
Надійність програмного забезпечення 136

UDC 004.891.3 : 004.3

Т.О. GOVORUSCHENKO

Khmelnitskiy National University, Ukraine

DETERMINATION OF NECESSITY AND ADVISABLE METHOD(S)
OF REPEATED APPLICATION SOFTWARE TESTING

In article the repeated software testing system, which prognoses hidden mistakes presence in software after basic
testing and proposes repeated application software testing method(s), is presented. Results of proposed system
functioning are represented.

Repeated software testing, Repeated software testing system, Technique of prognostication of hidden mis-
takes presence, Forming logical deduction rules, Forming logical deduction technique and algorithm.

Preamble

Software testing is one of the basic methods guaran-

teeing software reliability. In general, there are a lot of

conceptions and interpretations of software testing. One

of the most common is interpretation, when by testing is

implied denials finding process caused by program mis-

takes presence [1]. The interpretation of testing as start-

ing of source code with testing data and research soft-

ware system output data and software product perfor-

mance capabilities for control of system functioning

accuracy [2] is worthy of respect. The most widespread

interpretations of testing is interpretation, when the test-

ing essence lies in functioning programs controlling by

results of their realization using special neat input data

(tests) [3]. It, per se, is the method of finding of soft-

ware mistakes presence by test data processing and refe-

rencing testing results with predicted results.

The basic testing is conducted on the different soft-

ware life cycle phases, especially, on the planning

phase, design phase, encoding phase. On the planning

phase analysis and evaluation of software requirements,

descriptions and compatibility option is conducted. On

the design phase there is no source code of program yet,

completely formalized and detailed declared ideas are

tested. Project conformance to documentation require-

ments, description by project of all correlations and data

transfer between modules requires a special attention.

On the encoding phase complete program is tested.

Problem formulation

Presently the problems of test programs development

are actual: 1) application software size increases, caused

by corporative problems and large analytical problems

solving, huge data arrays processing, functioning in great

different directions; 2) existing test software correctly

functions for previous versions application software, but

is not effective for modern application software, because

does not overtake development dynamics and does not

take into account of it special features.

In addition, software failures may be raised by hid-

den mistakes. This way such mistakes could be found in

rare cases. Therefore such mistakes were found only in

process of long software running. The hidden mistakes

are the most dangerous. So, main research task is de-

velopment of techniques and means of software testing

effectiveness increasing using the hidden software mis-

takes finding in repeated testing process. Repeated test-

ing is realized as individual technological process after

software development and debugging.

1. Problem solving

1.1. Conception of hidden mistakes
category levels

As for software mistakes distribution into their kinds

and influence on computer system functioning, their

distribution by the priorities and categories is known in

literature [4]. Mistakes distribution by the priorities is

 Т.О. Govoruschenko
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2006, № 6 (18)

Надійність програмного забезпечення 137

done in compliance with mistakes influence level de-

termination norms.

Accurate definition of that viewpoint of hidden mis-

takes description was produced [5]. All hidden mistakes

were divided by kinds on insignificant (I), moderate

(M), serious (S) and catastrophic (C).

By Insignificant (I) hidden mistakes will think such

mistakes, which do not influence on user actions, pro-

gram product with their presence suitable for use.

By Moderate (M) hidden mistakes will think such

mistakes, which influence on user actions, but program

product with their presence will be suitable for use with

loss of some functionality.

By Serious (S) hidden mistakes will think such mis-

takes, which gives rise to false results, by reason of

what program product is unusable.

By Catastrophic (C) hidden mistakes will think such

mistakes, which gives rise to disfigurement over infor-

mation (data), by reason of what program product is

unusable and results of its work gives rise to failure of

computer system.

Insignificant hidden mistakes were classified as a

lowermost level category – first (1). Moderate hidden

mistakes were classified, accordingly, a level second;

serious - level third. Highest by level thought a cata-

strophic – level fourth. Classified by rank, levels of hid-

den mistakes are four.

Certain quantity of the insignificant mistakes (I)

gives rise to appearance of several moderate mistakes

types (M), which, in one’s turn, gives rise to appear-

ance of certain serious mistakes quantity (S), and they,

accordingly, gives rise to catastrophic mistakes (C).

1.2. Repeated software testing system

For solving of problem of software testing efficiency

increasing was developed repeated software testing sys-

tem [6], on entrance of which report of basic testing in

the form of register “Testing method – Testing opera-

tion – Finding mistake type”.

Composition of reports about basic testing process

and results is made not always, but firms and collec-

tives, who seriously works on software testing improv-

ing, so fulfil.

The structure chart of repeated software testing sys-

tem is presented on figure 1.

Fig.1. Structure chart of repeated software
testing system

On the block of data connection user file with results

of the basic testing, represented as a testing journal

«Testing method – Testing operation – Finding mistake

type» is fed. The file data are processed by the encoder.

Encoder transforms input data from a linguistic form in

a quantitative form, fills the knowledge base by input

data and forms entrances vectors for decision maker.

Encoder checks up file data reliability and completeness

during forming entrances vectors. If data not authentic

or incomplete, encoder passes on a dynamic reference

book the report with suggestion to form another file of

the same form, as previous, with additional results

which transform into a quantitative form like to data of

basic file, after that they are added to the knowledge

base. Knowledge base contains tables with input data of

system, auxiliary tables and tables with rules for the

forming deduction about a necessity and method(s) of

the repeated testing.

Solution of tasks of hidden mistakes finding is based

on category model of process of repeated testing [5], in

which considering of importance of each type mistakes,

interference of mistakes types, fuzzy input data about

existent mistakes is allowed, and is possible with the

Block of data
connection

File

Dynamic
reference book

Dialog
component

Knowledge
base

Encoder

Decision maker

(ANN)

Decision maker
interpretation

module

User

Надійність програмного забезпечення 138

artificial neuron network (ANN) using. Therefore by

decision maker is used an artificial neuron network, on

the entrances of which information about methods and

operations of the basic testing and types of finding dur-

ing the basic testing software mistake(s) is given, and

category level of hidden mistakes is decision maker

results. Results of decision maker are given to encoder,

which fills knowledge base by result data, transforms of

resulting vectors in a linguistic form and are transmitted

on the decision maker interpretation module.

Decision maker interpretation module on the basis of

rules table and table «Decision maker results» generates

a deduction about a necessity and method(s) of the re-

peated testing, which is transmitted through dialog

component to the user.

The result of system functioning is deduction about

repeated testing necessity and advisable repeated testing

method(s).

Offered repeated software testing system allows to

the user, giving in this system a report about the results

of the basic testing, to solve a problem of decision mak-

ing about the necessity of the repeated testing, in other

words presence of the hidden mistakes, and to take rec-

ommendation about a method(s), which must carry out

the repeated testing.

1.3. Technique of prognostication of hidden
mistakes presence on basis of basic testing

results

On base of offered approach to distribution of hid-

den mistakes for their categories will enter set

}..1|{ shaA h  , where ha  threshold of admissible

mistakes quantity and importance of mistakes of differ-

ent type of the same kind, in the excess of which neces-

sary to realize a repeated testing for the purpose of find-

ing of such kind hidden mistakes, h  quantity of thre-

sholds types, which changes from 1 to s , s  quantity

of hidden mistakes category levels (4s). This will

raises, for one’s part, testing process effectiveness at all,

and also quality of program product.

Have in mind, that the mistakes of the some catego-

ry level can be causing of appearance of mistakes of not

only following category level, but also appearances of

higher category levels mistakes.

Assertion 1. If summary quantity and importance of

mistakes of h -th category level exceeds a threshold

Aah  , then cause of presence of others (higher) cate-

gory levels mistakes is mistakes of h -th category level.

This assertion is consequence of offered conception

of hidden mistakes categories and task raising of re-

peated testing.

1.4. Technique of forming logical deduction
about necessity and advisable method(s) of

repeated testing

For description of rules for forming deduction about

necessity of the repeated testing [6] we will enter the

threshold Aai  , at exceeding of which it is necessary

to carry out the repeated testing with the purpose of hid-

den mistakes of this level finding. Then rules for form-

ing deduction about necessity of the repeated testing

look like: «if ratio of total quantity of mistakes of the i -th

category level to the common quantity of finding during

the basic testing mistakes exceeds a threshold ia , then

the repeated testing is necessary ».

For description of rules for forming deduction about

advisable method(s) of the repeated testing we will enter

the threshold Bb j  , where }..1|{ zpbB p  – set of

thresholds of allowed mistake(s) of each type quantity

finded during the basic software testing, p  quantity

of thresholds types, which changes from 1 to z , z 

mistakes types quantity of known by system (22z).

Then rules for forming deduction about method(s) of the

repeated testing look like: «if quantity of finding during

the basic software testing mistake of type j more than

0, then the repeated testing is recommended to conduct

by a method which finds the mistakes of type j ».

On the basis of rules for making decision about the

repeated testing technique of forming logical deduction

Надійність програмного забезпечення 139

about a necessity and method(s) of the repeated testing

[6] was developed.

On the basis of ANN’s work results the set

}4..1|{  ikK i was formed, where ik are total values

mistakes of each category level. Using the set K and set

of category level of hidden mistakes

}..1|{ nkrkR k  , the set }4..1|{  ikrKR i of ratios

n
kkr i

i  is formed. On the basis of quantitative form of

input data about types of finding during basic testing

mistakes we form set }..1|{ nqktpTP k  , where ktp

is quantity of mistake(s) found by method k , nq is

quantity of testing methods, in other words 7nq .

Order of revision and application of rules on the ba-

sis of the received results (method of search) is deter-

mined. Procedure of choice reduces to the determination

of search direction and method of its realization. In this

research the method of search realization in width in the

straight direction is used [7], that is at first the decision

maker interpretation module analyzes all rules for form-

ing deduction about the necessity of the repeated testing

and using the known facts (elements of vector KR)

finds a conclusion, which from these facts follows, and

only then, if a conclusion about the necessity of the re-

peated testing will be formed, analyses the rules for

forming deduction about advisable method(s) of the

repeated testing and using the known facts (elements of

vector TP) a conclusion which from these facts follows

will be found.

The analysis of rules for forming deduction about

the necessity of the repeated testing is executed as fol-

lows. In the set of rules as «if-then»

}..1|{ mhprPR h  a rule for each of elements of set

KR is searched. If the value of set element meets the

condition of rule left part, this rule is added to the set of

selected rules }..1|{ gyoprOPR y  . Criterion of

choice of single rule for the set OPR not actual, because

all rules have identical right part (result), in which con-

clusion about the necessity of the repeated testing is

formed. Consequently, if quantity of the selected rules

0g , then deduction that repeated testing is needed is

formed.

After the forming deduction about the necessity of

the repeated testing, the rules for forming deduction

about advisable method(s) of the repeated testing are

analyzed. In the set of rules PR a rule for each of ele-

ments of set TP is searched. If the value of set element

meets the condition of rule left part, this rule is added to

the set of selected rules }..1|{ seopOP e  . Criterion

of choice of single rule for the set OP not actual, be-

cause if in the set of select rules got s rules, then re-

peated testing must be conducted by s methods. Conse-

quently, the union of right parts of rules of set OP forms

a conclusion about advisable method of repeated testing.

1.5. Algorithm of forming logical deduction

about necessity and advisable method(s)
of repeated testing

On basis of described above technique was developed

algorithm of forming logical deduction about necessity

and advisable method(s) of repeated testing (fig. 2).

Fig. 2. Algorithm of forming logical deduction (part 1)

Begin

forming of set
}4..1|{  ikK i

forming of set
}4..1|{  ikrKR i

forming of set
}..1|{ nqktpTP k 

i:=1

h:=1

2 1

Надійність програмного забезпечення 140

 yes

 no

 no

 yes

 no

yes

 no yes

 yes

 no

 no
 yes

 no

 yes

Fig. 2. Algorithm of forming logical deduction (part 2)

2. Results of repeated software

testing system functioning

For ANN learning and for input system data forming

application programs with open source code from col-

lection of program Examples in package Borland C++

Builder 5.0 were researched, for example, for forming

of report about basic testing games Football, Swat,

EarthPong from said collection were used. To this pro-

grams mistakes of different known for system types

were artificially inserted, next program was tested by

known for system testing methods and operation, in

result of which training sample for ANN (on basis of

table 1) and report about basic testing results (table 2)

for system functioning examination were formed. Train-

ing sample contains 740 training vectors. Vectors of

training sample were formed in the following way. Data

of each line of table 1 were transformed from a linguis-

tic form in a quantitative form. On forming i -th vector

of training sample “1” were got to ANN’s inputs

imnq (imn  number of software testing method of i -th

line of table 1), ionx (ion  number of software testing

operation of i -th line of table 1), ipnx (ipn  number

of type of finding mistake of i -th line of table 1). “0”

were got to all other ANN’s inputs.

Report about basic testing results, which gave to sys-

tem input, contained 80 line.

2 1

ikr meets the
condition of

rule PRprh 

h:=h+1

rule hpr is
added to the

set

}..1

|{

gy

opr
OPR

y






i>4

i:=i+1

h>m

g>0

Repeat
testing isn’t

necessity

Repeat
testing is
necessity

ktp meets the
condition of

rule PRprh 

rule hpr is
added to the

set

}..1
|{

se
opOP e





h:=h+1

h>m

k:=1

h:=1

5 3 4

k:=k+1

k>nq

Repeated testing
must be conducted

by s methods

End

5 4 3

Надійність програмного забезпечення 141

Table 1
Training sample for ANN

Software
testing
method

Software
testing oper-

ation

Type of find-
ing mistake

Cate-
gory
level

Top-down
testing

Control of
“gag” func-
tioning cor-

rectness

Incorrect “gag”
functioning

Mod-
erate

Bottom-up
testing

Correctness
of union of
modules to
common
structure
control

Mistakes of
union of mod-
ules to com-

mon structure

Serious

Accuracy
testing

Control of
correspon-

dence known
program

functions to
received
functions

Known pro-
gram functions

mismatch to
received func-

tions

Serious

… … … …

Table 2
Report about basic software testing results

№ Software
testing me-

thod

Software test-
ing operation

Type of finding
mistake

1 Testing of
independent

paths
(branches)

Control of ac-
curacy of True

and False
branches for all

logical deci-
sions

Logical condi-
tions mistakes

2 Elements
testing

Control of hold
data integrity

Mistakes of in-
ternal data struc-

tures
3 Functional

testing
Control of ex-

ecution of
prospective
functions by

program

Program and its
functioning
mismatch in

advance known
program func-

tions
… … … …

After report processing decision maker (ANN)

prognosed, that in program 2 hidden mistakes of first

category level (insignificant), 4 hidden mistakes of

second category level (moderate), 7 hidden mistakes of

third category level (serious), 5 hidden mistakes of

fourth category level (catastrophic). Then ANN’s results

gave to decision maker interpretation module, which

formed deduction about necessity repeated testing. This

deduction depended on ratio of total value of each cate-

gory level mistakes to the common quantity of finding

during basic testing mistakes. As that ratios for third and

fourth category levels exceeded threshold of admissible

mistakes quantity and importance of own category level

mistakes accordingly, then deduction was: “Repeated

software testing is necessity”.

Conclusions

Offered conception of hidden mistakes category le-

vels allows to prognose hidden mistakes presence on

basis of basic testing results.

Offered repeated application software testing system

permits allows to make decision about necessity and

choice of method(s) of the repeated testing on basis of

report about basic testing results.

References

1. A Practical Guide to Testing Object-Oriented

Software / John D.McGregor, David A. Sykes. – New
York, 2001. – 432 p.

2. Sommerville I. Software Engineering, 6-th edi-
tion: Addison Wesley, 2002. – 624 p.

3. Локазюк В.М., Савченко Ю.Г. Надійність,
контроль, діагностування та модернізація ПК: Посі-
бник. – К.: Видавничий центр “Академія”, 2003. –
376 с.

4. Robert Culbertson, Chris Brown, Gary Cobb.
Rapid testing – Prentice hall PTR, 2001. – 384 p.

5. Локазюк В.М., Пантелєєва (Говорущенко) Т.О.
Категорійна модель процесу повторного тестування
дефектів програмного забезпечення // Вісник Техно-
логічного університету Поділля – Хмельницький:
ТУП, 2004. – Ч. 1, т. 1. – С. 53-58.

6. Говорущенко Т.О. Система повторного тес-
тування програмного забезпечення // Радіоелек-
тронні і комп’ютерні системи. – Х.: НАУ “ХАІ”,
2005. – № 4. – С. 120-126.

7. Базы знаний интеллектуальных систем /
Т.А. Гаврилова, В.Ф. Хорошевский. – С.-Пб.: Питер,
2001. – 384 с.

Надійшла до редакції 27.01.2006

Рецензент: д-р техн. наук, проф. А.О. Саченко, Тер-
нопільський державний економічний університет,
Тернопіль.

