УДК 621.396

В.К. ВОЛОСЮК 1 , В.В. ПАВЛИКОВ 2 , В.Ю. СЕВОСТЬЯНОВ 2

¹ Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина ² Харьковский университет Воздушных Сил им. И. Кожедуба, Украина

ИСПОЛЬЗОВАНИЕ НОВЫХ ОКОН КРАВЧЕНКО ПРИ ГАРМОНИЧЕСКОМ АНАЛИЗЕ МЕТОДОМ ДИСКРЕТНОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Приведен обширный каталог окон и таблица их основных параметров, позволяющая сравнивать их характеристики. Сформированы новые окна на основании прямого произведения классических окон и корней из атомарных функций. Приведен пример, иллюстрирующий значение правильного выбора окна для разрешения близких по частоте, но сильно отличающихся по амплитуде гармонических сигналов. Показано, что для решения данной задачи целесообразно применять некоторые предложенные окна, полученные с помощью веса Хемминга.

весовые окна, антенные окна, атомарные функции, окна Кравченко, взвешивание

Введение

Обработка радиолокационных сигналов обычно сводится к решению задач двух типов - задачи обнаружения и задачи оценивания. Решение задачи обнаружения должно дать ответ на вопрос, наблюдается ли в данное время некоторый сигнал с априорно известными параметрами. Оценивание - это задача измерения значений параметров, описывающих сигнал. В не зашумленном виде сигнал принять сложно, так как на него накладываются мешающие сигналы и помехи. Для упрощения указанных задач сигнал обычно разлагают по базисным составляющим пространства сигналов [1]. В статье используется разложение по базису, состоящему из простых периодических функций sin и cos, которое выполняют с помощью классического преобразования Фурье.

Использование преобразования Фурье в чистом виде затруднено из-за необходимости иметь бесконечную длительность обрабатываемой последовательности. На практике обрабатываемый сигнал всегда имеет конечную длительность. Длительность сигнала можно, разумеется, менять и регулировать, но она обязательно должна быть конечной. При об-

работке сигналов конечной длительности возникают некоторые особенности, которые необходимо учитывать в ходе гармонического анализа. Конечность интервала наблюдения влияет на обнаружимость тонов в присутствии близких сильных тонов, на разрешимость тонов меняющейся частоты и на точность оценок параметров всех вышеупомянутых сигналов.

Известно, сигналы обычно подвергаются двум операциям — дискретизации и сглаживанию с помощью окон. Вопросам дискретизации и сглаживания при использовании классических окон уделено достаточно литературы, но не всегда эти окна удовлетворяют необходимым требованиям к показателям качества.

Цель статьи. Получение новых окон Кравченко [2] путем прямого произведения во временной области окна Хемминга и атомарных функций семейства $fup_N(n)$ в 1/m-й степени, определить их параметры и выполнить сравнение с существующими классическими и сконструированными окнами, показать целесообразность применения полученных окон в гармоническом анализе (для антенных окон [3] полученные результаты также справедливы) путем компьютерного моделирования.

Окна и их основные параметры

В гармоническом анализе окна используются для уменьшения нежелательных эффектов просачивания спектральных составляющих за счет уменьшения порядка разрыва на границе периодического продолжения сигнала путем мультипликативного воздействия на этот сигнал [4]. Один из способов, обеспечивающий такое согласование, — сделать эти производные равными или, по крайней мере, близкими к нулю (взвешенные данные вблизи границ интервала плавно стремятся к нулю, так что периодическое продолжение сигнала оказывается непрерывным вплоть до производных высших порядков).

Параметры окон [2, 5, 6]:

- эквивалентная шумовая полоса (ЭШП, бин);
- корреляция перекрывающихся участков (КПУ, на уровне 50% и 75% перекрытия);
 - паразитная амплитудная модуляция (ПАМ, дБ);
 - максимальные потери преобразования (ПП, дБ);
- максимальный уровень боковых лепестков (УБЛ, дБ);
- ширина полосы пропускания по уровню 6 дБ ($U\!U\Pi\Pi_{-6\partial E}$);
- ширина полосы пропускания по уровню 3 дБ ($U\!U\Pi\Pi_{-3\partial E}$);
 - когерентное усиление (КУ).

В табл. 1 приведены значения параметров для классических, сконструированных и новых предложенных окон.

Таблица 1 Параметры окон

	Tupuno par onon									
№	Параметры окна	ЭШП	КПУ	ПАМ	МПП	УБЛ	Ш -6дБ	Ш -3дБ	КУ	
1	2	3	4	5	6	7	8	9	10	
1	Бартлетта-Ханна	1,463143	18,68774	1,502724	3,155593	-35,92215	1,9497	1,407	0,497512	
2	Бартлетта	1,340067	24,99625	1,805521	3,076786	-26,52629	1,78086	1,28238	0,497512	
3	Блэкмана	1,735391	8,962574	1,087886	3,48186	-58,15089	2,3115	1,65222	0,41791	
4	Блэкмана-Хэрриса	2,014371	3,760303	0,817353	3,858748	-92,04047	2,67732	1,9095	0,356965	
5	Чебышева (-50)	1,397786	21,92625	1,670438	3,124844	-50,00438	1,86126	1,33464	0,523306	
6	Финитный синк	3,787749	1,380001	0,0167	5,800512	-67,7806	4,61496	3,75066	0,214532	
7	Гаусса	1,445577	19,68679	1,580241	3,180654	-43,25685	1,92156	1,37484	0,495101	
8	Хемминга	1,367723	23,47571	1,74014	3,100123	-42,68176	1,82106	1,31052	0,537711	
9	Ханна	1,5075	16,66667	1,409257	3,19183	-31,49122	2,01	1,45122	0,497512	
10	Кайзера	1,000338	49,254	3,845565	3,847032	-13,62977	1,22208	0,89646	0,97978	
11	Натолла	1,98597	4,1767	0,842125	3,821851	-97,67046	2,64114	1,88136	0,361775	
12	Парзена	1,91746	5,130409	0,897618	3,724882	-53,04759	2,5527	1,82106	0,375	
13	Прямоугольное	1	50	3,922309	3,922309	-13,2843	1,21002	0,88842	1	
14	Треугольное	1,326798	25,74621	1,842616	3,070663	-26,52054	1,76478	1,27032	0,502488	
15	Рисса	1,20606	34,37187	2,201604	3,015294	-21,29964	1,59996	1,16178	0,663333	
16	Римана	1,299069	27,74141	1,891199	3,027522	-26,40769	1,73262	1,25424	0,589482	
17	Валле - Пуссена	1,889599	5,629249	0,924404	3,688101	-53,01075	2,5125	1,79292	12,9403	
18	Пуасона (а-2)	1,316058	27,83368	2,025854	3,218604	-19,1683	1,70448	1,21806	0,430869	
19	Пуасона (а-2,5)	1,478031	20,85918	1,701874	3,398709	-26,22371	1,88538	1,33062	0,365767	
20	Пуасона (а-3)	1,663232	15,11731	1,429797	3,639325	-24,8125	2,09442	1,45926	0,315433	
21	Тьюки (а=0,1)	1,043975	48	3,470705	3,657607	-13,33156	1,27836	0,94068	0,945274	
22	Тьюки (a=0,3)	1,13019	43,07692	2,77013	3,301646	-13,78498	1,41906	1,04118	0,845771	
23	Тьюки (a=0,5)	1,5075	16,66667	1,409257	3,19183	-31,49122	2,01	1,45122	0,497512	
24	Бомана	1,79467	7,384157	1,012815	3,55266	-46,0055	2,3919	1,71252	0,403268	
25	Хеннинга-Пуассона а=0,5	1,602368	13,08538	1,270356	3,317979	-35,18791	2,13462	1,5276	0,434715	
26	Хеннинга-Пуассона а=1	1,727405	9,640207	1,121723	3,495664	без лепест- ков	2,28738	1,63212	0,379896	
27	Хеннинга-Пуассона а=1,5	1,866551	6,953918	0,990678	3,701076	без лепест- ков	2,45622	1,74066	0,335117	

Продолжение таблицы 1

		1	I						
1	2	3	4	5	6	7	8	9	10
28	Коши (а=3)	1,493513	20,21715	1,663658	3,405749	-30,95517	1,91352	1,3467	0,414773
29	Коши (а=4)	1,782103	13,17904	1,327595	3,836922	-25,91192	2,22306	1,52358	0,330097
30	Коши (а=5)	2,082748	9,04171	1,101893	4,288261	-31,22094	2,5527	1,69644	0,273504
31	X * fup4(t)^(1/10)	1,449031	19,40853	1,559367	3,170145	-46,3778	1,9296	1,38288	0,503822
32	X * fup5(t)^(1/10)	1,4623	18,79886	1,532588	3,182953	-46,9749	1,94568	1,39494	0,498751
33	X * fup6(t)^(1/10)	1,475496	18,20703	1,506632	3,196012	-47,56424	1,96578	1,407	0,493834
34	X * fup7(t)^(1/10)	1,488627	17,63223	1,481444	3,209303	-48,14877	1,98186	1,41906	0,48905
35	X * fup8(t)^(1/10)	1,501693	17,07409	1,456995	3,222805	-48,72789	1,99794	1,43112	0,484394
36	X * fup4(t)^(1/20)	1,408557	21,36073	1,645589	3,133333	-44,53941	1,87734	1,3467	0,520019
37	X * fup5(t)^(1/20)	1,415267	21,02733	1,630814	3,139199	-44,84306	1,88538	1,35072	0,517238
38	X * fup6(t)^(1/20)	1,421957	20,69886	1,616285	3,145151	-45,14393	1,89342	1,35876	0,514505
39	X * fup7(t)^(1/20)	1,428632	20,37501	1,601984	3,151188	-45,44376	1,90146	1,36278	0,511811
40	X * fup10(t)^(1/20)	1,44857	19,43035	1,560383	3,169778	-46,33695	1,9296	1,38288	0,503962
41	Ч * fup4(t)^(1/10)	1,347958	24,6713	1,80709	3,103855	-43,53138	1,7889	1,2864	0,543261
42	Ч * fup5(t)^(1/10)	1,361522	23,91689	1,771789	3,112037	-44,1146	1,809	1,29846	0,536909
43	Ч * fup6(t)^(1/10)	1,37509	23,18127	1,737678	3,120989	-44,69892	1,8291	1,31052	0,530772
44	Ч * fup7(t)^(1/10)	1,38866	22,46396	1,704675	3,130634	-45,28517	1,84518	1,32258	0,524824
45	Ч * fup8(t)^(1/10)	1,402221	21,76505	1,67274	3,140904	-45,87242	1,86528	1,33464	0,519058
46	Ч * fup4(t)^(1/20)	1,307173	27,06142	1,921603	3,084935	-41,75743	1,73262	1,2462	0,563742
47	Ч * fup5(t)^(1/20)	1,313857	26,65687	1,901929	3,08741	-42,04555	1,74468	1,25424	0,56021
48	4 * fup6(t)^(1/20)	1,320551	26,2569	1,882613	3,090166	-42,33377	1,75272	1,25826	0,556746
49	Ч * fup7(t)^(1/20)	1,32726	25,86122	1,863626	3,093186	-42,62255	1,76076	1,2663	0,553339
50	Ч * fup10(t)^(1/20)	1,347457	24,70019	1,808567	3,103717	-43,49047	1,7889	1,2864	0,543453
51	$\Gamma * \text{fup4(t)}^{(1/10)}$	1,529342	16,11233	1,420946	3,265993	-47,5378	2,03412	1,45122	0,466595
52	Γ * fup5(t)^(1/10)	1,542945	15,58256	1,397303	3,280807	-48,22784	2,0502	1,46328	0,462306
53	Γ * fup6(t)^(1/10)	1,556456	15,06973	1,374376	3,295746	-48,96833	2,0703	1,47534	0,458143
54	$\Gamma * fup7(t)^(1/10)$	1,569885	14,57303	1,352118	3,310798	-49,72324	2,08638	1,4874	0,454087
55	Γ * fup8(t)^(1/10)	1,583232	14,09198	1,330504	3,32595	-50,44345	2,10246	1,49946	0,450134
56	$\Gamma * \text{fup4(t)}^{(1/20)}$	1,487748	17,81891	1,496976	3,222269	-45,34791	1,97784	1,41102	0,48025
57	$\Gamma * \text{fup5(t)}^(1/20)$	1,49466	17,52624	1,48395	3,229374	-45,69935	1,98588	1,41906	0,477908
58	$\Gamma * \text{fup6(t)}^{(1/20)}$	1,501546	17,23838	1,471139	3,236525	-46,05275	1,99794	1,4271	0,475606
59	Γ * fup7(t)^(1/20)	1,508411	16,95503	1,458525	3,243721	-46,40821	2,00598	1,43112	0,473336
60	Γ * fup10(t)^(1/20)	1,528888	16,13102	1,421816	3,265573	-47,49055	2,0301	1,45122	0,46671
61	БX * fup4(t)^(1/10)	2,073996	3,080496	0,772731	3,94081	-94,18265	2,75772	1,96578	0,346167
62	БX * fup5(t)^(1/10)	2,08374	2,980284	0,765782	3,954218	-97,00163	2,76978	1,97382	0,34446
63	БX * fup6(t)^(1/10)	2,09344	2,883366	0,758956	3,967562	-98,25266	2,78184	1,98186	0,342786
64	БX * fup7(t)^(1/10)	2,103099	2,789599	0,752247	3,980845	-98,95745	2,79792	1,9899	0,341135
65	БX * fup8(t)^(1/10)	2,11272	2,698859	0,745651	3,99407	-99,56275	2,80998	2,00196	0,339507
66	БX * fup4(t)^(1/20)	2,044348	3,403879	0,794461	3,900008	-93,87811	2,71752	1,93764	0,351447
67	БX * fup5(t)^(1/20)	2,049278	3,348194	0,790788	3,906796	-95,16118	2,72556	1,94166	0,350553
68	БX * fup6(t)^(1/20)	2,054194	3,293457	0,78715	3,913565	-95,75009	2,7336	1,94568	0,34967
69	БX * fup7(t)^(1/20)	2,059099	3,239632	0,783545	3,920316	-96,0601	2,73762	1,9497	0,348793
70	БX * fup10(t)^(1/20)	2,073748	3,083371	0,772921	3,940481	-97,02964	2,75772	1,96578	0,346201

Гармонический анализ

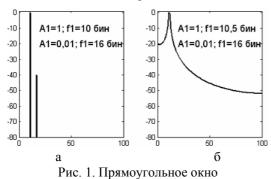
Воспользуемся простым экспериментом, предложенным [5], для демонстрации влияния свойств окна на эффективность обнаружения слабой спек-

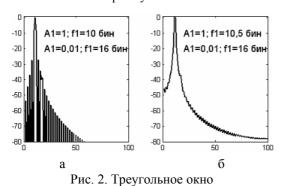
тральной линии в присутствии интенсивной близко расположенной линии. Если обе спектральные линии попадают в бины ДП Φ , то каждая из них по отдельности может быть идентифицирована с помощью прямоугольного окна (рис. 1, а). Никаких

взаимных помех при этом не возникает. Чтобы показать это, рассмотрим сигнал, имеющий две спектральные составляющие с частотами 10 и 16, соответствующими десятому и шестнадцатому бинам ДПФ, и нормированными амплитудами 1,0 и 0,01:

$$\sin\left(\frac{2\pi}{N}10n\right) + 0.01\sin\left(\frac{2\pi}{N}16n\right),\tag{1}$$

где n — вектор отсчетов времени;


N = length(n) - длина вектора n.


Кривые на рис. 1-22 для некоторых окон из таблицы построены посредством интерполяции значений ДПФ. На всех рисунках по оси абсцисс отложены значения частоты в бинах, по оси ординат – амплитуда гармоники в дБ.

Немного изменим сигнал так, чтобы более интенсивная спектральная линия попала между двумя бинами ДПФ, т.е. будет теперь иметь частоту 10,5. Частоту слабой линии оставим прежней:

$$\sin\left(\frac{2\pi}{N}10.5n\right) + 0.01\sin\left(\frac{2\pi}{N}16n\right). \tag{2}$$

На рис. 1-22 приведены два рисунка для каждого окна: a- результат гармонического анализа при частотах 10 и 16 бин; 6- при 10,5 и 16 бин.

Из рис. 1, б следует, что структура боковых лепестков сильного сигнала при равномерном распределении весов и значении частоты нецелому значению бин, покрыла главный лепесток слабого сигнапа

Подобными недостатками обладают и окна, приведенные на рис. 2, а, 2, б, 3, а, 3, б, 4, а, 4, б, 8, а, 8, б, 12, б. Эти весовые коэффициенты использовать в задачах гармонического анализа нецелесообразно в связи с пропуском слабой близко расположенной составляющей сигнала.

В данном случае эти окна для сильного сигнала имеют боковые лепестки на расстоянии 5,5 бин выше уровня слабого сигнала. Асимметричность спектра некоторых окон относительно главного лепестка с центром на 10,5 бин — это результат когерентного суммирования лепестков пары ядер, расположенных на частотах $\pm 10,5$ бин.

На рис. 9, а, 14, а, 14, б, 19, а, 20, а изображено наличие артефакта, вызванного когерентным суммированием боковых лепестков на этих частотах. Результат интерпретации приведет к неоднозначности количества составляющих сигнала.

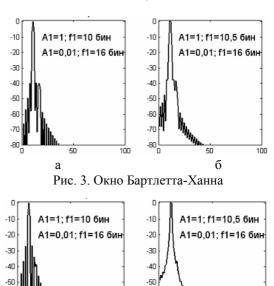
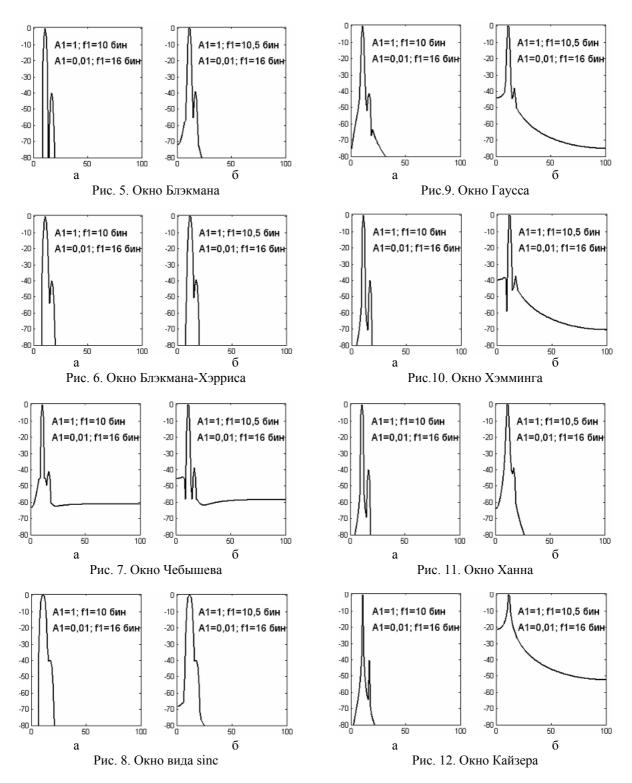


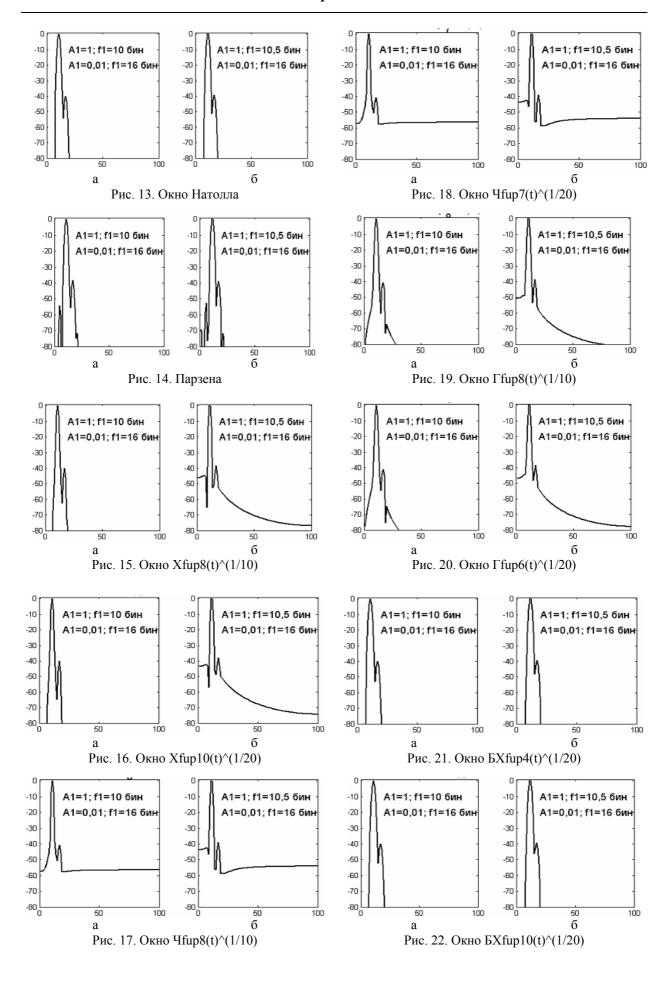
Рис. 4. Окно Бартлетта

100

-60

-70


-60


а

На рис. 5, а, 5, б, 6, б, 7, б, 10, а, 11, а, 12, а, 13, а, 13, б, 15, а, 16, а, 17, а, 18, а, 19, б, 20, б, 21, а, 21, б, 22, а, 22, б приведены уверенные обнаружения обе-их составляющих сигнала. При этом из рис. 7, б, 10, б, 17, б, 18, б следует, что высокий уровень бо-ковых лепестков со стороны нулевой частоты (просачивание) может привести к неуверенному обна-

ружению и возможной неоднозначности. К недостатку веса Чебышева относят постоянный уровень боковых лепестков, который может быть выше слабого сигнала.

На рис. 10.б, 11.б представлено ненадежное обнаружение – разница между максимумом слабого сигнала и величиной провала около 3 дБ.

Этого недостатка лишены окна, представленные на рис. 15, 16, имеющие разницу по провалу в 10-15 дБ и по разности уровней малой амплитуды и боковыми лепестками просачивания порядка 5-7 дБ.

Приемлемые результаты для окон Блэкмана (рис. 5), Блэкмана-Хэрриса (рис. 6), Натолла (рис. 13) вызваны низким уровнем боковых лепестков (табл. 1). К недостаткам этих весов, применительно к антенным окнам можно отнести относительно широкий основной лепесток, что негативно сказывается на разрешении сигналов с близкими частотами.

Оптимальными параметрами (минимум ширины основного лепестка и минимум уровня боковых лепестков) обладают окна Кравченко на основании прямого произведения веса Хемминга с атомарными функциями $fup_8^{1/10}(n)$ и $fup_{10}^{1/20}(n)$ изображенные на рис. 15, 16. Окно Хемминга, как следует из рис. 10, не является оптимальным вследствие малой разности между уровнем слабого сигнала и просачивания по отрицательным частотам.

Заключение

В статье рассмотрен ряд классических и сконструированных уже существующих, а также новых окон и их применение в гармоническом анализе двухчастотного сигнала с благоприятным и неблагоприятным значением частоты сильного тона. Показано, что новые окна, сконструированные с помощью прямого произведения окна Хемминга и атомарных функций, обладают высокими показателями качества. Максимальные потери данных окон не превышают 3,23 дБ (для хороших окон лежит в пределах 3.0 - 3.75 дБ [3]). По уровню боковых лепестков получили выигрыш в 2 – 6 дБ в сравнении с окном Хемминга, при этом наблюдается незначительное расширение ЭШП (порядка 0,04 – 0,18 бин). К тому же уровень ПАМ ниже, нежели у веса Хемминга и некоторых других весов, а этот параметр влияет на обнаружимость и точность оценивания составляющих сигнала [5].

Визуально приемлемые результаты получены с использованием окон Кравченко на основании прямого произведения веса Хемминга и атомарных функций $fup_8^{1/10}(n)$ и $fup_{10}^{1/20}(n)$, это вызвано низким уровнем ПАМ и оптимальным соотношением ширины спектрального окна и низкого уровня его боковых лепестков. К их недостаткам можно отнести некоторое уменьшение провала между пиками спектра при совпадении частот сигнала с базисными частотами.

Литература

- 1. Трахтман А.М., Трахтман В.А. Основы теории дискретных сигналов на конечных интервалах. М.: Сов. радио, 1975. 208 с.
- 2. Кравченко В.Ф. Лекции по теории атомарных функций и некоторым их приложениям: Монография. М.: Радиотехника, 2003. 512 с.
- 3. Зелкин Е.Г., Кравченко В.Ф., Гусевский В.И. Конструктивные методы аппроксимации в теории антенн. М.: САЙНС-ПРЕСС, 2005. 512 с.
- 4. Кравченко В.Ф., Басараб М.А., Перес-Меана Х. Спектральные свойства атомарных функций в задачах цифровой обработки сигналов // Радиотехника и электроника. – 2001. – Т. 46, № 5. – С. 534-552.
- 5. Хэррис Ф.Дж. Использование окон при гармоническом анализе методом преобразования Фурье // ТИИЭР. 1978. Т. 66, N 1. С. 60-95.
- 6. Обработка случайных сигналов и процессов: Учеб. пос. / А.Н. Беседин, А.А. Зеленский, Г.П. Кулемин, В.В. Лукин. Х.: Нац. аэрокосм. ун-т "Харьк. авиац. ин-т", 2005. 469 с.

Поступила в редакцию 16.01.2006

Рецензент: д-р техн. наук, проф. Э.Н. Хомяков, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.