
Надійність програмного забезпечення 196

UDC 004.05

P. POPOV

Centre for Software Reliability, City University, Northampton Square, London, EC1V 0HB

SOFTWARE FAULT-TOLERANCE WITH OFF-THE-SHELF COMPONENTS:
 FROM CONCEPTUAL MODELS TO EMPIRICAL STUDIES

Building software with off-the-shelf (OTS) components is an attractive alternative to bespoke development in
terms of initial development cost. Dependability assurance of such software, however, appears more difficult
than that of the bespoke alternative since it is rarely possible to use evidence about the development process of
OTS components. Software development with OTS components is centered upon selecting the best components
in the particular development context. If dependability itself or evidence about high dependability is insufficient,
often the only available option for improvement is deploying fault tolerance based on design diversity. In such
cases the importance of selecting the best components is even greater and more difficult, than for non-fault toler-
ant solutions: the best set of components is not necessarily the components which best on their own, how effec-
tive the fault-tolerant solution is depends on diversity of the chosen components. In the paper I critically review
the conceptual models, which have been used for fault-tolerant software, their limitations, and some promising
ways forward to help with the selection of OTS components for fault-tolerant software design. The approaches
are illustrating with the results from very recent studies with OTS SQL servers.

software, Fault-tolerance, conceptual models

Introduction

Software fault tolerance based on design diversity

has been studied very extensively, often surrounded by

controversy, in the last 30 years [1]. This is probably the

software engineering domain subjected to the most seri-

ous scrutiny.

The intuitive rationale behind the use of design di-

versity is simply the age-old human belief that “two

heads are better than one”. For example, we are more

likely to trust our answer to some complex arithmetic

calculation if a colleague has arrived independently at

the same answer. In this regard, Charles Babbage was

probably the first person to advocate using two com-

puters – although by computer he meant a person [2].

Design diversity has been routinely used in safety

critical applications.

Examples include the Airbus A320/30/40 aircraft

[3 – 4] various railway signalling and control systems

[5 – 9]. Well documented controlled experiments in

mid 80s, [3, 7], also demonstrated that significant

dependability gains can be achieved with design di-

versity. The adoption of diversity has been limited,

though, by doubts about its costs and about its effec-

tiveness. The attitudes to design diversity of industry

and regulators vary, between industrial sectors but

also within the same sector from cautious acceptance

(e.g. [10] allow a company to claim diversity as one

alternative to some other, standard assurance prac-

tices, but require the company to demonstrate the

specific benefits claimed from its use of diversity) to

an explicit view against design diversity (e.g. Boeing

decided against software diversity for its own 777

aircraft, on the grounds that it would require restric-

tions to communication between software and system

engineers, which in turn is an important defence

against requirement errors [11]).

Conceptual Probabilistic Models
of Design Diversity

A recent survey of the probabilistic models of fault-

tolerant software can be found in [10]. An extension of

the previous models, discussed in the survey, to take

account of various regimes of testing was developed in

[12]. These are briefly summarized here.

© P. Popov
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2007, № 8 (27)

Надійність програмного забезпечення 197

The first major breakthrough in stochastic modelling

of diversity came in a paper by Eckhardt and Lee [4].

The key idea (EL model) was that the different demands

that a program might receive during operation would

vary in ‘difficulty’ – specifically the probability of fail-

ure upon execution of a demand would be different for

different demands.

For a particular set of requirements there is a popula-

tion of all possible programs (versions), which (concep-

tually, at least) could be written, ℘ = {π1, π2, π3,...}.

Many, if not most, of these programs will be incor-

rect, i.e. they sometimes give wrong output.

An actual product development is then modelled as a

random selection of π from ℘, i.e., the program is a

random variable Π, with P(Π = π) = S(π), for some

measure S(•) over ℘. The measure S(•) can be thought

of as representing the development methodology used.

Execution of a program version involves random se-

lection of a demand from the demand space F =

{x1,x2,...}.

That is, the demand is a random variable X with

P(X=x) = Q(x) for some measure Q(•) over F.

Here Q(•) could be thought of as the usage distribu-

tion over demands. It might vary from one user envi-

ronment to another.

The failure behaviour of the program is described by

the score function

⎩
⎨
⎧

π
π

=πυ
.,0

;,1
),(

xonfailnotdoesprogramif
xonfailsprogramif

x

Thus, the random variable υ(Π,X) represents the per-

formance of a random program on a random demand:

this is a model for the uncertainty both in software de-

velopment and usage.

A key average performance measure is

()),()().,()(xSxx S Πυ=ππυ=θ Ε∑
℘

, (1)

which is the probability that a randomly chosen program

fails for a particular demand x. The heart of Eckhardt

and Lee’s idea is the recognition that θ(x) will generally

take different values for different x, representing the

varying ‘difficulty’ in correctly processing different

demands. For a randomly chosen demand X, θ(X) is a

random variable.

Finally,

()),(

)().().,(
))((

, X

xQSx
X

QS

F

Πυ=

=ππυ=

=θΕ

Ε

∑∑
℘

 (2)

represents the probability that a randomly chosen pro-

gram fails on a randomly chosen demand.

In the presence of uncertainties of both development

and usage, this represents the likelihood that our soft-

ware fails.

Suppose now that two program versions are created

independently. That is, Π1 and Π2 are selected inde-

pendently from ℘.

The independent selection models the process of de-

velopment of the programs by independent teams, e.g.

not communicating with each other. These are truly

independent in the conventional statistical sense:

).().(

),(

2211

2211
π=Ππ=Π=
=π=Ππ=Π

PP
P

 (3)

It then follows that the probability that both Π1 and

Π2 fail on a given demand x is:

() .)()().(

)(.)().,().,(
),(

2
21

221121

21

xxonfailsPxonfailsP

PPxx
xonfailsxonfailsP

θ=ΠΠ=

π=Ππ=Ππυπυ

=ΠΠ

∑∑
℘ ℘

 (4)

The conditional form of the joint behaviour is:

).()(
)(

),(
)(

2

1

21

12

xxonfailsP
xonfailedP

xonfailsxonfailedP
xonfailedxonfailsP

θ=Π

=
Π

ΠΠ

=ΠΠ

 (5)

Thus, one can see that independently developed pro-

grams fail independently when executing a given fixed

demand x.

However the situation is different when there is un-

certainty concerning the demand, i.e., the programs exe-

cute a random demand, X:

Надійність програмного забезпечення 198

() () ()

() .)()(

)()()()(

)()()(),(),(
)1),(),((

)(

2

222

2121

21

21

XonfailsPVar

VarxQx

xQSSxx
XXP

XonfailbothandP

F

F

Π+Θ

=ΘΕ+Θ=ΘΕ=θ

=πππυπυ

==ΠυΠυ
ΠΠ

∑

∑∑∑
℘ ℘

 (6)

(here the random variable Θ = θ(X)). The conditional

form of the joint behaviour is:

).()(
)(
)(

)(

22

12

XonfailsPXonfailsP
E

Var
XonfailedXonfailsP

Π≥Π+
Θ
Θ

=ΠΠ
 (7)

Equality holds if and only if θ(x) = θ identically for

all x and it seems likely that this will never be the case.

This is the main result of [4]: that the failure behaviour

of diverse versions will necessarily be worse than what

could be expected under the assumption of independ-

ence, even though the versions themselves truly are ‘in-

dependently developed’.

Littlewood and Miller (LM model) extended this

model, [8], to the case where several development

methodologies A,B,C, etc. are available. These might

represent, for example, different development environ-

ment, different types of programmers, different lan-

guages, different testing regimes, etc. Each methodol-

ogy induces a measure on ℘, the set of all possible pro-

gram versions. A random program ΠA developed using

methodology A will be version π with probability:

P(ΠA = π) = SA(π).

If the methodologies are very diverse, we would ex-

pect a program with a high probability of selection un-

der one methodology to have a low, perhaps zero, prob-

ability of selection under others. Within a particular

methodology, the situation is exactly like that in [4].

Thus θA(x) is the probability of a randomly chosen pro-

gram from methodology A failing on demand x; the
random variable ΘA = θA(X) is the probability of ΠA

failing on the random demand X, etc.

Consider two random program versions ΠA and ΠB

developed independently under methodologies A and B

respectively, i.e.

).()()()(
),(

BBAABBAA

BBAA
SSPP

P
ππ=π=Ππ=Π

=π=Ππ=Π
 (8)

It follows that, for any given demand, x, two ran-

domly chosen programs fail independently, as in (5)

while the probability of simultaneous failure on a ran-

dom X is:

).()(),(
)()(),(

)(),(

XonfailsPXonfailsPCov
ECov

XonfailsXonfailsP

BABA

BABA

BABA

ΠΠ+ΘΘ
=ΘΘΕ+ΘΘ

=ΘΘΕ=ΠΠ
(9)

The conditional form of joint behaviour is:

 () ()
).(

)(
,

)(

)(

B
A

BA

A

BA

AB

Cov
XonfailedXonfailsP

ΘΕ+
ΘΕ

ΘΘ
=

ΘΕ
ΘΘΕ

=

ΠΠ
 (10)

This is greater than)()(XonfailsP BB Π=ΘΕ if

and only if Cov(ΘA, ΘB) > 0. But since it is possible that

Cov(ΘA, ΘB) < 0, it follows that using different design

methodologies it is possible in this model to do even

better than the (unattainable) goal of independent per-

formance of versions in the single methodology case.

This is the main result in [8].

These two models were recently generalized [12] by

taking into account the regime of testing applied to both

channels. It turns out that after subjecting the channels

to testing the EL and LM models will only apply if the

channels are tested independently (i.e. independent de-

velopment of the channels extends to testing, too). If the

channels are subjected to testing together, however, e.g.

on the same testing suite or even back-to-back, then

even conditional failure independence (with respect to a

given demand, x, that is) does not hold. Common testing

introduces dependence between the channel failures,

which generally would make less reliable than under the

EL and LM models.

Надійність програмного забезпечення 199

Models ‘on average’ vs. models
‘in particular’

One will have noticed that the models described so

far express the probability of simultaneous failures of

two randomly selected channels from the population of

available versions (hypothetically possible to develop

using a specific design methodology to a given specifi-

cation). These models are very useful to study the limi-

tations of design diversity at a high level of abstraction.

A typical question that these models allow one to an-

swer is ‘Is it reasonable to expect that if I recruit two

teams to develop the channels of a fault-tolerant system

and keep them isolated form each other the failures of

the channels are likely to be stochastically independ-

ent?’. This is not a naïve question. It has far reaching

implications on how I would assess the system once the

channels are developed. If I knew that independence is

likely, then I would concentrate on assessing the chan-

nels’ probability of failure and once this is done, I

would compute the probability of failure of the system

by multiplying these. The EL and LM models explain

why, unfortunately, such an assessment procedure is

unsound: independence of failures is unlikely and one

should plan for assessment of the system without refer-

ence to failure independence. The conclusion that is

drawn, however, is about the populations of possible

versions (and the respective probabilistic measures de-

fined for them). The probability of coincident failure

that the EL and LM models allow us to compute, (7)

and (10), is thus a measure ‘on average’.

Once the channels have been developed (i.e. the se-

lection from the respective populations has taken place)

one is interested in a different question: ‘How good is

the particular pair of channels that I am dealing with’.

For this reason the EL and LM models and any exten-

sions thereof are useless. Indeed, the versions in the

populations from which one chooses the pair may vary

(and significantly so) in their reliability, hence the reli-

ability of the pair will vary, too. For instance, in the

controlled experiment reported in the mid 80s by Knight

and Leveson [7] 6 out of the 27 versions developed in

the experiment did not fail in 1,000,000 tests used to

asses the version reliability. Clearly, any of these 6 ver-

sions will make a 1-out-of-2 system perfect. The prob-

lem of assessing the available pair, thus, will be very

different from the conceptual question whether inde-

pendent development is likely to deliver “on average”

independently failing software versions. Assessing how

reliable the particular pair of versions is requires models

‘in particular’. One such model was developed a few

years back [14], [13]. The model can be derived from

the model “on average” by eliminating the uncertainty

associated with the selection of the versions. The only

uncertainty to be accounted for is that associated with

the usage, Q(x)1.

While mathematically the models “on average” and

“in particular” are very similar, the difference between

them in practical terms is very significant. While for the

models ‘on average’ there is no hope that the parameters

of interest (various measures computed on the entire

populations of versions) can be estimated, this problem

seems tractable in the models in particular.

The particular approach taken in the above men-

tioned papers is using the idea of partitioning the de-

mand space, an approach used widely to achieve effec-

tive software testing. In each partition one can estimate

the probability of failure of the channels, and thus re-

duce significantly the uncertainty about the probability

of system failure over the entire demand space.

Consider the pfd of a pair of versions, A and B,

which are completely known: for each demand, one

knows the score functions of the channels, A and B,

()),(xAxA υ≡ω and ()),(xBxB υ≡ω . Probabilities of

failure of versions A and B on a randomly selected de-

mand X (probability of failure per execution) are:

PA≡ P(A fails on X)=E(ωA(X))= ∑
∈

ω
Fx

A xxQ)()(

1 One can think of this model ‘in particular’ as a special case
of the models ‘on average’ in which the size of the population
of versions from which one selects the channels is reduced to
just a single version.

Надійність програмного забезпечення 200

and

PB≡ P(B fails on X)=E(ωB(X))= ∑
∈

ω
Fx

B xxQ)()(,

where F denotes the demand space, and Q(x) is the

probability of demand x (the demand profile of the

software). For a specific demand x, the probability of

common failure is then either 0 or 1:

P(A fails on x and B fails on x)=)()(xx BA ωω

pfdAB=P(A and B fail on randomly chosen demand) =

∑
∈

ωω
Dx

BA xxxQ)()()(. (11)

It turns out that this expression can be written as:

pfdAB= PA PB+ cov(ΩA, ΩB), (12)

where the random variables ΩA and ΩB are defined as

the values taken by ωA and ωB on a randomly chosen

demand.

Equation (12) is identical to (9). The only difference

between the two is that (9) is based on the 'difficulty

functions' for two “development methodologies”, which

can take any value between 0 and 1 (representing the

probability that a randomly chosen version, developed

with that methodology, would fail on a given demand).

(12), instead, operates with two known versions. The

functions ωA(x) and ωB(x) can only take the values 0 and

1, and the only uncertainty concerns the choice of the

next demand, x, described by the probability distribution

Q(x). The description given this far would only be use-

ful if one knew the behaviour of each version on each

possible demand, i.e., for each demand whether it is a

failure point or a success point, for each version. This

level of detailed knowledge is normally unattainable.

The knowledge that can be obtained is at a much coarser

level: by realistic testing, one can estimate the likeli-

hood of each version failing on a randomly chosen de-

mand. We can also specialise this knowledge slightly,

by testing separately for separate classes of demands

that completely cover the demand space, without any

overlapping between them (a partition over the demand

space) 2. We call the subdomains themselves S1, S2, …,

Sn. We can define the probability of failure of a version

when subjected only to demands from a specific sub-

domain, e.g. P(A|Si) will designate the probability that

A fails on a demand chosen randomly from subdomain

Si, according to the probability distribution of demands

in actual operation. We can then write the probability of

common failure as:

pfdAB=P(A,B)=)()|,(i
i

i SPSBAP∑ . (13)

Within each subdomain, clearly:

P(A,B | Si) ≠ P(A | Si) P(B | Si). (14)

Equality would only apply in special cases, e.g.

hardware-only versions that are subject only to physical

failures and for which the stress to which they are sub-

ject is known to be constant across a certain class of

demands. In most cases, one would expect a restricted

class of demands to pose similar problems to the de-

signers of two versions, so that the EL model would

apply: in each subdomain, the left-hand term in (14)

would be greater than the right-hand term. So, in prac-

tice, a regulator can use the sum in the left-hand side of

the following expression:

,)()|,(

)()|()|(

ABi
i

i

i
i

ii

pfdSPSBAP

SPSBPSAP

=≤ ∑

∑

 (15)

as a likely claim limit for the pfd of a two-version sys-

tem.

Even if formula (14) could be written with an equal

sign (independent failures of the two versions, condi-

tional on demands from a given subdomain) for all sub-

domains, this would not imply unconditional independ-

ence of failure. In terms of reliability estimates over

subdomains, pfdAB can be written, in a general form, as:

2 Subdividing demands into classes is common practice for
designers (e.g., in terms of modes of operation of a system)
and software testers, who call these classes sub-domains (in
the demand space). For instance, testers find it useful to define
sub-domains on the basis of which 'function' of the program
(as defined in its requirements) the demands invoke, or on the
basis of which parts of the code they cause to be executed.

Надійність програмного забезпечення 201

pfdAB=P(A) P(B) + cov1 + cov2, (16)

where the term cov1 is obtained by considering the pfd

values of the two versions as functions of the subdo-

mains, and taking their covariance over all the subdo-

mains,

()())(()|(()|(cov1 i
i

ii SP)BPSBP)APSAP∑ −−= (17)

and the term cov2 is obtained by computing the covari-

ance of the Ω functions of the two versions in each sub-

domain, and taking its average over all subdomains:

()())(|,covcov 212 i
i

i SPS∑ ΩΩ= . (18)

Each term in the inner sum above represents the dif-

ference between the two sides of inequality (14). As-

suming each such term to be 0, i.e., conditional inde-

pendence within each subdomain, makes cov2 equal to

zero.

Bayesian Assessment

How do these models help one with the selection of

OTS software to be deployed in a fault-tolerant configu-

ration?

The models “on average” allows one to structure

one’s argument – failure independence is unlikely to

occur. If one decides to argue in favor of failure inde-

pendence then one should build a very strong argument.

The models “in particular”, indicate that unless full

knowledge about the channels is attained, there will be

uncertainty regarding the probability of coincident fail-

ure due to the term cov2, the covariance between the

channels in the respective sub-domains. The implica-

tions, for justifying having achieved a particular reliabil-

ity target with the fault-tolerant software is that this un-

certainty should be managed, ideally bounded. The

magnitude of the uncertainty will vary between ‘know

nothing’ (i.e. the probability of simultaneous failure

may be anywhere between 0 and the probability of fail-

ure of the more reliable of the two channels in the par-

ticular sub-domain, i.e. diversity buys me nothing in

terms of dependability improvement) or some quantifi-

cation, e.g. based on the empirical evidence that will be

accumulated over the life-cycle of the fault-tolerant sys-

tem.

In the latter case, when new evidence is expected to

emerge after the deployment of the system, Bayesian

assessment techniques [9] seem particularly well suited

– they allow in a mathematically sound way to combine

the a priori knowledge (possibly inaccurate, possibly

largely based on expert judgment) with new empirical

evidence as it emerges during the life-time of the system

to produce a more refined a posteriori view on system

dependability. The conceptual models described above

will guide the assessor about choosing an adequate

Bayesian model, i.e. such that would allow the ‘data to

speak for itself’, i.e. allow the posterior to capture the

true dependence (positive or negative correlation be-

tween the failures of the channels). Choosing an inade-

quate model, i.e. based on various unreasonable as-

sumptions (e.g. of independence or some parameters

being known with certainty) will prevent the assessor

from learning about the system behaviour, a recipe of

being unpleasantly surprised. An example of an inade-

quate model that I argued against is given in [11]. The

mistake criticized was assuming that the components

used to build a software system fail independently.

There is nothing wrong with the assumption in princi-

ple: provided the components do indeed fail independ-

ently, assuming independence will not be refuted by

empirical. If independence is assumed merely for con-

venience, i.e. to simplify the calculations, however, and

evidence is collected against the assumption, then pre-

dictions obtained with the model (i.e. the posterior dis-

tribution of the probability of system failure) may lead

to uncontrollable error: the prediction may be pessimis-

tic (which may be acceptable, e.g. in safety-critical con-

text although may be expensive – the conclusion that

the system is good enough may be prolonged merely

due to using inadequate model), but may also be opti-

mistic, which might be dangerous, as illustrated in [11].

In summary, the models described in the previous sec-

Надійність програмного забезпечення 202

tions will allow one to structure the argument avoiding

unreasonable simplifications.

Off-the-shelf software

While employing software diversity was seen in the

past as an expensive method for increasing dependabil-

ity due to the need of building more than one compo-

nent. With off-the-shelf components this problem is

overcome: there may be many different components that

will have the required functionality, therefore bespoke

development may not be required3. Moreover many of

these components are free and open-source, thus the

cost of procurement may be non-existent.

There exist a plethora of available methods for

COTS assessment, mainly developed for managers in

the context of non-fault-tolerant solutions.

The problem of assessment though still remains. If

we were interested in building a 1-out-of-2 system, sim-

ply choosing the two best components that exist in the

market may not be enough. What is of interest is how

well the pair works together. The optimal pair will be

the one with the lowest probability of simultaneous fail-

ures of both components of the pair. The components

that form the best pair may not necessarily be the ones,

which are the best individually. As the conceptual mod-

els described above show the probability of simultane-

ous failure may be reduced by improving the reliability

of the components or by choosing those with low, pos-

sibly negative correlation between their failures.

But how can one choose the best pair before the

OTS components are integrated together?

Ideally the decision should be based on empirical

evidence about the products, although very often ‘soft’

aspects (e.g. good relationship with the vendors, ven-

dor’s credentials, market position, etc.) are the main

factors that dictate which components get chosen. Put-

ting this aspect aside, methods are needed to justify the

3 Apart from ‘glue code’ (usually referred to as middleware)
which may be needed to ensure the components can be de-
ployed for a given system in a coordinated manner as required
by the particular system context.

selection so that the pair is likely to deliver the highest

possible dependability. In this section a summary is

presented of a recently developed method, which allows

for rigorous selection procedure, based on empirical

data that is likely to be available for a wide range of

OTS software components/products. The method [5]

based on Bayesian inference, allows one to use expert

judgment (in defining the priors) and empirical evidence

about the products considered for selection, such as

their bug records.

The method was applied to a set of bugs of several

off-the-shelf database servers [6] and used these as a

sample from the stressful environments, defined by all

bugs in the servers. The selection of the servers will be

optimal for the so defined stressful environment, a rea-

sonable option for the particular system in mind – a

fault-tolerant SQL server. After all the fault-tolerant

solution with a pair of servers is intended to cope with

the difficult situations (demands) where the individual

channels might be deficient.

Table 1
The observations for the 6 diverse server pairs on the
bug reports of the different partitions. In the partition
column the subscript indicates for which server these

bugs have been reported. N is the total number of bugs
run. r1, r2 and r3 represent the counts of bugs which

caused failure of only the first server, of only the second
server, and of both servers of the pair, respectively

Se
rv

er

Pa
ir

Pa
rti

tio
n

N r1 r2 r3

Se
rv

er

Pa
ir

Pa
rti

tio
n

N r1 r2 r3

PGS 24 21 0 0 PGS 18 0 0 0
IBS 28 0 23 1 IBS 31 25 0 0

ORS 3 0 0 0 ORS 4 0 3 0

PG
&
IB

MSS 9 0 0 0

IB
&

OR

MSS 10 1 0 0
PGS 30 27 0 0 PGS 21 0 1 0
IBS 24 1 0 0 IBS 35 27 0 2

ORS 4 0 2 1 ORS 4 0 0 0

PG
&

OR

MSS 7 0 0 0

IB
&

MS

MSS 12 0 6 1
PGS 33 28 0 2 PGS 27 0 2 0
IBS 25 1 2 0 IBS 30 0 2 0

ORS 3 0 0 0 ORS 4 3 0 0

PG
&

MS

MSS 18 1 7 5

OR
&

MS

MSS 12 0 7 0

Надійність програмного забезпечення 203

The bugs used in the study have been collected for

four SQL servers [6], namely PostgreSQL 7.0, Interbase

6.0, Oracle 8.0.5 and Microsoft SQL server 7 (for the

sake of brevity referred to as PG, IB, OR and MS). The

union of the bugs for all the compared COTS products

forms a stressful demand space, in which there is a par-

tition stressing each of the products. The logs of the

known bugs are treated as a sample (without replace-

ment) from the corresponding partition (representing the

server, for which the bug has been reported). The parti-

tions are named nameServerS . Partition XS is called an

‘own’ partition for server X and a ‘foreign’ partition for

any other server Y≠X. The data collected from the bug

logs is summarized in Table 1.

The servers are then compared using a Bayesian in-

ference procedure (using the same prior for all serv-

ers/pairs, justified for each of the partitions).
The results of the comparison are summarized in

Table 2.
Table 2

The percentiles of the probability of system failure
for each server pair
50th percentile 99th percentile

Server Pair
Prior Posterior Prior Posterior

PG & IB 0,02 0,12
PG & OR 0,07 0,19
PG & MS 0,09 0,20
IB & OR 0,02 0,14
IB & MS 0,04 0,14
OR & MS

0,3

0,02

0.61

0,14

Quite unexpectedly, it turned out that the best pair is

the pair formed of two open source products, Interbase

and PostgreSQL (highlighted in the 99th percentile col-

umn). They scored better than the commercial servers.

As a validation procedure to assess whether the method

is trustworthy, the same method was used to compare

the servers in terms of two non-functional attributes –

dependability and performance (measured in terms of

response time on a standard performance benchmark for

on-line transaction processing for databases, TPC-C).

The study revealed that Oracle is individually the best

server, which is in line with the common view that Ora-

cle is the best SQL server. We concluded that the

method, despite its limitations, may be useful for opti-

mal selection.

Conclusion

This paper surveys a range of topics related to build-

ing fault-tolerant software with off-the-shelf compo-

nents. The current state-of-art in probabilistic modeling

of fault-tolerant software has provided evidence, both

theoretical and empirical, against assuming that soft-

ware diversity is likely to deliver failure independence

“on average”. Empirical studies have shown that soft-

ware development process cannot deliver products with

consistent reliability: the reliability of a particular single

version and fault-tolerant software, thus, can vary

greatly. The probabilistic models “in particular” show

the nature of uncertainty and a way of managing it in

the context of Bayesian assessment, which allows one to

combine expert judgment with empirical evidence. Fi-

nally, we illustrated how Bayesian assessment tech-

niques can be used to make an optimal selection of OTS

products for building fault-tolerant software. The use-

fulness of the method is demonstrated with complex

products such as off-the-shelf SQL servers.

References

1. Avižienis A., Laprie J.-C., Randell B., Landwehr C.

Basic Concpets and Taxonomy of Dependable and Se-

cure Computing // IEEE Transactions on Dependable

and Secure Computing. – 2004. – 1. – P. 11-33.

2. Babbage C. On the Mathematical Powers of the

Calculating Engine (Unpublished manuscript, Decem-

ber 1837) // The Origins of Digital Computers: Selected

Papers. Randell, B., Springer. – 1974. – P. 17-52.

3. Eckhardt D.E., Caglayan A.K., Knight J.C.,

Lee L.D., McAllister D.F., Vouk M.A., Kelly J.P.J. An

experimental evaluation of software redundancy as a

strategy for improving reliability // IEEE Transactions

Надійність програмного забезпечення 204

on Software Engineering. – 1991. – 17. – P. 692-702.

4. Eckhardt D.E., Lee L.D. A theoretical basis for

the analysis of multiversion software subject to coinci-

dent errors // IEEE Transactions on Software Engineer-

ing. – 1985. – SE-11. – P. 1511-1517.

5. Gashi I., Popov P. Uncertainty Explicit Assess-

ment of Off-the-Shelf Software: Selection of an Optimal

Diverse Pair. 6th International IEEE Conference on

Commercial-off-the-Shelf (COTS)-Based Software Sys-

tems (ICCBSS'07) Banff, Alberta, Canada // IEEE

Computer Society Press. – 2007. – P. 93-102.

6. Gashi I., Popov P., Strigini L. Fault diversity

among off-the-shelf SQL database servers. Dependable

Systems and Networks (DSN'04), Florence, Italy //

IEEE Computer Society Press. – 2004. – P. 389-398.

7. Knight, J.C., Leveson, N.G. An Experimental

Evaluation of the Assumption of Independence in

Multi-Version Programming // IEEE Transactions on

Software Engineering. – 1986. – SE-12. – P. 96-109.

8. Littlewood B., Miller D.R. Conceptual Modelling

of Coincident Failures in Multi-Version Software //

IEEE Transactions on Software Engineering, IEEE. –

1989. – SE-15. – P. 1596-1614.

9. Littlewood B., Popov P., Strigini L. Assessment

of the Reliability of Fault-Tolerant Software: a Bayesian

Approach // 19th International Conference on Computer

Safety, Reliability and Security, SAFECOMP'2000,

Rotterdam, the Netherlands, Springer. – 2000.

10. Littlewood B., Popov P., Strigini L. Modelling

software design diversity - a review. // ACM Computing

Surveys. – 2001. – 33. – P. 177-208.

11. Popov P. Reliability Assessment of Legacy

Safety-Critical Systems Upgraded with Off-the-Shelf

Components // SAFECOMP'2002, Catania, Italy,

Springer-Verlag. – 2002. – P. 139-150.

12. Popov P., Littlewood B. The Effect of Testing

on Reliability of Fault-Tolerant Software. Dependable

Systems and Networks (DSN'04), Florence, Italy //

IEEE Computer Society Press. – 2004. – P. 265-274.

13. Popov P., Strigini L., May J., Kuball S. Esti-

mating Bounds on the Reliability of Diverse Systems.

IEEE Transactions on Software Engineering // IEEE

Computer Press. – 2003. – 29. – P. 345-359.

14. Popov P.T., Strigini L. Conceptual models for

the reliability of diverse systems - new results // 28th

International Symposium on Fault-Tolerant Computing

(FTCS-28), Munich, Germany. – IEEE Computer Soci-

ety Press. – 1998. – P. 80-89.

Поступила в редакцию 19.02.2007

Рецензент: д-р техн. наук, проф. В.С. Харченко,
Национальный аэрокосмический университет
им. Н.Е. Жуковского «ХАИ», Харьков.

