
Функціональна безпека та живучість 121

UDC 681.3.068 
 
V. MISHCHENKO 
 
V.N. Karazin Kharkov National University, Ukraine 
 

ONE EXPERIMENT IN USING ENERGY METRICS PROPOSED 
FOR SOFTWARE PROCESS ASSESSMENT 

 
According to the standard IEEE 982, the functions of a measure of software product/process can be provided by 
Halstead’s so called Software Science Measures. We had built a new approach in this area earlier, so that “en-
ergy of specifications” and “work of coding” arose in the new theory that is inherited the old Software Science. 
In particular we obtained theoretical ability to test reliability of software development. Practical using aspects of 
the new measure are investigated on example of development of a real software product. We select one AdaCore 
product which is distributed under open source license. Our example of calculation the metric uses sequence of 
sources that was produced on different stages of this product development. 

 
software process quality, Software Science, metric, Ada language, tokens, program structure, language 
level 

 
The problem  

 
Standard ISO/IEC 9126 [1, 10] requires, roughly 

say, that the software process can be adequately repre-

sented by two phases, which, if necessary, may be re-

peated. The first phase includes such early stages, as 

requirements definition, design specification and source 

code. At this phase the quality of current state of the 

future software product can be estimated in the form of 

internal quality of this product. The second phase starts, 

when developing software reach possibility to be tested 

as a part of the target system (or its simulator). Then the 

quality of developing software product can be evaluated 

in the form of external quality. However, sometimes this 

model may not be enough adequate. Possibly in that 

occasion it would be useful to represent software proc-

ess by sequence of product’s versions. Can we assess 

the reliability of the software product by means of 

evaluating its development process? It leads us to the 

standard IEEE 982 [1, 11], which provides us conditions 

of positive answer. Next, can we assess the reliability of 

such process by means of measuring attributes, which 

reflect changes of source code and documentation?  
We had proposed an answer on this actual question 

at [2]. Note that our approach was based on develop-

ment of Software Science Measures [2 – 4]. The IEEE 

982 [1, 11] allows us to apply them to measuring quality 

of software products and software processes. The new 

measure, named “intellectual heat” [2], is applicable to 

qualities of bough products and processes too [2, 5]. 

However the only offer of use a new metric can not in-

troduce this metric in practice. That is strongly desirable 

to check such metric’s properties as reliability, correct-

ness, meaningfulness, cost effectiveness, availability, 

and indicativeness (ISO/IEC 9126.3,A.2.1 [10]). 

In this paper we present new results of testing the 

mentioned metric to check five mentioned properties in 

relation to applications in the field of scanning analysis 

of formal texts. To simplify our task we restricted our-

selves with applications which code is written in Ada 

language. In that case we could calculate needed attrib-

utes with source code only (without documentation). It 

is possible so any Ada program is self-documented be-

cause of all Ada program units shall be specified con-

cerning their interfaces by means of Ada language one-

self [6]. Earlier elementary problems of Software Sci-

ence metrics for Ada software had been analyzed in [7]. 

 
New metric and the task statement 

 
We shall consider the next attributes [2] of sources: 

E  – specification energy; 

© V. Mishchenko 
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2007, № 8 (27)



Функціональна безпека та живучість 122 

A  – work of coding (meaning, it is “in ideal case”); 

AEQ −=  (informational heat of software devel-

opment) or alternatively 

),max( AEQq =                           (1) 

– normalized informational heat currency. 

E , A  are different generalizations [8] of Halstead’s 

measure for programming efforts, which defined by him 

for simple subprograms only [4].  

We define the metric, which would be named “En-

ergy compliance”. Purpose of the metric is question 

“How compliant are the actual directions of informa-

tional heat to the required directions?” Its attribute shall 

be evaluated for sequence of product’s versions 1S  (ear-

liest), .. nS  (latest). Let ( )ii Sqq = . The formula is 

nCCX n )..( 1 +=    )11( ≤≤− X ,   (2) 

where 1=iC  if iq complies general description of iS , 

1−=iC  if not complies, and 0=iC  if is vague. 

General description (GD) for iS  is manager’s pre-

diction (or conclusion): what should be focusing the 

work on this version? Either is it design or coding? 

To evaluate (2) for a versions we shall define the re-

liability level ( )1;0∈α . Then we must extract the for-

mal interpretation from each general description. Alter-

native interpretations are “The release focuses on the 

design of the structure” ( iq<α  is complied, 

αα ≤<− iq2  is vague), “Work focuses on the devel-

opment of the code” ( α−<iq  is complied, 

2αα <≤− iq  is vague), “Feature is the balance ef-

forts to design and coding.” ( 2α≤iq  is complied, 

αα ≤< iq2  is vague). So our metric is meaningful 

enough. 

Our task is to investigate others of required proper-

ties of this metric, relying both on the logical considera-

tions and on the experiment on the real example. 

 
Minimizing subjective factors 

 
Most of the properties of the metric (2) depend on 

objectivity of measurement needing attributes. 

 
Fig. 1. The scheme of program structure (SPS) for 
SS_Ada_Scanner that help us count tokens of programs 
 

We could have two sources of human misunder-

standing. First is erroneous GD (general description), 

and second is inaccuracy of them formal interpretation. 

Therefore, preparing applications of this metric, it is 

necessary to enforce methodological recommendations. 

Table 1 

Classification of “tokens of programs” for Ada language 

Kind 
numbers

Description Examples

1- 11 11 from 16 Ada delimeters &           >
12 - 18 7 from 10 compound delimeters ..          <>

19 All programmer’s identifiers My_Prog 
20-53 39 from 64 reserved words abs 
54-57 Different forms of number -47.0 
58-61 Characters, strings, comments ‘a’ “Aa”-- 
62-69 Others simple or compound de-

limiters, their groups 
(        ) 
<<    >> 

70-113 Others reserved words, their 
groups 

abort 
with abort 

Now we shall assume that source code under con-

sideration is written in Ada. The first technical problem 

is description of “counting strategy” (see, for example, 

[7]). In order to overcome it, we have a precise defini-



Функціональна безпека та живучість 123

tion of all possible types of Halstead’s “tokens of pro-

grams” for Ada 95 language (see table 1). However, we 

make no distinction between operators and operands [9]. 

Because of context dependences the scanner of to-

kens is based on the recognizer with stacks. The scanner 

structure is shown on the fig. 1 (the packages are shown 

as rectangles, subprograms as ovals, subunit depend-

ences as “→ ”, context dependences as “⇒ ”). 

The second factor of possible unreliability is our 

metric relates to the calculation of specification energy: 

( ) { } )( ,
i

jk
i

k
i

i k

k
i BGGEE ==∑∑ ,             (3) 

where i  – index of library unit iL , that is any (generic) 

package declaration or any subprogram body; 

k
iG  – group of so called SPS-blocks jk

iB ,  of iL , 

which are subprograms, tasks without entries, or entries. 

There are three strong signs that the blocks belong to 

a particular group. The first sign is that they are in-

cluded in the task, protected unit, or package. The sec-

ond is that they are operators under the same type. The 

third is that a group is pointed by suitable commentary. 

Otherwise the system of groups, and, thereby, the im-

portance of measure X  (see (1) – (3)) are under doubts.  

The last of technical problems relates to the fact that 

our computing method is based on potential vocabulary 

∗η  [4, 2], it is not as in [11]. The ∗η  depends on ∗η2  as 

in [4], but we have defined it strongly: 

212 jjp ⋅+=∗η ,                          (4) 

where ∗
2η  – number of potential operands of a SPS-

block [2]; p  – number of all formal parameters of this 

block; 1j  – number of files are accessible in the body of 

this block; 2j  – total number of input-output operators. 

We may conclude that we have justified the proper-

ties of the metric: reliability, availability, correctness. 

 
First test of effectiveness 

 
Here we consider the first experience in test cost ef-

fectiveness of our metric. That is cost-benefit relation. 

We tried to answer question “Will we obtain more 

important result if we apply more expense?”[10]. The 

analysis object was AdaCore tool gnatpp [12]. On be-

ginning of 2007 it had 45 compilation units, which pro-

gram volumes [4, 11] were distributed as is in table 2, 

were volumes measured in unit named “Halstead” [8], 

tokenbitHd ×= 10001                        (5) 

Table 2 
Number of gnatpp units in different ranges of volume  

Range 0..1 1..4 4..16  16..32 32..64 

Number 17 11 7 7 3 

The attribute A , which is needed for q  according to 

(1), depends on volumes of all compilation units. In 

case of gnatpp our SS_Ada_Scanner calculates these 

volumes for 5-10 min including timeouts to check each 

calculated value visually. However attributes A  and E  

both are calculated on base of analysis all SPS-blocks 

too. The gnatpp source from 2007-01 contains approxi-

mately 500 such blocks. 228 of them require careful 

human attention to union them to round 20 groups. The 

“handle” analysis occupies around one work day. Our 

experience allows us to design such tool which will 

shorten that time to one hour. Anyway, it seems essen-

tial expenses. Let us first present gnatpp process by 

means the pair of versions: initial (2001-06) and final 

(2007-01). Since 5,0,5,0 −<> fininit qq , we conclude 

that the first is designed structure of the software, and 

later its code. In such cases, 1.0 is the most likely value 

of the attribute (2), and it is not informative. A much 

more important result would be to determine when the 

development has reached the balance? This must con-

sider intermediate versions of the product (e.g. three, 

see table 3). In doing so, we have sought that the turning 

point was 2002 (at any level of reliability > 0,12). Now 

it is informative. Indeed, if any link between the GD and 

q  is absent, the probability of such a value may be 0,17, 

and even with a reasonable guess it may be only 0,25. 

If we examine more intermediate releases, probabil-

ity of 1≈X  (2) with arbitrary descriptions will be even 

less. So do not doubt the efficiency of additional costs. 



Функціональна безпека та живучість 124 

Table 3 

Profile of metric Energy Compliance for rel.-s of gnatpp 

r. init 2001-09 2001-12 2003-01 fin 

q 0,71 0,40 0,12 -0,57 -0,58 

Note, in calculating energy (3) with the help of for-

mulas [4, 2], we used an indicative value 1.5 of the Ada 

language level λ . At the same time, our study provides 

statistics useful to clarify this value in the future. 

Table 4 

Number of gnatpp library units in different ranges of λ  

Range 0..0,57 0,57..1,7 1,7..5 5 ..15 15..∞

Number 14 3 4 1 1 

 
Conclusion 

 
The new software process metric has been defined. 

It uses modernized Hallstead’s measures as primitives. 

It is of the subcategory Management Control, though 

old Hallstead’s process metrics belong to another.  

In relation to this metric, we had explored properties 

of reliability, availability, cost effectiveness, correct-

ness, and meaningfulness. Efforts of the metric calcula-

tion had been evaluated on the real sample. Regarding 

Ada units of a real software project, the language level 

had been obtained in the form of heuristic distribution. 

It would be desirable to test indicativeness [10] of 

this metric. 

 
References 

 
1. Kharchenko V.S., Sklyar V.V., Tarasyuk O.M. 

Methods of modeling and estimation of quality and reli-

ability of the software. – Manual. – Kharkov: National 

aerospace university “KhAI, 2004. – 159 p. [in Russian]. 

2. Mishchenko V.O. Mathematical model of style 

Software Science for the metric analysis of complex 

scientific programs // Bulletin of V. Karazin Kharkiv 

National University. – 2004. – №629. Series “Mathe-

matical Modeling. Informational Technologies. Auto-

mated Control Systems” Issue 3. – P. 70-85 [in Russian]. 

3. Mishchenko V.O. Software of DSM: a role of 

mathematical models of reliability and labor input // Pro-

ceedings of International school-seminars «DSMM-Ph», 

Oryol, OSU, 2006. – Vol. 4. – P. 73-80 [in Russian]. 

4. Halstead M.H. Elements of Software Science / 

Translation from Englesh to Russian by Yufa V. – M.: 

Finance and Statistics, 1981. – 128 p. 

5. Gahov A. Testing a new approach to the analysis 

of projects development using generalization parameters 

offered by software science // Transactions of Interna-

tional Conference SCALNET’04, 28-30 September 

2004. – P. 118-120. 

6. John Barnes. Programming in Ada 2005. – Addi-

son-Wesley. Pearson Education. – 2006. – 828 p. 

7. Miller D.M., Maness R.S., Howatt J.W., Shaw 

W.H. A software science counting strategy for the full 

Ada language //ACM SIGPLAN Notices, May 1987, 

Volume 22 Issue 5, ISSN:0362-1340. – P. 32-41. 

8. Mishchenko V.O. The application of mathemati-

cal modeling to system analysis of software supplied the 

method of discrete singularities // Transactions of VII 

International Symposium “Discrete Singularities Meth-

ods in Mathematical Physics”– Theodosia, 1997. – 

P. 117-120 [in Russian]. 

9. Mishchenko V.O. Improvement of Halstead’s 

mathematical model and its development to assess met-

rical characteristics of modern software // Mathematical 

Modeling. Scient.Transactions / NAS Ukraine, In-t of 

Mathematics. – Kiev, 1996. – P. 180-181. 

10. “ISO/IEC TR 9126 3:2003”. – [Електр. ресурс]. 

– Режим доступу: http://www.iso.org/iso/en/ Cata-

logueDetailPage.CatalogueDetail?CSNUMBER=22891. 

11. “982.1” (IEEE Computer Society Document). – 

[Електр. ресурс]. – Режим доступу: http: 

//members.aol.com/geshome/IEEE982/IEEE9821.pdf. 

12. “ASIS”. – [Електр. ресурс]. – Режим доступу: 

http://www.adacore.com/home/gnatpro/add-on_techno 

logies/asis. 

 
Надійшла до редакції 5.04.2007 

 
Рецензент: д-р техн. наук, проф. В.С. Харченко, 
Національний аерокосмічний університет  
ім. М.Є. Жуковського «ХАІ», Харків. 




