20 TI'apanmo3oamuicmo cepsic-opicHmosanux cucmem

UDC 004.75

M.Yu. YURICH, D.S. BARSUKOV, R.K. KUDERMETOV

Zaporizhzhya National Technical University, Ukraine

SORTING ALGORITHMS FOR DISTRIBUTION OF TASKS
IN THE COMPUTER SYSTEM

The problem of the distribution of tasks in the computer system when the number of computers exceeds
the number of tasks is distributed. The various sorting algorithms are applied for this purpose. Auto select
of sorting algorithm which depending on the properties of data that represented by input arrays are proposed,
in order to speed up work before the distribution of tasks based on the use of sorting algorithms. We show that
the chosen solution to the problem is effective, because selection time of algorithm insignificant effect
on the total time sorting. It is proved that the algorithm reduces the sorting time of input data, and so the time

of the distribution of tasks in the computer system.

Keywords: distribution of tasks, computer system, sorting, time sorting, sorting algorithm, auto select.

Introduction

The development of research in GRID-technology
in recent times is growing stronger [1 — 4]. This is close-
ly related, primarily, the needs of a variety of scientific
and technological tasks, for example:

— biologists want to simulate thousands of mole-
cules — candidates for the drugs to see how these mole-
cules will interact with certain proteins;

—high energy physics will soon annually
about 10 Pb data. Thousands of physicists in many uni-
versities in the world will want to analyze these data;

—scientists who is study the planet, monitoring
the level of atmospheric ozone, using data from satel-
lites. To solve only one of the tasks they transfer
from space to Earth a day, about 100 Gb;

— solution of mysteries of the human genome
would be impossible without a computer analysis: DNA
sequence consists of three billion chemical elements [5].

Therefore, create a need to have a powerful com-
puting system, which would help to solve these
and many other issues that necessary to develop a vari-
ety of industries. Such a system is the system of GRID,
in particular UkrGRID. To solve any problem of applied
industry, this task should be presented in the form
of software code available to solve with computer tech-
nology. That is the primary task of applications
is becoming a collection of tasks represented by soft-
ware code, each of which is done of some time.

To work effectively the system must be considered
that, on what the computer will be realize each
of the tasks that will come to the system, it is necessary
to solve the problem of efficient distributing of tasks
among the computer of system.

1. Statement or problem
and its solution

To further consideration the problem
of distributing of tasks in the computer system
is concerned, about what types of the system in-
volved [6]. Consider the type of the system,
if computers and tasks are different by capability. Then
it would be logical for the most powerful computer
to distribute the longest task. But as the number of com-
puters and the number of tasks are differently, the task
should be considered in detail from the viewpoint
of the fact that there are two different cases:

1. The total number of tasks is less or equal than
to the number of computers in the system;

2. The total number of tasks is much higher than
the number of computers in the system. Then, all tasks
are divided into streams, each of which subtasks (later —
the task) is the same length of implementation.

Consider more particularly the first case.

Suppose 7 tasks of solutions time C; and m com-

puters that must solve these tasks. Each of m computers
has its powers C i

Since then n<m, it would be logical to choose
a computer to solve the task is directly proportional.
So, it is necessary that the more long-term task was giv-
en more powerful machine. Thus, the task is reduced
to the sorting of array of task’s time and of array
of computer’s power in the computer system. Then,
working with the already sorted arrays, sending the first
task of the array of task’s time in the first computer,
which ispresent in array of computer’s power
in the computer system.

© M.Yu. Yurich, D.S. Barsukov, R.K. Kudermetov

PAIOEJIEKTPOHHI I KOMIT'FTOTEPHI CUCTEMMH, 2009, Ne 5 (39)

TI'apanmo3oamuicmo cepsic-opicHmosanux cucmem 21

This approach to solve the problem of optimal dis-
tribution of tasks makes important immediately algo-
rithm of data sorting. It was optimization of sorting al-
lows much to reduce the total time of all the tasks that
have been in the system.

Thus, for the solution of the tasks mentioned
above, it is necessary to find the optimal of the algo-
rithm of data sorting.

Applying such an optimal sorting algorithm,
the problem can be solved.

2. Auto select of sorting algorithm

Auto select of sorting algorithm was taken among
algorithms by choice, by bubble, by Shaker, simple in-
serts, by Shell, pyramidal, quick [7 — 8].

Note that the functions implemented in Java in two
ways: for arrays of type int and arrays of classes that
implement the interface Comparable.

For describe of array were elected to two criteria:
the size of the array and the «primary selection». These
two parameters are determined by other more easily
and at the same time have the most significant impact
on the time of the sorting algorithms. Primary selection,
in this case is defined as the ratio of the number
of large, than those who were before them, the total
number of elements. To save time, was realize the func-
tion, which sort out, not all elements, but only those that
meet with sort out by a given step.

The graphs on Fig. 1 — 7 are showed effect of ar-
ray’s size to the speed of a variety of sorting. Also
on thus diagrams, it was noted time of the definition
of the parameters of array (curves testl and test2).

Fig. 1 shows that the bubble-algorithm and algo-
rithm by Shaker-sorting, which is a modification
of the bubble (bubbleSort and hashingSort) are much
slower than others. So they may only be used if needed
natural behavior. Good results show sorting by simple
insertions (insertSort) and sorting by Shell (shellSort).
Fig. 2 can also see the advantage of sorting by Shell.

On Fig. 3 you can see that in arrays with size less
than half of million the good results show the quick-sort
and Shell-Sort.

On Fig. 4 you can see a sharp increase in run-time
quick-sort. This is related with overheads on recursion,
therefore the option was implemented quick-sorting,
which realize software recursion.

It also built the same graph for pre-ordered array
(Fig. 5).

On Fig. 5-7 you can see leadership of sorting
by simple inserts.

After examining the sorting time of different
ranges in several ways sorting, made the following con-
clusions.

Random array

600

500

!
400 Sl [= - bubbleSort
heapSort
= =hashingSort
insertSort
quickSort
——selectionSort
= —-shellSort
----— test1
test2

Time {ms for 100000 iterations)

Size of array

Fig. 1. Sorting time of small
(up to 100 elements) random array

Random array

Time {ms for 10000 iterations)

Size of array

Fig.2. Sorting time of small
(up to 1000 elements) random array

Random array

2000000

 —— t | [~e—bubbiegar

1800000).' —a—heapSort

1400000 f’ —&— hashingSon
Z 1200000 —w—insenSort
3 1000000 [+ - quickSart
E 800000 f —e—selectionSort

G00000 ——shellSort

400000 /{ /’ ——test1

200000 o =it

1] —-—,—.—,—-—,—-—,—-—;—.—;—%—,—-—

SIS

Size of array

Fig. 3. Sorting time of average (up to 512,000 elements)
random array

Random array

25000

20000 r
/ —+— heapsort
‘E 15000 —=— quickSort
E / —h— zhellZort
£ 10000
= ——testl
——test?
5000
] J—,—-—,—-—,—-—,—-—,—-—,—-—,—-—.—-q-lééé

&8 & FFE T
Size of array

Fig.4. Sorting time of large (up to 4000000 elements)
random array

22

TI'apanmo3oamuicmo cepsic-opicHmosanux cucmem

Ordered array
2600
7 2000 bublleSort
)
£ ——heapSort
£ 15m hashingSor
§ - - —-insenSort
S 1000 <o guickSort
H - +selectionSort
g
g 800 — - -shallSor
i - = test]
g 04 — st
500
Size of array
Fig. 5. Sorting time of small (up to 100 elements) ordered array
Ordered array
20000
18000
£ 15000 aher? [owoeson
F 14000 p — - -heapSort
S A AP/ hashingSort
= 12000
=] 10000 f p-ﬁy — -insertSort
i=1
2 o B e
= N
‘o 5000 ' ---—-shellSort
% 4000 _/.a"w - test!
E 2000 P w——— — - -test2
-2000 100 00 300 400 nlnl B0 Qg alnl 00 1000
Size of array
Fig. 6. Sorting time of small (up to 1000 elements) ordered array
Ordered array
6000
5000
4000
" —— heapSort
E 3000 —s—inzertSort
E 2000 ——quickSort
" e ———— —hellSart
1000
0 __=__’____,/_ I I I |
2000000 4000000 000000 8000000 10000000 12000000
1000
Size of array

Fig. 7. Sorting time of large (up to 12000000 elements) ordered array

From the viewpoint of minimizing the time has the
best sorting of arrays of random elements is the follow-
ing sort:

— up to 50 elements — sort by simple inserts;

— up to 65536 elements — sort by Shell;

—more elements — a quick-sorting without using
recursion (software implementation).

For almost selected array is better to use sorting
by simple inserts.

3. Analysis of results of auto select
of sorting algorithm

To demonstrate the achieved results measure time
that spent on sorting through direct calling functions,

and compare it with the time that spent on the call
to Autoselect of sorting.

On Fig. 8-11 is built time of sorting dependence
on array’s size for a direct call function and for function
Autoselect of sorting. As you can see from the Fig. 8
quick algorithms that do not have the properties
of the natural, yield in the speed to algorithms, which
ithas. Auto select function that takes into account
the property of the previous selection of array shows
good results.

Small arrays are sorting very quickly. So,
to measure the time of sorting, it is necessary to sort out
a few arrays (in the case of Fig. 9 — 1000 iterations). In
doing so, we generate an array of random elements
in the same cycle, therefore their generation time

TI'apanmo3oamuicmo cepsic-opicHmosanux cucmem 23

is added to the time of sorting. To take into account, we
measured the time, only the generation array 1000
and subtract it from the sort of time. In view of the fact
that the timer did not accurately measure short intervals
(up to 30 ms), results of measurements of time sorting
near zero received with great inaccuracy. Because
of'this, and through the small spacing between
the points of measurement graph, first, is «wavesy,
and secondly, passes through the negative values
of time sorting. However, in Fig. 9 you can see that
the functions Autoselect less than most other algo-
rithms.

On Fig. 10 you can see that the sorting and select-
ing inserts on arrays of such size are very slow
in comparison with other algorithms, and so build
a graph without them.

Large pre-sorted array

12000

10000

5000

TimelheapSort):
2 eomn — - -Tims(insertSort)
E Time(quickSortiterable)
E 4000 Time(shellSort):
— — Time(autoselectSort)
2000 W
04 — e e - e 0
200000 400000 E00000 800000 1E+07 12E+0
2000 nl il a il

Size of array

Fig. 8. Sorting time of pre-sorted array

Small random array

120

LN
T
]

100

=

80

—

——TimeiheapSort):

\ M — - —-Time(insertS or):
’M}r\ ’[»‘ ——Time{guickSortlterable)

F_ [R =— = Time(selectionSor):
—————— Time(shellSor)
- Time(autoselectSort):

B0

I
) H/ \J

20

D/K’}*\W'?
IW 5

fast]

i

Time (ms for 1000 iterations)

.
) 100 150 200
20

-40

Size of array

Fig. 9. Sorting time of small (up to 200 elements)
random array

Average random array

18000
18000
14000
12000
10000

2000
6000
4000

Time [me For 1000 iterations)

2000

- -Time{autoseleciSar)

S0t [1] Es bl 25001
_anon 5000 10000 15000 20000 Qoo

Size of array

Fig. 10. Sorting time of average
(up to 25,000 elements) random array

Large random array

25000

20000

15000

= TimetheapSon):
quickSortlterable):
shellSort):

—— Time(autoselectSort):

I
N | Time(
10000
2 i
i

——Time

Time (ms)

5000

200000 400000 600000 800000 1E+407 12E+0
0 0 0 0

-5000

Size of array

Fig. 11. Sorting time of large
(up to 12000000 elements) random array

On Fig. 11 you can see, as does the work of vari-
ous sorting algorithms. Autoselect shows only a small
delay on the selection of algorithm, and the significant
gains over time in comparison with other algorithms.

The graph noticeable that when the time sorting us-
ing Autoselect (t1) is not much more time (t2),
the implementation of the algorithm, which shows
the best results on some interval, then, in most cases, tl
and t2 is less than at the next interval. This demonstrates
the success of the chosen approach: the selection time
of algorithm insignificant effect on the total time sorting.

Conclusions

This paper demonstrates auto select of sorting al-
gorithm for problem of the distribution of tasks in the
computer system. The algorithm reduces the time
of sorting of input data, and so the time distribution
of tasks in the computer system. Developed library can
be used not only in take up case, but in many others
cases, where there is a need for speeding-up solving
of tasks of data sorting, as well as save time
and computer resources.

References

1. Kopnees B.B. Pazsumue ungpacmpyxmypuol cy-
nepromnovromepruvix eviuucienuti MCL] PAH na 6asze
T'PU/I-mexnonoeuii / B.B. Kopuees // Tpyowr 8-ii Meoic-
OYHapoOHOU KoHepenyuu «Bvicokonpouzgooumenvhvle
napanienbHble GblYUCIeHUs HA KIACMEPHBIX CUCEMAXY,
17-19 nosbpa 2008. — Kazanw: KI'TY, 2008. — C. 53-56

2. Humepnem-nopman no I PHJ]-mexnonocuam
GRIDCLUB RU - Grid for Windows & Unix
[Onexmponnsiii pecypc]. — Pexcum oocmyna k pecypcey:
http://gridclub.ru/projects.

3. Kamenwuxos M.A. Cepsucvt GRID, xax 00»-
exmol cmanoapmuszayuu / M. A. Kamenwuxos // Inex-
MPOHHBILL JICYPHATL «HKYPHAT PAOUOINEKMPOHUKIY. —
2003. — Nel2 [Dnexmponnulii pecypc]. — Peowcum doc-
myna k srcypuany: http:// jre.cplire.ru.

4. Pyszauxun I'H. Qunocogus [[O/] — Mup IIK /
I U. Pysaiixun // Omkpoimule cucmemot. — 2008 . —Ne 11

24 TI'apanmo3oamuicmo cepsic-opicHmosanux cucmem

[Onexmpon. pecypc]. — Pexcum odocmyna x pecypcy:
http://www.osp.ru/peworld/2008/11/5688007/

5. Uwnmepnem-nopman no [PHJ[-mexnonocuam
GRIDCLUB_RU [Dnexmpon. pecypc]. — Pescum Ooc-
myna Kk pecypcy. http://www.gridclub.ru/gridcafe/
dreamers.html

6. FOpuu M.IO. [1o0x00 x onmumanbHOMy pac-

oymka, 2008. —T.7.—Bun. 1. — C. 27-34.

7. Kuym J[Jonanvo 3. Hcxyccmeo npocpammu-
posanus. Copmupoexa u nouck. / [Jounanwo 3. Knym. —
M.: Uzoamenvckuii oom «Bunvamcy, 2008. — T. 3. —
824 c.

8. Hngopmayuonnas unmepnem — 6aza aneo-
pummos u memooog [Onekmpon. pecypc]. — Peowcum

npeoenenHulo 3a0aHUll 8 GbIYUCTUMENbHOU cucmeme /
MIO. FOpuy // Komn tomune. — Tepronins: Exonomiuna

docmyna «x pecypcy: http://algolist. manual.ru/sort/
index.php

THocmynuna 6 pedaxyuro 2.02.2009

Penensent: n-p. ¢us.-mar. Hayk, npod., 3aB. kadenpoii I'.B. Kopuud, 3anopoxckuii HalMOHaJIbHBIH TEXHHYECKUI
YHHBEPCHTET, 3allOpOKbe, Y KpanHa.

AJIT'OPUTMbI COPTUPOBKU JIVIs1 PACIIPENEJIEHUST 3AJIAHMI
B BBIYUCJIMTEJIBHOU CUCTEME

M.10. IOpuu, /1.C. bapcykos, P.K. Kyoepmemos

PaccmoTpena npobiema pacrpeneneHus 3afaHii B BEIYUCIUTEIBHON CHCTEME Il CITydasi, KOT1a KOJIMIEeCTBO
KOMIIBIOTEPOB CHUCTEMBI TIPEBHIIIACT KOJNMIESCTBO 3a/IaHH, KOTOpbIle HEOOXOAMMO pachpemenuThb. s 3Toro mpu-
MEHEHBI pa3IHYHbBIE allTOPUTMBI COPTUPOBKHU. C IIETBIO TIOBBIIICHUS CKOPOCTH PadOTHl PACCMOTPEHHOT'O MEXaHH3Ma
pacrnpeneneHus 3aIaHiil Ha OCHOBE HCIIOJIb30BAHUS aJITOPUTMOB COPTHUPOBKHU IMPEJIOKEH aJTOPUTM aBTOMAaTHue-
CKOT'O BBIOOpa COPTUPOBKH B 3aBUCHIMOCTH OT CBOMCTB JaHHBIX, IIPEJICTABICHHBIX BXOTHBIMUA MaccuBamHu. [loka3za-
HO, YTO MIPHUHSTOE pPEeIIeHHe MpoOiIeMbl sBisieTcs d(hOEeKTHBHBIM, T.K. BpeMsi, IOTpaueHHOE Ha NPUHATHE PEIICHUS
0 BBIOOpE aJIrOpUTMa, HECYIIIECTBCHHO BJIMSET Ha 00Iiee BpeMsi COPTUPOBKH. Jl0Ka3aHO, 4TO pa3pabOTaHHBIN airo-
PHUTM TI03BOJIIET COKPATUTh BPEMsi COPTUPOBKH BXOJHBIX JAHHBIX, @ 3HAYUT U BPEMs PEIICHHs POOIeMbI pacipe-
eJIeHUs 3aJaHuH B BBIYMCIIUTEIBHON CUCTEME.

KuroueBble cj10Ba: pacnpe/ieieHrue 3a1laHni, BBIUUCIUTENbHAsl CUCTEMA, COPTUPOBKA, BPEMsI COPTUPOBKH, ajl-
TOPUTMBI COPTHPOBKH, aBTO BUOOP.

AJITOPUTMHU COPTYBAHHA JJIA PO3IIOALTY 3ABJAHDb
B OBUUCJIIOBAJIBHIA CUCTEMI

M.IO. Opuu, /I.C. bapcykos, P.K. Kyoepmemos

PosrnsinyTo mpoOsieMy pO3MOAITICHHS 3aBAaHb B OOYHMCIIOBAIBHINA CHCTEMIi JJIS BHIIAAKY, KOJH KiJIBKICTh
KOMIT FOTEPIB CUCTEMHU IEPEBUILYE KIIBbKICTh 3aB/IaHb, SKi HEOOXIHO PO3MOAIUTH. J{JIs IbOTO 3aCTOCOBAHO Pi3HO-
MAaHITHI aJITOPUTMH COPTYBaHHs. 3 METOK MIJBHIICHHS IIBUIAKOCTI POOOTH PO3MISHYTOTO MEXaHI3My pPO3IOILTY
3aBIaHb Ha 0a3i BUKOPHCTaHHS AJITOPUTMIB COPTYBaHHS 3alIPOIIOHOBAHO AITOPUTM aBTOMAaTHYHOTO BHOOpPY COpPTY-
BaHHS y 3aJIS)KHOCTI BiJl BJIACTMBOCTEH NaHWX, IO NpEACTaBJIeHI BXiZHMMHM MacuBamu. IlokaszaHo, 1o oOpane
PO3B’si3aHHS NPOOJIEeMH € ePEeKTUBHHUM, 00 yac, BUTpaueHUH Ha NPUHHSTTS PillIeHHS PO BUOIp ajropuTMy, HECYTTe-
BO BIUIMBAE Ha 3arajibHuil yac copryBaHHs. J{0OBEICHO, 0 PO3POOIICHHII AITOPUTM I03BOJISIE CKOPOTHTH Yac COPTY-
BaHHS BXITHHUX AaHWUX, 8 3HAYUTH 1 4ac PO3B’sA3aHHS MPOOIEMH PO3IIOALTY 3aBJaHb B O0OUNCITIOBATIBHIA CHCTEMI.

Ku1o4oBi ci1oBa: po3noain 3aBaaHk, OOUNCIIIOBAaIbHA CHCTEMA, COPTYBAHHS, YaC COPTYBaHHS, aJITOPUTMH COp-
TyBaHHsI, aBTO BUOIp.

KynepmeroB PaBuabr KamumiioBu4 — kaHja. TexH. HayK, JOLEHT, 3aBeayrommii kadeapoit «KommberoTepHbie
CUCTEMBl W CETH», 3alOpPOXCKUM HAIMOHANBHBIM TEXHUYECKUH YHUBEPCUTET, 3amopoxbe, YKpauHa,
e-mail: krk@zntu.edu.ua.

FOpuuy Mapus IOppeBHa — acriupaHT, acCUCTEHT Kadenpsl « KOMIBIOTEpHBIE CHCTEMBI U CETH) 3aropox-
CKM HAalMOHAIBHBIM TEXHWYECKUH yHUBEPCHTET, 3alopoxbe, YKpanHa, e-mail: masheryka@mail.ru;
mashery@zntu.edu.ua.

BapcykoB Amutpuii CepreeBud — ctyneHT kadenpsl « KOMIBIOTEpHBIE CHCTEMBI U CETH» 3alopOKCKU Ha-
UOHANBHBIA TEXHUYECKUH YHIUBEPCHUTET, 3aI0pOKbe, Y KpanHa.

