
Надійність програмного забезпечення 124

UDC 004.3

M. BOŠKOVIĆ, T. WARNS, W. HASSELBRING

University of Oldenburg, Germany

MODEL DRIVEN INSTRUMENTATION FOR RELATIONAL EVENT TRACES*

Instrumentation of software is a part of debugging, performance evaluation and autonomic software systems. It
enables the observability of program behaviour. However, instrumentation is costly and error prone. This paper
presents an approach called Model Driven Instrumentation for Relational Event Traces. The approach enables
the specification of system models and models for instrumentation as separate concerns, and allows to
automatically generate instrumented systems from the models.

Instrumentation, Model Driven Architecture

Introduction

Development of software is based on defining the

structure and the behaviour of programs. However, this

is not sufficient for completely understanding the

execution of a program. For such a complete

understanding, more data about the execution itself, like

time ordering of events or data flow, must be somehow

observable. Observability of a program execution can

only be accomplished by instrumentation.

Instrumentation of software means to insert probes

into the system [1]. Usually, programs are instrumented

with software probes. Software probes are pieces of

code inserted for instrumentation of a program. They

can be added automatically by using a variety of

techniques (e.g. compiler modification) or tools (e.g.

profiling tools), or they can be inserted during software

implementation. Although automatic instrumentation of

a program significantly reduces effort of developers or

performance analyst, manual insertion has significant

advantages.

Present research addresses instrumentation of

software on different levels like source code

modification or executable code modification. In our

approach, we raise the level of abstraction for

instrumentation. It enables model driven development

of software functionality with integrated

instrumentation.

The paper is structured as follows. The next section

presents a detailed description of instrumentation.

Section 2 describes the basics of Model Driven

Architecture. The core of the paper is Section 3 where

the research idea is presented. In Section 4, related work

is described. The last section contains conclusions and

ideas for future work.

1. Instrumentation

Instrumentation is already used for monitoring

system behavior in other disciplines like electrical

engineering. A voltmeter and an oscilloscope are widely

used for instrumentation in design and analysis of

electrical circuits.

In software engineering, instrumentation is used for

debugging, profiling/measurement and runtime

surveillance/monitoring [2]. Debugging is the process of

finding and removing faults in a program. Profiling is

the process of collecting data about the overall

execution of an application program or a part of it [3].

Measurement gives absolute numbers of the time spent

for the execution of functions or about some resources

used. Instrumentation is also used to enable runtime

surveillance and monitoring. Monitoring is the process

of collecting data about the execution and making it

observable, while surveillance is collecting data and

comparing it to some predefined values.

Because of the nature of a software artifact, there is *This work is supported by the German Research Foundation (DFG),
grant GRK 1076/1

  M. Bošković, T. Warns, W. Hasselbring
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2006, № 6 (18)

Надійність програмного забезпечення 125

a variety of ways to instrument software. Software can

be instrumented by using dedicated tools. They are

distinguished into hardware, software, firmware and

hybrid instruments [4]. Software instruments are

programs that are used for instrumentation. Hardware

instruments are external devices that are attached to the

computer system with high resistance wires called

hardware probes [1]. Likewise firmware can also be

instrumented. Moreover, there are instruments which

combine hardware, software and firmware

instrumentation. These kinds of instruments are called

hybrid instruments.

Besides tools for software instrumentation, there are

alternative ways for automatically instrumenting a

program, like a compiler modification or usage of pre-

instrumented emulators.

Despite the fact that automatic instrumentation

liberates a developer from manually inserting software

probes, manual instrumentation has major advantages:

– precision − to gather exactly the data that is

needed. It means to define which data to collect;

– granularity − to instrument only events which we

are interested in. It means to define where to place

probes;

– control − possibility of turning on and off

desired probes;

– installation of tools − Installation of tools can be

error prone;

– usage of tools − Developers need to be educated

for the usage of tools

On the other hand, manual insertion of software

probes increases source code complexity. Source code

complexity makes a program harder to understand and

maintain. Furthermore, manual instrumentation can

often be error prone.

Generally, there are two techniques for data

collection: program counter (PC) sampling and event

tracing [3]. The program counter sampling is a

statistical technique in which states of particular parts of

a system, like a memory or a program stack, are

sampled at particular points in time. An alternative to

the PC sampling is the event tracing. The result of event

tracing is a program trace. The program trace is a

dynamic list of events generated by a program during

execution.

 The instrumentation can significantly increase the

complexity of code and can be error prone. To reduce

these shortcomings, we raise the level of abstraction to

model level. Furthermore, we separate concerns of

development of functionality and of instrumentation.

However, to enable model driven development of a

program and the instrumentation, the conceptual

framework Model Driven Architecture [5] is used.

2. Model Driven Architecture

Models are used to express specifications of systems

that should be made or that already exist. It is a set of

statements about some system under study [6]. At the

moment, the development of software systems is code

centric. In this kind of development approach, models

are only used to present some design ideas or for

documentation.

However, models can be used for completely

specifying software. Consequently, programs can be

generated from such models. This kind of approach is

called Model Driven Development (MDD) [7].

To support MDD, the Open Management

Group−OMG (http://www.omg.org), a consortium of

software vendors and users from industry, academia and

government, offers the conceptual framework called

Model Driven Architecture (MDA). MDA defines three

viewpoints of a software model: Computation

Independent Model (CIM), Platform Independent Model

(PIM), and Platform Specific Model (PSM).

A CIM focuses on software requirements and does

not care about the system structure. It should be made

by domain experts.

A PIM is a computation dependent model but does

not take into account a particular implementation

technology.

Надійність програмного забезпечення 126

A complete specification of a system is given in the

PSM. The PSM is written in terms of some particular

technology like .NET, Java or CORBA. This kind of

model comprises a PIM with characteristics of the

implementation platform.

OMG’s MDA is based on a four layer metamodeling

architecture and several adopted standards. The

standards which MDA relies on are the Unified

Modelling Language (UML) [8], the Meta Object

Facility (MOF) [9] and XML Metadata Interchange

(XMI) [9]. The UML profile [10] is also a standard

which MDA relies on. It is a standard UML extension

mechanism. The standards and the conceptual

framework are presented in Fig. 1.

On the top of the architecture is the MOF, an

abstract language for specifying metamodels.

Metamodels are used to define modeling languages, like

for instance UML. Furthermore, MOF metamodels can

be used to extend existing metamodels and modelling

languages.

As an example, we will model a real world entity

Person with a UML class. The Person as a real world

entity is placed on the M0 level. The Person can be

modeled with a UML class. This model is placed on the

M1 layer. The concept of a UML class is defined on the

M2 layer. It is defined with the MOF which is placed on

M3 layer.

Fig. 1. The OMG MOF based conceptual architecture

and standards on which it relies [11]

Model Driven Development enables developers to

focus on functional requirements without the

implementation details. However, for large systems

where many system wide crosscutting concerns, like

instrumentation, have to be addressed, this is not

sufficient. For this reason, we want to separate concerns

of the system functionality modeling and

instrumentation.

3. Model Driven Instrumentation

The idea of Model Driven Instrumentation considers

instrumentation as a separate concern on model level.

The used technique for data collection is event tracing.

Event traces are structured in a relational manner

like presented in [12]. Relations can be seen as tables of

relational databases or tuples. Each relation consists of

several fields. The data about the execution is stored in

the fields. The relational approach enables analysis with

declarative queries made in SQL-like languages.

The implementation of the approach is sketched in

Fig. 2. A system modelling language allows specifying

the software structure and the behaviour models, like

class diagrams or state charts, and a event trace model

for defining event traces.

Fig. 2. Structure of implementation of the approach

Since we can have different modeling languages, we

will develop a basic structure of event traces. The basic

structure of event traces is relational and consists of an

Надійність програмного забезпечення 127

identifier of a trace, name of a field, data type of a field

and a operation that is related to a field. Operation is

used for collection of some particular data during

execution, and the data is placed in the field of

relational trace.

The basic structure of traces is used for the definition

of particular event trace metamodels on the M2 layer for

instrumentation of models of different modeling

languages. For different modeling languages (M2),

different types of event traces (M2) and operations can

be defined. The type of an event trace is defined for

instrumentation of some particular element types of the

target modeling language. This means that event trace

model (M1) made according to some event trace type

definition (M2) can be linked to an element in the

software function model (M1) of the element type (M2)

for which event trace type (M2) is made. Furthermore,

for each event trace type (M2), a set of operations will

be defined that can be used in a trace model (M1). Set

of operations is defined according to the element type

for which the trace type is defined. To better explain

idea, we will use state charts.

 In case of state charts, we could develop two types

of event traces, event trace type for state, and event

trace type for transition. For state event trace type, we

could define operations for collecting the name of the

state, and start and end timestamps of a state. In case of

transition event trace operations for collecting the name

of the event that fires the transition and the time of

transition.

Definition of event trace model on the M1 layer

according to some particular event trace type on the M2

layer consists of a definition of the names of fields, data

types of that fields and operation related to that field.

For example we can define the event trace model (M1)

for states, named Trace1. The event trace model consists

of fields named StateName, and Time. For these two

fields we relate operations for getting the name of a

state and the time stamp of the beginning of the state,

respectively. Now this event trace model (M1) we can

link to some particular states in the software function

model (M1). This means that when a state that is linked

to event trace model occurs during execution, it

automatically produces one record with name and start

time of the state in event trace.

The instrumentation and system generation is

presented in Fig. 3.

Fig. 3. Instrumentation and system generation

First the basic functionality of the system is made.

For instance class diagram or state chart. After it is

developed, a system performance analyst, or developer

defines event traces. In this part software developer or

performance analyst defines fields of event traces,

names of the fields and operations that will be executed

for data collection. When system and event traces are

defined, linking between these two models is done. At

this point we define where the data collection takes

place. This means that we will link traces we defined for

the elements of the model. Later, transformation from a

model to code is done. For implementation platform we

plan to use platform which enables Aspect Oriented

Programming (AOP) [13]. AOP is methodology which

enables separation of crosscutting concerns at code

level. More details about AOP can be found in [13].

With the approach presented in this paper, we

present foundation for instrumentation on model level.

Furthermore, approach enables separation of concerns.

Separation of concerns facilitates transparent

Надійність програмного забезпечення 128

instrumentation of software and independent planning

of event traces. Since event traces are in the relational

form, it enables analysis of the execution in a

declarative manner.

5. Related Work

Instrumentation is an important part of the analysis

of program behaviour. It enables the extraction of data

about the program execution. However, it can be costly

and error prone because of increasing complexity of

code. The present research addresses cost reduction of

adding the instrumentation.

To enable instrumentation of software systems as a

separate concern Aspect Oriented Programming is used

in [2] and [14]. CORBA based applications can be

instrumented as a separate concern with the usage of

interceptors [15]. Another approach is to place a

transparent software layer for data collection presented

between execution platform and application. This kind

of approach is presented in [16].

To enable instrumentation as a separate concern on

code level several instrumentation languages are

introduced like the Metric Description Language (MDL)

[17] and the Program Monitoring and Measuring

System (PMMS) [18].

The most related research is presented at [19]. In

their approach first source code of application is

developed. For instrumentation they develop monitoring

model. Monitoring model consists of activities

presented as nodes and time interdependence within

activities presented as arcs. Each activity is

unequivocally related with some module or procedure

by its name. After the monitoring model is developed

source code is automatically instrumented for time

stamping. The purpose is to get the data about the time

orderings of activities in the program.

In our approach data that will be collected can be

defined. In addition, software models are used to define

instrumentation points. Furthermore, instrumented

system is automatically generated from models.

Therefore instrumentation can be integrated into the

process of software development and can be used for

different analysis, not only time ordering.

Conclusion, Current Status

and Future Work

Instrumentation of programs is very important for

analyzing program execution. However because of

intertwining the basic functionality with the

instrumentation code, it can cause significant problems.

In this paper we presented a novel approach on

instrumentation called − Model Driven Instrumentation

for Relational Event Traces. The idea is to raise the

level of instrumentation to the model level and to

separate concerns of the instrumentation and basic

software functionality. For the technique of

instrumentation we have chosen the event tracing.

Structure of event traces is relational because of the

possibility of making declarative questions about

program execution.

The research is in the stage of a PhD proposal. First

of the next steps is the identification of data types and

development of basic structure of relational traces.

When it is developed we will make event trace

metamodels for instrumentation of class diagrams and

statecharts.

To enable automatic generation of code from

models, transformations for these two modeling

languages will be made. As a proof of concept we plan

to implement a prototype tool for instrumentation on

model level.

References

1. Ferrari D. Computer Systems Performance

Evaluation, Prentice-Hall, New Jersey, USA, 1978.

2. Marenholz D. et al. Program Instrumentation for

Debugging and Monitoring with AspectC++ // In

ISORC’02: Proc. of 5th IEEE Int. Symp. on Object

Oriented Real-Time Distr. Computing, Washington,

DC, USA, IEEE Comp. Soc. – 2002. – P. 249-256.

Надійність програмного забезпечення 129

3. Lilja D. J. Measuring Computer Performance: A

Practitioner’s Guide. – Cambridge University Press,

Cambridge, UK, 2000.

4. Smith C.U., Williams L.G. Performance

Solutions: A Practical Guide to Creating Responsive,

Scalable Software. – Addison-Wesley, USA, 2001.

5. Meta Object Facility (MOF) specification v2.0,

OMG document ptc/04-10-15, October 2004. –

[Электрон. ресурс]. – Режим доступа: http://www.

omg.org/cgi-bin/apps/doc?ptc/04-10-14.pdf.

6. Seidewitz E. What Models Mean” // IEEE Soft.,

Vol. 20(5). – IEEE Comp. Soc., 2003. – Р. 26-32.

7. Selic B. The Pragmatics of Model-Driven

Development // IEEE Softw., Vol. 20(5), IEEE Comp.

Soc. – Sept. 2003. – P. 19-25.

8. Unified Modeling Language (UML) 2.0

Specification, Infrastructure, OMG doc. pct/04-10-14,

November, 2004. – [Электрон. ресурс]. – Режим

доступа: http://www.omg.org/cgi-bin/apps/doc?ptc/04-

10-14.pdf.

9. MOF 2.0/XMI Mapping Specification, v.2.1,

OMG doc. formal/05-09-01, November, 2004. –

[Электрон. ресурс]. – Режим доступа: http://www.

omg.org/cgi-bin/apps/doc?ptc/04-10-14.pdf.

10. Miller J., Mukerji J. MDA Guide (Version 1.0),

OMG document ptc/04-10-15, Jun 2003. – [Электрон.

ресурс]. – Режим доступа: http://www.omg.org/docs/

omg/03-06-01.pdf.

11. Djurić D., Gasević D., Devedžić V. Ontology

Modeling and MDA // Journal of Object Technology,

Vol. 4(1), Jan-Feb 2005. – P. 109-128. – [Электрон.

ресурс]. – Режим доступа: http://www.jot.fm/issues/

issue_2005_01/article3 .

12. Snodgrass R. A Relational Approach to Monit-

oring Complex Systems // ACM Trans. on Comp. Syst. –

ACM Press. – May 1988. – Vol. 6 (2). –P. 157-196.

13. Laddad R. AspectJ in Action: Practical Aspect-

Oriented Programming, Manning Publications and Co.,

Greenwich, CT, 2003.

14. Debusmann M., Geihs K. Efficient and

Transparent Instrumentation of Application

Components using an Aspect-Oriented Approach // In

14th IFIP/IEEE Workshop on Distr. Syst.: Operations

and Management (DSOM ‘03), Lecture Notes in

Computer Science, Vol. 1867, Heidelberg, Germany,

Springer, October 2003. – P. 209-220.

15. Li J. Monitoring of Component-Based Systems.

– Tech. Report HPL-2002-25, Imaging Syst.

Laboratory, HP Laboratories Palo Alto, 2004.

16. Diaconescu A. et al. Automatic Performance

Management in Component Based Systems // In Proc.

of the 1st Int. Conf. on Autonomic Computing (ICAC

’04), IEEE Comp. Soc., 2004. – P. 214-221.

17. Hollingsworth J.K. et al. MDL: A Language and

Compiler for Dynamic Program Instrumentation // In

PACT ’97: Proc. of the 1997 Int. Conf. on Parallel

Architectures and Compilation Techniques,

Washington, DC, USA, IEEE Comp. Soc., 1997. –

P. 201-213.

18. Liao Y., Cohen D. A Specificational Approach

to High Level Program Monitoring and Measuring //

IEEE Trans. on Soft. Engineering, Vol. 18(11), IEEE

Comp. Soc. – 1997. – P. 969-978.

19. Klar R. et al. Tools for a Model-Driven

Instrumentation for Monitoring // In Proc. of the 5th Int.

Conf. On Modeling Techniques and Tools for Computer

Performance Evaluation.

Поступила в редакцию 20.02.2006

Рецензент: д-р техн. наук, проф. В.С. Харченко,
Национальный аэрокосмический университет
им. Н.Е. Жуковского «ХАИ», Харьков.

