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SOFTWARE FAULT-TOLERANCE WITH OFF-THE-SHELF COMPONENTS: 
 FROM CONCEPTUAL MODELS TO EMPIRICAL STUDIES 

 
Building software with off-the-shelf (OTS) components is an attractive alternative to bespoke development in 
terms of initial development cost. Dependability assurance of such software, however, appears more difficult 
than that of the bespoke alternative since it is rarely possible to use evidence about the development process of 
OTS components. Software development with OTS components is centered upon selecting the best components 
in the particular development context. If dependability itself or evidence about high dependability is insufficient, 
often the only available option for improvement is deploying fault tolerance based on design diversity. In such 
cases the importance of selecting the best components is even greater and more difficult, than for non-fault toler-
ant solutions: the best set of components is not necessarily the components which best on their own, how effec-
tive the fault-tolerant solution is depends on diversity of the chosen components. In the paper I critically review 
the conceptual models, which have been used for fault-tolerant software, their limitations, and some promising 
ways forward to help with the selection of OTS components for fault-tolerant software design. The approaches 
are illustrating with the results from very recent studies with OTS SQL servers. 
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Introduction 
 

Software fault tolerance based on design diversity 

has been studied very extensively, often surrounded by 

controversy, in the last 30 years [1]. This is probably the 

software engineering domain subjected to the most seri-

ous scrutiny.  

The intuitive rationale behind the use of design di-

versity is simply the age-old human belief that “two 

heads are better than one”. For example, we are more 

likely to trust our answer to some complex arithmetic 

calculation if a colleague has arrived independently at 

the same answer. In this regard, Charles Babbage was 

probably the first person to advocate using two com-

puters – although by computer he meant a person [2]. 

Design diversity has been routinely used in safety 

critical applications.  

Examples include the Airbus A320/30/40 aircraft  

[3 – 4] various railway signalling and control systems  

[5 – 9]. Well documented controlled experiments in 

mid 80s, [3, 7], also demonstrated that significant 

dependability gains can be achieved with design di-

versity. The adoption of diversity has been limited, 

though, by doubts about its costs and about its effec-

tiveness. The attitudes to design diversity of industry 

and regulators vary, between industrial sectors but 

also within the same sector from cautious acceptance 

(e.g. [10] allow a company to claim diversity as one 

alternative to some other, standard assurance prac-

tices, but require the company to demonstrate the 

specific benefits claimed from its use of diversity) to 

an explicit view against design diversity (e.g.  Boeing 

decided against software diversity for its own 777 

aircraft, on the grounds that it would require restric-

tions to communication between software and system 

engineers, which in turn is an important defence 

against requirement errors [11]).  
 

Conceptual Probabilistic Models 
of Design Diversity 

 

A recent survey of the probabilistic models of fault-

tolerant software can be found in [10]. An extension of 

the previous models, discussed in the survey, to take 

account of various regimes of testing was developed in 

[12]. These are briefly summarized here. 
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The first major breakthrough in stochastic modelling 

of diversity came in a paper by Eckhardt and Lee [4]. 

The key idea (EL model) was that the different demands 

that a program might receive during operation would 

vary in ‘difficulty’ – specifically the probability of fail-

ure upon execution of a demand would be different for 

different demands.  

For a particular set of requirements there is a popula-

tion of all possible programs (versions), which (concep-

tually, at least) could be written, ℘ = {π1, π2, π3,...}. 

Many, if not most, of these programs will be incor-

rect, i.e. they sometimes give wrong output.  

An actual product development is then modelled as a 

random selection of π from ℘, i.e., the program is a 

random variable Π, with P(Π = π) = S(π), for some 

measure S(•) over ℘. The measure S(•) can be thought 

of as representing the development methodology used. 

Execution of a program version involves random se-

lection of a demand from the demand space F = 

{x1,x2,...}.  

That is, the demand is a random variable X with 

P(X=x) = Q(x) for some measure Q(•) over F.  

Here Q(•) could be thought of as the usage distribu-

tion over demands. It might vary from one user envi-

ronment to another. 

The failure behaviour of the program is described by 

the score function 
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Thus, the random variable υ(Π,X) represents the per-

formance of a random program on a random demand: 

this is a model for the uncertainty both in software de-

velopment and usage. 

A key average performance measure is 
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which is the probability that a randomly chosen program 

fails for a particular demand x. The heart of Eckhardt 

and Lee’s idea is the recognition that θ(x) will generally 

take different values for different x, representing the 

varying ‘difficulty’ in correctly processing different 

demands. For a randomly chosen demand X, θ(X) is a 

random variable. 

Finally,  
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represents the probability that a randomly chosen pro-

gram fails on a randomly chosen demand.  

In the presence of uncertainties of both development 

and usage, this represents the likelihood that our soft-

ware fails. 

Suppose now that two program versions are created 

independently. That is, Π1 and Π2 are selected inde-

pendently from ℘.  

The independent selection models the process of de-

velopment of the programs by independent teams, e.g. 

not communicating with each other. These are truly 

independent in the conventional statistical sense: 
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It then follows that the probability that both Π1 and 

Π2 fail on a given demand x is: 
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The conditional form of the joint behaviour is: 
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Thus, one can see that independently developed pro-

grams fail independently when executing a given fixed 

demand x.  

However the situation is different when there is un-

certainty concerning the demand, i.e., the programs exe-

cute a random demand, X: 
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(here the random variable Θ = θ(X)). The conditional 

form of the joint behaviour is: 
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Equality holds if and only if θ(x) = θ identically for 

all x and it seems likely that this will never be the case. 

This is the main result of [4]: that the failure behaviour 

of diverse versions will necessarily be worse than what 

could be expected under the assumption of independ-

ence, even though the versions themselves truly are ‘in-

dependently developed’. 

Littlewood and Miller (LM model) extended this 

model, [8], to the case where several development 

methodologies A,B,C, etc. are available. These might 

represent, for example, different development environ-

ment, different types of programmers, different lan-

guages, different testing regimes, etc. Each methodol-

ogy induces a measure on ℘, the set of all possible pro-

gram versions. A random program ΠA developed using 

methodology A will be version π with probability: 

P(ΠA = π) = SA(π). 

If the methodologies are very diverse, we would ex-

pect a program with a high probability of selection un-

der one methodology to have a low, perhaps zero, prob-

ability of selection under others. Within a particular 

methodology, the situation is exactly like that in [4]. 

Thus θA(x) is the probability of a randomly chosen pro-

gram from methodology A failing on demand x; the 
random variable ΘA = θA(X) is the probability of ΠA 

failing on the random demand X, etc. 

Consider two random program versions ΠA and ΠB 

developed independently under methodologies A and B 

respectively, i.e. 
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It follows that, for any given demand, x, two ran-

domly chosen programs fail independently, as in (5) 

while the probability of simultaneous failure on a ran-

dom X is: 
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The conditional form of joint behaviour is: 
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This is greater than )()( XonfailsP BB Π=ΘΕ  if 

and only if Cov(ΘA, ΘB) > 0. But since it is possible that 

Cov(ΘA, ΘB) < 0, it follows that using different design 

methodologies it is possible in this model to do even 

better than the (unattainable) goal of independent per-

formance of versions in the single methodology case. 

This is the main result in [8]. 

These two models were recently generalized [12] by 

taking into account the regime of testing applied to both 

channels. It turns out that after subjecting the channels 

to testing the EL and LM models will only apply if the 

channels are tested independently (i.e. independent de-

velopment of the channels extends to testing, too). If the 

channels are subjected to testing together, however, e.g. 

on the same testing suite or even back-to-back, then 

even conditional failure independence (with respect to a 

given demand, x, that is) does not hold. Common testing 

introduces dependence between the channel failures, 

which generally would make less reliable than under the 

EL and LM models. 
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Models ‘on average’ vs. models  
‘in particular’ 

 
One will have noticed that the models described so 

far express the probability of simultaneous failures of 

two randomly selected channels from the population of 

available versions (hypothetically possible to develop 

using a specific design methodology to a given specifi-

cation). These models are very useful to study the limi-

tations of design diversity at a high level of abstraction. 

A typical question that these models allow one to an-

swer is ‘Is it reasonable to expect that if I recruit two 

teams to develop the channels of a fault-tolerant system 

and keep them isolated form each other the failures of 

the channels are likely to be stochastically independ-

ent?’. This is not a naïve question. It has far reaching 

implications on how I would assess the system once the 

channels are developed. If I knew that independence is 

likely, then I would concentrate on assessing the chan-

nels’ probability of failure and once this is done, I 

would compute the probability of failure of the system 

by multiplying these. The EL and LM models explain 

why, unfortunately, such an assessment procedure is 

unsound: independence of failures is unlikely and one 

should plan for assessment of the system without refer-

ence to failure independence. The conclusion that is 

drawn, however, is about the populations of possible 

versions (and the respective probabilistic measures de-

fined for them). The probability of coincident failure 

that the EL and LM models allow us to compute, (7) 

and (10), is thus a measure ‘on average’.  

Once the channels have been developed (i.e. the se-

lection from the respective populations has taken place) 

one is interested in a different question: ‘How good is 

the particular pair of channels that I am dealing with’. 

For this reason the EL and LM models and any exten-

sions thereof are useless. Indeed, the versions in the 

populations from which one chooses the pair may vary 

(and significantly so) in their reliability, hence the reli-

ability of the pair will vary, too. For instance, in the 

controlled experiment reported in the mid 80s by Knight 

and Leveson [7] 6 out of the 27 versions developed in 

the experiment did not fail in 1,000,000 tests used to 

asses the version reliability. Clearly, any of these 6 ver-

sions will make a 1-out-of-2 system perfect. The prob-

lem of assessing the available pair, thus, will be very 

different from the conceptual question whether inde-

pendent development is likely to deliver “on average” 

independently failing software versions. Assessing how 

reliable the particular pair of versions is requires models 

‘in particular’. One such model was developed a few 

years back [14], [13]. The model can be derived from 

the model “on average” by eliminating the uncertainty 

associated with the selection of the versions. The only 

uncertainty to be accounted for is that associated with 

the usage, Q(x)1.  

While mathematically the models “on average” and 

“in particular” are very similar, the difference between 

them in practical terms is very significant. While for the 

models ‘on average’ there is no hope that the parameters 

of interest (various measures computed on the entire 

populations of versions) can be estimated, this problem 

seems tractable in the models in particular.  

The particular approach taken in the above men-

tioned papers is using the idea of partitioning the de-

mand space, an approach used widely to achieve effec-

tive software testing. In each partition one can estimate 

the probability of failure of the channels, and thus re-

duce significantly the uncertainty about the probability 

of system failure over the entire demand space.  

Consider the pfd of a pair of versions, A and B, 

which are completely known: for each demand, one 

knows the score functions of the channels, A and B, 

( ) ),( xAxA υ≡ω  and ( ) ),( xBxB υ≡ω . Probabilities of 

failure of versions A and B on a randomly selected de-

mand X (probability of failure per execution) are: 

PA≡ P(A fails on X)=E(ωA(X))= ∑
∈

ω
Fx

A xxQ )()(  

                                                 
1 One can think of this model ‘in particular’ as a special case 
of the models ‘on average’ in which the size of the population 
of versions from which one selects the channels is reduced to 
just a single version. 
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and 

PB≡ P(B fails on X)=E(ωB(X))= ∑
∈

ω
Fx

B xxQ )()( , 

where F denotes the demand space, and Q(x) is the 

probability of demand x (the demand profile of the 

software). For a specific demand x, the probability of 

common failure is then either 0 or 1: 

P(A fails on x and B fails on x)= )()( xx BA ωω  

pfdAB=P(A and B fail on randomly chosen demand) = 

∑
∈

ωω
Dx

BA xxxQ )()()( .                    (11) 

It turns out that this expression can be written as: 

pfdAB= PA PB+ cov(ΩA, ΩB),               (12) 

where the random variables ΩA and ΩB are defined as 

the values taken by ωA and ωB on a  randomly chosen 

demand. 

Equation (12) is identical to (9). The only difference 

between the two is that (9) is based on the 'difficulty 

functions' for two “development methodologies”, which 

can take any value between 0 and 1 (representing the 

probability that a randomly chosen version, developed 

with that methodology, would fail on a given demand). 

(12), instead, operates with two known versions. The 

functions ωA(x) and ωB(x) can only take the values 0 and 

1, and the only uncertainty concerns the choice of the 

next demand, x, described by the probability distribution 

Q(x). The description given this far would only be use-

ful if one knew the behaviour of each version on each 

possible demand, i.e., for each demand whether it is a 

failure point or a success point, for each version. This 

level of detailed knowledge is normally unattainable. 

The knowledge that can be obtained is at a much coarser 

level: by realistic testing, one can estimate the likeli-

hood of each version failing on a randomly chosen de-

mand. We can also specialise this knowledge slightly, 

by testing separately for separate classes of demands 

that completely cover the demand space, without any 

overlapping between them (a partition over the demand 

space) 2. We call the subdomains themselves S1, S2, …, 

Sn. We can define the probability of failure of a version 

when subjected only to demands from a specific sub-

domain, e.g. P(A|Si) will designate the probability that 

A fails on a demand chosen randomly from subdomain 

Si, according to the probability distribution of demands 

in actual operation. We can then write the probability of 

common failure as: 

pfdAB=P(A,B)= )()|,( i
i

i SPSBAP∑ .          (13) 

Within each subdomain, clearly: 

P(A,B | Si) ≠ P(A | Si) P(B | Si).                (14) 

Equality would only apply in special cases, e.g. 

hardware-only versions that are subject only to physical 

failures and for which the stress to which they are sub-

ject is known to be constant across a certain class of 

demands. In most cases, one would expect a restricted 

class of demands to pose similar problems to the de-

signers of two versions, so that the EL model would 

apply: in each subdomain, the left-hand term in (14) 

would be greater than the right-hand term. So, in prac-

tice, a regulator can use the sum in the left-hand side of 

the following expression: 
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as a likely claim limit  for the pfd of a two-version sys-

tem.  

Even if formula (14) could be written with an equal 

sign (independent failures of the two versions, condi-

tional on demands from a given subdomain) for all sub-

domains, this would not imply unconditional independ-

ence of failure.  In terms of reliability estimates over 

subdomains, pfdAB can be written, in a general form, as: 

                                                 
2 Subdividing demands into classes is common practice for 
designers (e.g., in terms of modes of operation of a system) 
and software testers, who call these classes sub-domains (in 
the demand space). For instance, testers find it useful to define 
sub-domains on the basis of which 'function' of the program 
(as defined in its requirements) the demands invoke, or on the 
basis of which parts of the code they cause to be executed. 
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pfdAB=P(A) P(B) + cov1 + cov2,             (16) 

where the term cov1 is obtained by considering the pfd 

values of the two versions as functions of the subdo-

mains, and taking their covariance over all the subdo-

mains,  

( )( ) )(()|(()|(cov1 i
i

ii SP)BPSBP)APSAP∑ −−= (17) 

and the term cov2 is obtained by computing the covari-

ance of the Ω functions of the two versions in each sub-

domain, and taking its average over all subdomains: 

( )( ) )(|,covcov 212 i
i

i SPS∑ ΩΩ= .            (18) 

Each term in the inner sum above represents the dif-

ference between the two sides of inequality (14). As-

suming each such term to be 0, i.e., conditional inde-

pendence within each subdomain, makes cov2 equal to 

zero. 
 

Bayesian Assessment 
 

How do these models help one with the selection of 

OTS software to be deployed in a fault-tolerant configu-

ration?  

The models “on average” allows one to structure 

one’s argument – failure independence is unlikely to 

occur. If one decides to argue in favor of failure inde-

pendence then one should build a very strong argument. 

The models “in particular”, indicate that unless full 

knowledge about the channels is attained, there will be 

uncertainty regarding the probability of coincident fail-

ure due to the term cov2, the covariance between the 

channels in the respective sub-domains. The implica-

tions, for justifying having achieved a particular reliabil-

ity target with the fault-tolerant software is that this un-

certainty should be managed, ideally bounded. The 

magnitude of the uncertainty will vary between ‘know 

nothing’ (i.e. the probability of simultaneous failure 

may be anywhere between 0 and the probability of fail-

ure of the more reliable of the two channels in the par-

ticular sub-domain, i.e. diversity buys me nothing in 

terms of dependability improvement) or some quantifi-

cation, e.g. based on the empirical evidence that will be 

accumulated over the life-cycle of the fault-tolerant sys-

tem.  

In the latter case, when new evidence is expected to 

emerge after the deployment of the system,  Bayesian 

assessment techniques [9] seem particularly well suited 

– they allow in a mathematically sound way to combine 

the a priori knowledge (possibly inaccurate, possibly 

largely based on expert judgment) with new empirical 

evidence as it emerges during the life-time of the system 

to produce a more refined a posteriori view on system 

dependability. The conceptual models described above 

will guide the assessor about choosing an adequate 

Bayesian model, i.e. such that would allow the ‘data to 

speak for itself’, i.e. allow the posterior to capture the 

true dependence (positive or negative correlation be-

tween the failures of the channels). Choosing an inade-

quate model, i.e. based on various unreasonable as-

sumptions (e.g. of independence or some parameters 

being known with certainty) will prevent the assessor 

from learning about the system behaviour, a recipe of 

being unpleasantly surprised. An example of an inade-

quate model that I argued against is given in [11]. The 

mistake criticized was assuming that the components 

used to build a software system fail independently. 

There is nothing wrong with the assumption in princi-

ple: provided the components do indeed fail independ-

ently, assuming independence will not be refuted by 

empirical. If independence is assumed merely for con-

venience, i.e. to simplify the calculations, however, and 

evidence is collected against the assumption, then pre-

dictions obtained with the model (i.e. the posterior dis-

tribution of the probability of system failure) may lead 

to uncontrollable error: the prediction may be pessimis-

tic (which may be acceptable, e.g. in safety-critical con-

text although may be expensive – the conclusion that 

the system is good enough may be prolonged merely 

due to using inadequate model), but may also be opti-

mistic, which might be dangerous, as illustrated in [11]. 

In summary, the models described in the previous sec-
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tions will allow one to structure the argument avoiding 

unreasonable simplifications. 

 
Off-the-shelf software 

 
While employing software diversity was seen in the 

past as an expensive method for increasing dependabil-

ity due to the need of building more than one compo-

nent. With off-the-shelf components this problem is 

overcome: there may be many different components that 

will have the required functionality, therefore bespoke 

development may not be required3. Moreover many of 

these components are free and open-source, thus the 

cost of procurement may be non-existent. 

There exist a plethora of available methods for 

COTS assessment, mainly developed for managers in 

the context of non-fault-tolerant solutions. 

The problem of assessment though still remains. If 

we were interested in building a 1-out-of-2 system, sim-

ply choosing the two best components that exist in the 

market may not be enough. What is of interest is how 

well the pair works together. The optimal pair will be 

the one with the lowest probability of simultaneous fail-

ures of both components of the pair. The components 

that form the best pair may not necessarily be the ones, 

which are the best individually. As the conceptual mod-

els described above show the probability of simultane-

ous failure may be reduced by improving the reliability 

of the components or by choosing those with low, pos-

sibly negative correlation between their failures.  

But how can one choose the best pair before the 

OTS components are integrated together?  

Ideally the decision should be based on empirical 

evidence about the products, although very often ‘soft’ 

aspects (e.g. good relationship with the vendors, ven-

dor’s credentials, market position, etc.) are the main 

factors that dictate which components get chosen. Put-

ting this aspect aside, methods are needed to justify the 
                                                 
3 Apart from ‘glue code’ (usually referred to as middleware) 
which may be needed to ensure the components can be de-
ployed for a given system in a coordinated manner as required 
by the particular system context. 

selection so that the pair is likely to deliver the highest 

possible dependability. In this section a summary is 

presented of a recently developed method, which allows 

for rigorous selection procedure, based on empirical 

data that is likely to be available for a wide range of 

OTS software components/products. The method [5] 

based on Bayesian inference, allows one to use expert 

judgment (in defining the priors) and empirical evidence 

about the products considered for selection, such as 

their bug records.  

The method was applied to a set of bugs of several 

off-the-shelf database servers [6] and used these as a 

sample from the stressful environments,  defined by all 

bugs in the servers. The selection of the servers will be 

optimal for the so defined stressful environment, a rea-

sonable option for the particular system in mind – a 

fault-tolerant SQL server. After all the fault-tolerant 

solution with a pair of servers is intended to cope with 

the difficult situations (demands) where the individual 

channels might be deficient.  

Table 1 
The observations for the 6 diverse server pairs on the 
bug reports of the different partitions. In the partition 
column the subscript indicates for which server these 

bugs have been reported. N is the total number of bugs 
run. r1, r2 and r3 represent the counts of bugs which 

caused failure of only the first server, of only the second 
server, and of both servers of the pair, respectively 
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The bugs used in the study have been collected for 

four SQL servers [6], namely PostgreSQL 7.0, Interbase 

6.0, Oracle 8.0.5 and Microsoft SQL server 7 (for the 

sake of brevity referred to as PG, IB, OR and MS). The 

union of the bugs for all the compared COTS products 

forms a stressful demand space, in which there is a par-

tition stressing each of the products. The logs of the 

known bugs are treated as a sample (without replace-

ment) from the corresponding partition (representing the 

server, for which the bug has been reported). The parti-

tions are named nameServerS . Partition XS  is called an 

‘own’ partition for server X and a ‘foreign’ partition for 

any other server Y≠X. The data collected from the bug 

logs is summarized in Table 1.  

The servers are then compared using a Bayesian in-

ference procedure (using the same prior for all serv-

ers/pairs, justified for each of the partitions).  
The results of the comparison are summarized in 

Table  2. 
Table 2 

The percentiles of the probability of system failure 
for each server pair 
50th percentile 99th percentile 

Server Pair 
Prior Posterior Prior Posterior 

PG & IB 0,02 0,12 
PG & OR 0,07 0,19 
PG & MS 0,09 0,20 
IB & OR 0,02 0,14 
IB & MS 0,04 0,14 
OR & MS 

0,3 

0,02 

0.61 

0,14 
 

Quite unexpectedly, it turned out that the best pair is 

the pair formed of two open source products, Interbase 

and PostgreSQL (highlighted in the 99th percentile col-

umn). They scored better than the commercial servers. 

As a validation procedure to assess whether the method 

is trustworthy, the same method was used to compare 

the servers in terms of two non-functional attributes – 

dependability and performance (measured in terms of 

response time on a standard performance benchmark for 

on-line transaction processing for databases, TPC-C). 

The study revealed that Oracle is individually the best 

server, which is in line with the common view that Ora-

cle is the best SQL server. We concluded that the 

method, despite its limitations, may be useful for opti-

mal selection.  

 
Conclusion 

 
This paper surveys a range of topics related to build-

ing fault-tolerant software with off-the-shelf compo-

nents. The current state-of-art in probabilistic modeling 

of fault-tolerant software has provided evidence, both 

theoretical and empirical, against assuming that soft-

ware diversity is likely to deliver failure independence 

“on average”. Empirical studies have shown that soft-

ware development process cannot deliver products with 

consistent reliability: the reliability of a particular single 

version and fault-tolerant software, thus, can vary 

greatly. The probabilistic models “in particular” show 

the nature of uncertainty and a way of managing it in 

the context of Bayesian assessment, which allows one to 

combine expert judgment with empirical evidence. Fi-

nally, we illustrated how Bayesian assessment tech-

niques can be used to make an optimal selection of OTS 

products for building fault-tolerant software. The use-

fulness of the method is demonstrated with complex 

products such as off-the-shelf SQL servers. 
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