УДК 621.396

К.Н. ЛЁВКИНА, Е.В. ВОЛОСЮК

Национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ», Украина

ИССЛЕДОВАНИЕ ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛОКАЛИЗАЦИИ ИСТОЧНИКА БИОПОТЕНЦИАЛА

Исследована погрешность определения параметров локализации источника биопотенциала на основе анализа диагональных элементов матрицы, обратной к информационной матрице Фишера, при решении обратной задачи электроэнцефалографии. Приведены теоретические выкладки и результаты математического статистического моделирования.

электроэнцефалограмма, источник биопотенциала, параметры локализации, матрица Фишера, статистика, погрешность

Введение

В настоящее время актуальной является проблема, связанная с получением достоверных данных о параметрах локализации источников. Это связано с тем, что малоисследованными являются процессы распространения сигналов, создаваемых этими источниками в коре головного мозга, а также с наличием систематических и флуктуационных ошибок измерений. Эти ошибки могут быть вызваны присутствием внутренних шумов датчиков, шумов от других источников, внешними наводками, погрешностями некачественного разделения сигналов и др. Для обеспечения достоверности и полной однозначности результатов анализа электроэнцефалограммы сейчас разрабатываются различные подходы, в том числе и подходы к практической реализации тех теоретических разработок, которые существовали ранее. Особенно важным является развитие методов анализа ЭЭГ для клинического применения, поскольку основная цель решения обратной задачи ЭЭГ совпадает с основной диагностической задачей клинической ЭЭГ [1].

1. Формулирование проблемы

При исследовании электроэнцефалограмм возникают задачи исследования связи регистрируемых процессов мозга с его структурой и адекватной интерпретации полученных данных. Определение та-

кой связи предполагает решение прямой ЭЭГ. Цель обратной задачи заключается в том, что при имеющемся наборе мгновенных значений электрических потенциалов, измеренных в нескольких точках с известными координатами, необходимо определить наличие источника, его мощность и место расположения.

Основные трудности, которые возникают при решении обратной задачи ЭЭГ, связаны с определением параметров локализации источников и идентификации структур различных зон мозга.

Существует несколько подходов к анализу ЭЭГ. Например, метод анализа независимых компонент, при котором из данных электроэнцефалограммы выделяются составляющие ее компоненты (артефакты, ритмы и т.д.). Еще один из методов — метод дипольной локализации, основанный на использовании поля, регистрируемого на поверхности головы для отыскания параметров источника.

В данной статье предлагается исследование погрешностей оценок параметров локализации источника и рекомендации по выбору расположения электродов по поверхности головы при регистрации ЭЭГ.

2. Решение проблемы

Для математического описания прямой задачи ЭЭГ используется система уравнений Максвелла, которая при учете размеров головы, свойств тканей мозга, биологических источников тока и конкретных требований к результатам измерения биопотенциалов сводится к системе уравнений электрического поля стационарных токов. Рассматривая упрощенный случай, когда голова представляется в виде однородного неограниченного протяженного объемного проводника, в котором условно задаются геометрические соотношения между источниками и областью измерения, можно допустить, что потенциал удовлетворяет уравнению Пуассона

$$\Delta \phi = \frac{-I}{\sigma},\tag{1}$$

где I — плотность источников тока; σ — электрическая проводимость мозга.

Решение уравнения имеет вид

$$\phi(P) = 1/4\pi \frac{\iiint I(Q)dV}{r(P,Q)}, \qquad (2)$$

где r(P,Q) – расстояние от точки P измерения потенциала до точки Q области источников V, по которой ведется интегрирование.

Раскладывая функцию I/r в ряд по сферическим гармоникам и оставляя в полученном разложении только первые члены (что возможно, когда размеры активной области, содержащей источники, малы по сравнению с расстоянием от ее центра до точки измерения потенциалов), а также учитывая, что суммарный ток биоэлектрических источников равен нулю, получаем следующее выражение для вектора потенциалов в точке измерения:

$$\vec{\phi}(\vec{\lambda}) = \frac{1}{4}\pi\sigma \frac{Px(x-\alpha) + Py(y-\beta) + Pz(z-\gamma)}{\sqrt{\left[(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2\right]^3}}, (3)$$

где (x,y,z) – координаты расположения электродов; σ – заряд диполя; $\vec{\lambda}$ – вектор параметров источника, а именно: (α,β,γ) – координаты расположения источника, (P_x,P_y,P_z) – вектор дипольного момента: P_x = $sin \theta cos \Phi$, P_y = $sin \theta sin \Phi$, P_z = $cos \theta$; θ , Φ – углы ориентации источника.

Составим уравнение наблюдения для i-го электрода:

$$u_i = \phi_i \left(\vec{\lambda} \right) + n_i , \qquad (4)$$

где n_i – помеха (внутренние шумы датчиков, шумы от других источников, внешние наводки, погрешность за счет некачественного разделения сигналов и др.).

Пусть помеха распределена по нормальному закону, а совокупность наблюдений от n электродов можно представить в виде последовательности независимых отсчетов $u_1, u_2, ..., u_n$. Тогда обратную задачу ЭЭГ целесообразно решать методом максимума апостериорной вероятности.

Функция апостериорной вероятности имеет вид

$$p\left(\overrightarrow{\lambda}/\overrightarrow{u}\right) = \frac{p\left(\overrightarrow{\lambda}\right)p\left(\overrightarrow{u}/\overrightarrow{\lambda}\right)}{p\left(\overrightarrow{u}\right)},\tag{5}$$

где $p(\vec{u})$ – функция априорного распределения;

$$p(\vec{u}/\vec{\lambda})$$
 – функция правдоподобия.

В большинстве случаев функцию априорного распределения в окрестности максимума функции апостериорной вероятности можно считать равномерной и полагать [2]

$$p(\vec{\lambda}/\vec{u}) = kp(\vec{u}/\vec{\lambda}), \tag{6}$$

то есть задачу можно решать методом максимума функции правдоподобия. Точка максимального правдоподобия инвариантна к любому взаимно однозначному преобразованию функции $p(\vec{u}/\vec{\lambda})$. Поэтому при формировании оптимальной оценки можно искать вместо максимума функции $p(\vec{u}/\vec{\lambda})$ максимум функции $\mu[p(\vec{u}/\vec{\lambda})]$, где μ — монотонная функция.

На практике обычно в качестве монотонной функции $\mu \Big[p(\vec{u}/\vec{\lambda}) \Big]$ используют ln, т.е. оценку максимального правдоподобия определяют из условия

$$\frac{\partial}{\partial \lambda} \ln p \left(\overrightarrow{u} / \overrightarrow{\lambda_m} \right) = 0. \tag{7}$$

Будем считать, что дисперсии измерений на дат- чиках одинаковы, все u_i независимы, тогда совместная плотность вероятности

$$p(\vec{u}/\vec{\lambda}) = \prod_{i=1}^{n} p(u_i/\vec{\lambda}) =$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (u_i - \varphi_i(\vec{\lambda}))^2\right\} =$$

$$= \frac{1}{\sqrt{2\pi}\sigma^n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (u_i - \varphi_i(\vec{\lambda}))^2\right\}. \quad (8)$$

В соответствии с (5)

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} \left(u_i - \varphi_i \left(\vec{\lambda} \right) \right) \frac{\partial \varphi_i}{\partial \lambda_i} = 0.$$
 (9)

Тогда алгоритм измерений потенциалов по поверхности головы имеет вид

$$\phi'\left(u_i - \varphi_i(\vec{\lambda})\right) = 0. \tag{10}$$

Предельные погрешности определения параметров источника получим в результате анализа матрицы, обратной к информационной матрице Фишера, элементы которой определяются формулой [3]

$$B_{\mu\nu} = -\left\langle \frac{\partial^2 \ln p(\vec{u}/\vec{\lambda})}{\partial \lambda_i \partial \lambda_j} \right\rangle \bigg|_{\vec{\lambda} = \vec{\lambda} = \hat{\lambda}}, \quad (11)$$

где $\overrightarrow{\lambda_u}$ – истинное значение, $\hat{\lambda}$ – оценка.

После дифференцирования (11) получим матрицу Фишера

$$\left\| B_{\mu\nu} \right\| = \left\| \frac{1}{\sigma^2} \sum_{i=1}^{n} \frac{\partial \varphi_i(\vec{\lambda})}{\partial \lambda_{\nu}} \frac{\partial \varphi_i(\vec{\lambda})}{\partial \lambda_{\mu}} \right\| . \tag{12}$$

Для решения системы нелинейных уравнений (6) предлагается использовать метод Ньютона [4, 5, 6]. Пусть X — решение уравнения F(X)=0, x_n — некоторое приближение к X. В предположении существования производной F' имеем

$$F(X) \cdot F(x_n) - F'(x_n) \cdot (X - x_n) = 0.$$
 (13)

Если величина $(X - x_n)$ мала, можно записать приближенное равенство, т. к. F(X) = 0, то

$$F(x_n) + F'(x_n) \cdot (X - x_n) \approx 0. \tag{14}$$

Возьмем в качестве следующего приближения x_{n+1} решение уравнения

$$F(x_n) + F'(x_n) \cdot (x_{n+1} + x_n) = 0.$$
 (15)

В предположении, что оператор F' обратим, это решение можно записать в виде

$$x_{n+1} = x_n - (F'(x_n))^{-1} \cdot F(x_n).$$
 (16)

При решении ОЗ ЭЭГ в начальном приближении задаются параметры диполя $\vec{\lambda}$ — $(\alpha_1, \beta_1, \gamma_1, P_{11}, P_{21}, \sigma_1)$, а оператор F принимает вид функции $\vec{\phi}(\vec{\lambda})$. Решение задачи сводится к решению уравнения

$$\vec{\lambda} = \vec{\lambda_1} + \left(\vec{\phi}(\vec{\lambda})'\right)^{-1} \cdot \vec{\phi}(\vec{\lambda_1}). \tag{17}$$

В соответствии с данными теоретического анализа в системе Mathcad [7] выполнен расчет потенциальных ошибок определения $\vec{\lambda}$ – параметров источника как диагональных элементов матрицы, обратной матрице Фишера при различном положении электродов и источника.

Для одного из теоретически полученных вариантов (источник расположен в центре координат, углы ориентации $\Phi = \theta = \frac{\pi}{2}$) проведено математическое моделирование. Электроды расположены в точках с координатами (в соответствии с международной схемой «10 – 20 %»): (1,0; -0,42; 0,28); (1,0; 0,42; 0,28); (0,57; -0,62; 0,61); (0,57; 0,62;0,61); (0,57; -0,83; 0,36); (0,57; 0,83; 0,36).

Моделирование выполнено с учетом погрешностей и неточного предварительного определения параметров. Количество итераций 20, соотношение сигнал/шум 0,01, дисперсия погрешностей определена для N=10 различных измерений.

Приращение параметров источника для (i+1)-й итерации в соответствии с методом Ньютона определяется по формуле[8]

$$\overrightarrow{\Delta \lambda}_{i+1} = \Phi_{i+1}^{-1} \cdot (\overrightarrow{f}_{i+1} - \overrightarrow{f}_i), \tag{18}$$

где \overrightarrow{f}_i — вектор потенциалов на предыдущей итерации; \overrightarrow{f}_{i+1} — вектор потенциалов при моделировании.

Расчетное значение параметров определяется как сумма

$$\overrightarrow{\lambda_{i+1}} = \overrightarrow{\Delta \lambda_{i+1}} + \overrightarrow{\lambda_i} , \qquad (19)$$

где $\overrightarrow{\lambda_i}$ — вектор параметров на предыдущей итерации.

Дисперсия оценок по результатам статистического моделирования определяется формулой

$$\sigma_{\vec{\lambda}}^{2} = \frac{\sum_{i=1}^{N} \left(\vec{\lambda}_{i} - \frac{\sum_{i=1}^{N} \vec{\lambda}_{i}}{N} \right)^{2}}{N - 1}.$$
 (20)

На графиках (рис. 1) представлен сравнительный анализ диагональных элементов матрицы Фишера и погрешностей, полученных в результате моделирования, при вращении источника по углу Φ . При углах ориентации Φ , равных 0 и $\frac{\pi}{2}$, матрица Фишера становится сингулярной, погрешности стремятся к бесконечности.

Заключение

Анализируя полученные зависимости, можно сделать выводы:

- не рекомендуется располагать электроды в височной области с двух сторон либо только в правой или левой части головы;
- параметры источника, расположенного в центре головы, лучше определяются при расположении электродов либо в затылочной, либо в лобной части, либо по окружности головы, при этом зависимости получаются сложными и неоднозначными;
- минимальные значения диагональных элементов матрицы Фишера при параметрах ориентации источника, равных $\pi/2$;

- при расположении электродов симметрично в височной области погрешности не зависят от того, справа или слева расположен источник;
- наилучшим образом определяются параметры источника, расположенного в затылочной части головы;
- из графиков видно, что экспериментальные данные адекватно отражают поведение теоретических;
- графики зависимости диагональных элементов матрицы Фишера от угла ориентации Φ симметричны относительно 180° ;
- при расположении электродов по всей поверхности головы наилучшие результаты получаются в пределах углов ориентации 45...135°;
- точность определения параметра ориентации $P_{\rm y}$ практически не зависит от положения источника;
- при расположении источника в лобной части хорошие результаты – при углах 45...135°, в затылочной части – при углах 70...120°;
- при положении источника в височной области погрешности стремятся к бесконечности при угле 90°, для остальных положений источника хорошие результаты имеют место в интервале 45...135°.

Выполненные исследования позволяют определить пути повышения достоверности интерпретации электроэнцефалографических данных, а также дать рекомендации по выбору таких условий измерения и, в частности, расположения электродов, при которых погрешности оценок параметров локализации будут минимальными.

Литература

- 1. Гнездицкий В. В. Обратная задача ЭЭГ и клиническая электроэнцефалография. Таганрог: ТРТУ, 2000. С. 26–75, 558–560.
- 2. Погожев И. Б. Применение математических моделей заболеваний в клинической практике / Под ред. Марчука Г. И. М.: Наука, 1988. С. 3–7.

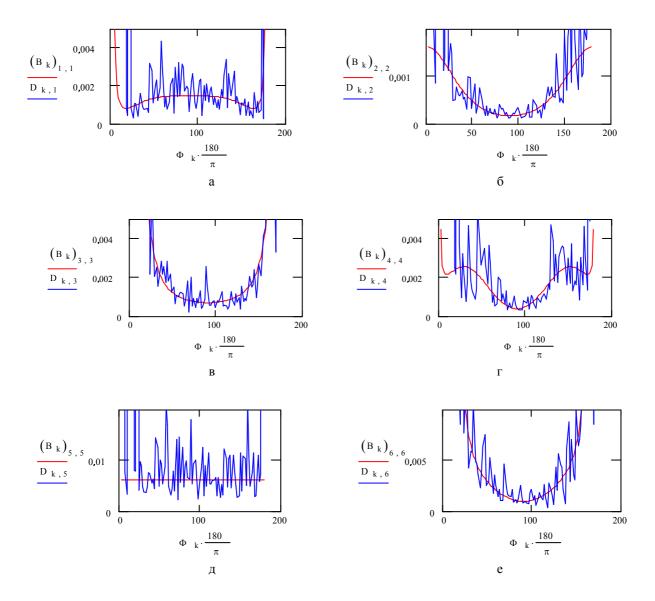


Рис. 1. Сравнительный анализ потенциальных и смоделированных погрешностей: а, б, в – определение координат источника (x, y, z); г, д, е – определение параметров ориентации источника $\left(P_x, P_y, P_z\right)$

- 3. Фалькович С. Е. Радиотехнические системы передачи информации. X.: ХАИ, 1975. С. 11–13.
- 4. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М.: Наука, 1987. С. 70.
- 5. Ширман Я. Д., Голиков В. Н. Основы теории обнаружения радиолокационных сигналов и измерения их параметров. М.: Радиотехн. Акад. СА, 1962. С. 55–63.
- 6. Фалькович С. Е. Оценка параметров сигнала. М.: Сов. радио, 1970. – С. 49–51.

- 7. Дьяконов В. Mathcad 2001. Учебный курс. СПб: Питер, 2001. С. 82–97.
- 8. Крамер Γ . Математические методы статистики. – М.: Мир, 1975. – С. 71–78.

Поступила в редакцию 12.05.04

Рецензент: д-р техн. наук, проф. Л.Ф. Купченко, Харьковский военный университет, г. Харьков