УДК 681.32

А.Р. ЕМАД

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

СИСТЕМНОЕ МОДЕЛИРОВАНИЕ ПРОЕКТНЫХ ДЕЙСТВИЙ ПО СОЗДАНИЮ АВИАЦИОННОЙ ТЕХНИКИ

Рассматриваются системные аспекты создания изделий авиационной техники (AT). С использованием основных требований проектного менеджмента сформирована иерархическая система проектных действий. Выделены основные уровни и страты проектирования изделий AT. Получены системные модели для задач проектного анализа.

системное моделирование проектных действий, управление проектами создания новой техники, моделирование фаз жизненного цикла новой техники

Введение

Анализируя основные требования при формировании проектов и программ развития авиационной техники (АТ), можно отметить, что проблемы применения методов управления проектами (УП) к этому классу проектов связаны, кроме масштабов и сложности изделий АТ, также с уникальностью проектов и трудно прогнозируемым развитием экономической, социальной и политической ситуации в государстве. Основные сложности возникают на начальной (концептуальной) фазе и фазе разработки проекта, когда должны быть приняты основные решения, требующие привлечения опытных специалистов и менеджеров [1]. На фазах реализации и завершения проектов могут быть частично использованы традиционные методы УП, например, сетевого планирования и управления, хотя и здесь ряд проблем и задач требуют поиска новых подходов к их решению.

Постановка задачи. Анализ структуры, целей и задач государственной программы развития АТ (ГПР АТ) позволяет отнести ее к классу сложных проектов (мегапроектов).

Рассматривая сложные проекты и программы развития новой техники как объект управления, можно выделить особенности, существенно влияющие на методы управления созданием АТ [1]:

- программа представляет собой сложную систему с иерархической структурой: образец техники, комплекс, тип, подпрограмма видов АТ, программа родов АТ, государственная программа развития авиационной техники;
- каждый образец АТ имеет время жизни, распределенное по фазам жизненного цикла (ЖЦ): научно-исследовательская работа (НИР); опытно-конструкторская работа (ОКР); конструкторская подготовка производства (КПП), включающая анализ технологичности конструкции изделия; технологическая подготовка производства (ТПП); производство образца АТ (ПР); эксплуатация (Э); модернизация (М) и утилизация (У);
- каждый образец AT требует выполнения сложного проекта и представляет собой на всех фазах ЖЦ иерархическую систему со следующими уровнями: метасистема, система, подсистема, группа, элемент;
- проектные действия на каждом уровне сложного образца АТ имеют свои стратифицированные представления и особенности выполнения, а именно, действия осуществляются в строгой логической последовательности «слева направо», сначала формируется отдельный образец по стратам: целевой, функ-

циональной, организационно-технической структуры, инфологической, алгоритма функционирования, а затем системы управления АТ так же по стратам: целевой, функциональной, структурной, математической, алгоритма управления, комплекса технических средств и программного обеспечения;

- программа АТ состоит из планов обеспечивающих ресурсов: нормативно-правовых, методических, научно-технических, научно-технологических, производственно-технических, кадровых, организационных и финансовых;
- программа АТ имеет различные временные горизонты: долгосрочный, среднесрочный и годовой.

Проведенный анализ сложных проектов развития АТ позволяет сделать вывод, что они комплектуются в сложную иерархическую многомерную государственную программу, которая требует новых подходов, основанных на современном проектном менеджменте. Необходимо решить две основные задачи: сформировать методы управления в сложных иерархических программах и построить системные модели проектируемых образцов АТ.

Метод решения

Исследуя структуру и содержание типовых государственных программ, таких как Государственная программа развития авиационной техники, Государственная программа развития железнодорожного транспорта, Государственная программа развития автомобилестроения и др., можно отметить, что у них древовидная структура со сложными межуровневыми связями между структурными элементами (проектами). Системную модель государственной программы можно представить в виде многоуровневого древовидного графа.

Для формализованного представления и системного анализа ГПР АТ необходимо воспользоваться методами системного моделирования. Представим государственную программу АТ с помощью языка

регулярных схем системных моделей (РССМ) [2]:

$$R_{\Gamma\Pi} = [R_{\Pi PT_1} \wedge R_{\Pi PT_2} \wedge \dots \wedge R_{\Pi PT_n}], \tag{1}$$

в свою очередь каждая подпрограмма:

$$R_{\Pi PT_S} = [R_{\Pi BT_1} \wedge R_{\Pi BT_2} \wedge ... \wedge R_{\Pi BT_m}],$$

здесь каждый проект комплекса АТ:

$$R_{B\Pi T_i} = [R_{T_1} \wedge R_{T_2} \wedge ... \wedge R_{T_O}],$$

где каждый проект образца АТ:

$$R_{T_o} = [R_{K_1} \wedge R_{K_2} \wedge ... \wedge R_{K_s}],$$

где
$$R_{K_{D}} = [R_{O_{1}} \wedge R_{O_{2}} \wedge ... \wedge R_{O_{n}}],$$

 R_{O_i} - *i*-й элемент разрабатываемого образца AT.

Подставляя выражения R_{K_p} в R_{T_e} далее в $R_{B\Pi T_i}$ и далее в $R_{\Pi PT_S}$, получим системную модель ГПР АТ в базисе образцов, комплексов, подпрограмм и программ АТ.

Рассмотрим каждый образец AT по фазам ЖЦ (рис. 1):

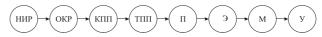


Рис. 1. Фазы ЖЦ образца АТ

На языке РССМ модель образца АТ с учетом фаз ЖЦ будут иметь вид

$$R_{O_{i \times II}} = R_{H U P} \cdot R_{O K P} \cdot R_{K \Pi \Pi} \cdot R_{T \Pi \Pi} \cdot R_{\Pi P} \cdot R_{\Im} \cdot R_{M} \cdot R_{V} ...(2)$$

На каждой фазе ЖЦ образец требует иерархическую систему проектных действий (рис. 2), где El_{svs} – уровень проектирования элементов; Gr_{svs} – проектирование образца АТ; Unsvs - уровень подсистем; Sys – уровень системы; Met_{svs} – уровень метасистемы; U, Φ , O-T, U, Af – страты проектирования АТ на каждом уровне ГПР АТ (целевая, функциональная, организационно-техническая, инфологическая и алгоритма функционирования); U, Φ , C, M, AV, KTC, ΠO – страты проектирования системы управления АТ на каждом уровне проектирования: функциональная, целевая, структура системы управления, математическая,

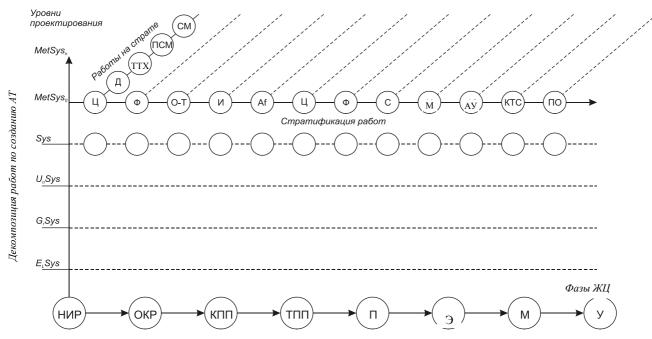


Рис. 2. Системное представление проектных действий при создании АТ

алгоритм управления комплекса технических средств, программное обеспечение системы управления; \mathcal{J} — декомпозиция объекта верхнего уровня на нижнем уровне проектирования; TTX — разработка тактико-технических характеристик декомпозированных элементов AT; ΠCM — построение системной модели; CM — системное моделирование и контроль на соответствие, тактико-технических характеристик декомпозированных элементов AT, тактико-техническим требованиям образца AT.

В языке РССМ системная модель образца АТ с учетом этапов проектирования выглядит следующим образом:

$$R_{O_i \ni} = [R_{SYS_i}, e, \emptyset, \dot{y}, \hat{y}], \tag{3}$$

где R_{SYS_i} - декомпозированный элемент целевой страты i-го уровня проектирования;

y, y - базовые операции РССМ (дизъюнкция и конъюнкция операторов).

Системная модель i-го уровня проектирования (например, на уровне метасистемы):

$$R_{MetSYS_{I}} = R_{LImetSyS_{i}} \cdot R_{\Phi metSyS_{i}} \cdot R_{O-TmetSyS_{i}} \cdot R_{LImetSyS_{i}} \times \times R_{AfmetSyS_{i}} \cdot R_{LICVmetSyS_{i}} \cdot R_{\Phi CVmetSyS_{i}} \cdot R_{MCVmetSyS_{i}} \times \times \times R_{AVCVmetSyS_{i}} \cdot R_{KTCCVmetSyS_{i}} \cdot R_{FIOCVmetSyS_{i}} \cdot R_{CVmetSyS_{i}} \cdot R_{CVmetSyS_$$

Системная модель фазы проектирования:

$$R_{O_{\mathcal{O}}} = R_{metsys} \cdot R_{sys} \cdot R_{Unsys} \cdot R_{Grsys} \cdot R_{Elsys}. \tag{5}$$

Используя алгебраические правила подстановки в РССМ и подставляя выражение (5) в (2), получим системную модель образца АТ с учетом всех фаз ЖЦ АТ:

$$R_{O_{\phi}} = R_{met \, sys(HMP)} \times R_{sys(HMP)} \times R_{Un \, sys(HMP)} \times \\ \times R_{Gr \, sys(HMP)} \times R_{El \, sys(HMP)} \times \\ \times R_{met \, sys(OKP)} \times R_{sys(OKP)} \times \\ \times R_{Un \, sys(OKP)} \times R_{Gr \, sys(OKP)} \times \\ \times R_{El \, sys(OKP)} \times R_{met \, sys(KHH)} \times \\ \times R_{Sys(KHH)} \times R_{Un \, sys(KHH)} \times \\ \times R_{Gr \, sys(KHH)} \times R_{El \, sys(KHH)} \times \\ \times R_{met \, sys(THH)} \times R_{sys(THH)} \times \\ \times R_{un \, sys(THH)} \times R_{gr \, sys(THH)} \times \\ \times R_{El \, sys(THH)} \times R_{met \, sys(HP-60)} \times \\ \times R_{Sys(HP-60)} \times R_{Un \, sys(HP-60)} \times \\ \times R_{Gr \, sys(HP-60)} \times R_{el \, sys(HP-60)} \times \\ \times R_{sys(HP-60)} \times R_{un \, sys(HP-60)} \times \\ \times R_{sys(HP-60)} \times R_{un \, sys(HP-60)} \times \\ \times R_{sys(HP-60)} \times R_{un \, sys(HP-60)} \times \\ \times R_{sys(HP-60)} \times R_{met \, sys(HP-60)} \times \\ \times R$$

Системную модель образца авиационной техники в базисе страт проектирования для фазы научно-

исследовательской работы получим, подставляя выражение (4) в выражение (6):

$$R_{OHHP} = R_{II met sys}(HHP) \times R_{\Phi met sys}(HHP) \times R_{O-T met sys}(HHP) \times R_{II met sys}(HHP) \times \\ \times R_{Af met sys}(HHP) \times R_{II CV met sys}(HHP) \times R_{\Phi CV met sys}(HHP) \times R_{CCV met sys}(HHP) \times \\ \times R_{H CV met sys}(HHP) \times R_{AV CV met sys}(HHP) \times R_{AV CV met sys}(HHP) \times R_{II CCV met sys}(HHP) \times \\ \times R_{II CV sys}(HHP) \times R_{\Phi CV sys}(HHP) \times R_{O-T sys}(HHP) \times R_{II sys}(HHP) \times R_{Af sys}(HHP) \times \\ \times R_{V CV sys}(HHP) \times R_{\Phi CV sys}(HHP) \times R_{CCV sys}(HHP) \times R_{II CV sys}(HHP) \times \\ \times R_{V CV sys}(HHP) \times R_{D CV sys}(HHP) \times R_{D CV sys}(HHP) \times R_{II CV sys}(HHP) \times \\ \times R_{CCV sys}(HHP) \times R_{D CV sys}(HHP) \times R_{II U_{II} CV sys}(HHP) \times \\ \times R_{O-T U_{II} CV sys}(HHP) \times R_{II U_{II} CV sys}(HHP) \times \\ \times R_{D CV U_{II} sys}(HHP) \times \\ \times \\ \times R_{D CV U_{II} sys}(HHP) \times \\ \times \\ \times \\ \times R_{D CV U_{II} sys}(HHP) \times \\ \times$$

Аналогично получим системные модели образца АТ для остальных фаз ЖЦ: ОКР, КПП, ТПП, Производство, Эксплуатация и Утилизация.

Системная модель государственной программы развития АТ получится с помощью подстановки системной модели каждого образца (7) в выражение (1).

Выводы

Таким образом, проведя соответствующие построения системных моделей изделий АТ по проектным действиям, стратам проектирования, уровням проектирования, фазам ЖЦ образца АТ и собрав их в программу, получаем формальное представление государственной программы развития АТ. Это позволит в дальнейшем, применить методы компьютерной обработки и моделирования с целью дальнейшего анализа основных характеристик госу-

дарственной программы развития авиационной техники.

Литература

- 1. Емад А.Р. Системный подход для обоснования и выбора направлений развития авиационной техники // Радіоелектронні і комп'ютерні системи. $2005. \mathbb{N} \ 2 \ (10). \mathrm{C}. \ 140 146.$
- 2. Илюшко В.М., Илюшко Я.В., Луханин М.И. Методы построения системных структурных и событийных моделей метасистем // Авиационно-космическая техника и технология. Х.: Нац. аэрокосм. ун-т «ХАИ». 2000. Вып. 20. С. 132 140.

Поступила в редакцію 29.07.2005

Рецензент: д-р техн. наук, проф. В.М. Илюшко, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.