEHHS sAEp MPOLECOPY MH BHUKOPHCTOBYEMO CXEMy 3 pPO30OMBaHHSAM CIHCKY IIOLIKOJKEHb.
OO6unCTIOBaNbHI EKCIIEPUMEHTH, IO OYJIH MTPOBEACHI, TOKA3yIOTh 301IbIICHHS KOS(IIiEHTY MTPUCKOPEHHS POLIECY
MOJIeTIOBaHHSA 10 3,44 pa3iB Ha CUCTEMAaxX 3 YOTHPHIACPHUM MPOIIECOPOM.

Karouosi cioBa: mudposa cxema, MociiJJOBHICTHA CXeMa, MOJAEIIOBaHHS 3 MOIIKO/KEHHSIMH, HapajeibHe
MOJICITIFOBaHHSI, OaraTosAepHUI NPoLEecop, BAKOHABYHH IOTIK.

IMAPAJIJVIEJIBHOE MOJEJINPOBAHUE TU®POBBIX CXEM C HEUCITPABHOCTAMU
HA MHOT OAJEPHBIX CUCTEMAX

J.E. Heanoe

B cratbe mpemmaraercs airopuTM MOJCIMPOBAHUSA LHUMPOBBIX CXEM C HEHCIPABHOCTSAMHM, KOTOPBIH
paccunmTaH Ha HMCIIOJB30BaHHE Ha Pa0OYMX CTAaHUMAX C MHOTOSJIEpPHBIMH Mpoleccopamu. JlaHHBINA anroputm
SIBJISIETCSI aJanTannei JUisi MHOTOSIIEPHBIX CUCTEM paHee MPe/II0KEHHOr0 aBTOPaMH PaclpeieIEHHOTO allrOpUTMa
MOJIETIMPOBaHUsT U(POBBIX CXeM C HEUCNpPaBHOCTAMHU. [Ipe/yiaraeMblii alropuTM HCIIOJIB3YEeT MHOTOIIOTOYHOE
UCIIOJTHEHHE. AJITODUTM OCHOBAaH Ha paHee OINMCAHHOM IIOJIXOJIE «XO3SUH-PAO0uMii», NMPH KOTOPOM OJUH
WCTIOJTHUTENIBHBIA TIOTOK Ha3HA4YaeTcsl B KauyecTBE OCHOBHOTO M KOHTPOJIMPYET paclpeieieHHe BBIYHUCICHHH I10
saapaMm mporeccopa. Jlias MOBBILICHNS 3arpy3KHM BBIYMCIMTENBHBIX SAEP IMPOLECCOpPa MBI HCIIONB3YEM CXEMY
MOJICJIUPOBaHUs ¢ pa3OMeHHeM CIMCKa HeucnpaBHocTed. [IpoBeieHHbIe MalIMHHBIC SKCIIEPUMEHTHI TI0OKA3bIBAIOT
KO3 QHUINEHT YCKOPEHHS BPEMEHH IMpollecca MOACTUPOBaHUSA 1O 3,44 pa3 A CHCTEM C YETHIPEXSIEPHBIM
IPOLIECCOPOM.

KnroueBbie cioBa: nudpoBas cxema, IOCIEI0BATEIBHOCTHAS CXeMa, MOJCIHPOBAHIE C HEUCIIPABHOCTIMH,
napaienbHoe MOASIUPOBaHUE, MHOTOSIEPHBII IPOLIECCOp, BEIYUCIUTENBHBII OTOK.

HNBanoB Imutpuii EBrenbeBuY — KaHj. TeXH. HAyK, JOUEHT, CTAPIINA HAYYHBIN COTPYIHUK OTAeNa TEOPUU
ynpapisiromux cucteM HHctutyTa npukiaaHod marematukun v Mexannkn HAH VYkpawnsl, donenk, e-mail:
ivanov(@iamm.ac.donetsk.ua.

