АНАЛИЗ РИСКОВ АВАРИЙ ДЛЯ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ: ЭВОЛЮЦИЯ ПРИЧИН И ТЕНДЕНЦИЙ

В.С. Харченко, докт. техн. наук, В.В. Скляр, канд. техн. наук, О.М. Тарасюк

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Проведен эволюционный анализ рисков, возникающих при использовании ракетно-космической техники (РКТ). Дана оценка влияния отказов аппаратных и программных средств бортовых компьютеров (БК) на аварии РКТ.

* * *

Надано еволюційний аналіз ризиків, що виникають при використанні ракетно-космічної техніки. Аналізується вплив апаратних і програмних засобів бортових комп'ютерів на аварії РКТ

* * *

Evolution risk analysis on use of rocket-space engineering (RSE) is described. Impact of on-board computer-based systems hardware and software failures on RSE crashes is analyzed.

Введение. Проблема анализа рисков аварий РКТ

Одной из особенностей современного этапа развития техники является наличие таких систем, которые несут в себе потенциальную угрозу природе и человеческому обществу [1]. Из всех возможных техногенных источников нарушения глобальной безопасности следом после АЭС идут ракетоносители (PH), причем, опасность представляют не только боевые РН, оснащенные ядерными боеголовками, но и «мирные» РН, предназначенные для выполнения коммерческих и научно-исследовательских задач. При анализе таких систем важное место занимает анализ рисков [2-4]. Понятие риска характеризуется неопределенностью, связанной возможностью неблагоприятных ситуаций в ходе эксплуатации технических систем [5].

Ракетно-космическая отрасль является одним из важнейших секторов мировой экономики с многомиллиардным оборотом. Кроме τογο, исторически сложилось так, что прогресс человечества в целом принято оценивать, в том числе и степенью развития космонавтики, а наличие и поддержание «космического имиджа» во многом определяет авторитет государства в мировом сообществе. Всем известны поразительные успехи в области космонавтики, которые совсем недавно

казались не более, чем фантастикой. В то же время, положение дел в области ракетно-космической техники (РКТ) порой оставляет желать лучшего. За неполных полвека космической эры накоплена обширная статистика об отказах, авариях и катастрофах, изучение которой может дать весьма полезные результаты. Мировое сообщества время от времени будоражат известия об очередной катастрофе РН или космического аппарата (КА), вылившейся в «круглую» сумму. Иногда такие катастрофы уносят человеческие жизни. Кроме того, экологический ущерб как от удачных, так и от неудачных запусков остается, как правило, вне поля рассмотрения.

Целью данной статьи является проведение анализа рисков, возникающих при использовании РКТ, на основе накопленной статистики об отказах и выявление основных тенденций в динамике изменения рисков на протяжении 40 лет, обусловленных, прежде всего, отказами БК.

Методология проведения исследования

В работе исследована статистика аварий ракетно-космической техники за 40 лет, с 1961 г. по 2000 г. включительно [6]. Приводимая информация может расходиться с другими источниками, так как до сих пор нет полностью достоверных данных о всех катастрофах, происшедших в СССР, США, Китае и Японии. При проведении исследования не

тае и Японии. При проведении исследования не рассматривались данные по отказам и авариям баллистических и крылатых PH военного назначения.

На протяжении долгого времени история освоения историей космоса являлась противоборства между двумя сверхдержавами -СССР и США. Поэтому, при исследовании статистические данные были сгруппированы в соответствии с их принадлежностью этим двум государствам. После 1991 г. приемником СССР является Россия, которая по-прежнему остается одной из ведущих космических держав. В ряду космических государств по праву находится Украина, предприятия которой непосредственно выполняют разработку и производство РН, систем управления и другой аппаратуры и активно участвуют в выполнении различных проектов совместно с Россией, США и другими странами. Что касается остальных государств, осуществлявших пуски ракет-носителей, то их вклад в освоение космоса выглядит гораздо более скромным (см. таблицу 1), поэтому статистические данные для них не дифференцировались, а были объединены под названием «Другие страны».

Исследование проводилось по следующим направлениям:

- анализ рисков для аварий РН;
- анализ рисков для аварий космических аппаратов (KA);
- анализ тенденций изменения рисков отказов различных составляющих РН и KA, в том числе аппаратных и программных средств БКС.

Полные данные 0 количестве пусков ракетоносителей приведены в таблице 1. В ней пуски, только зарегистрированные учтены Комиссией ООН по исследованию и использованию пространства (COSPAR) космического Космическим командованием США (NORAD). В данную таблицу включены только успешные пуски, то есть те, которые завершались выводом полезной нагрузки на орбиту.

Таблица 1

Запуски ракетоносителей в период 1957-2000 г.г.

Год	СССР /	США	Франция	-		Велико-	Индия	Arianespace	Sea Launch	ВСЕГО
1957	2									2
1958	1	7								8
1959	3	11								14
1960	3	16								19
1961	6	29								35
1962	20	52								72
1963	17	38								55
1964	30	57								87
1965	48	63	1							112
1966	44	73	1							118
1967	66	59	2							127
1968	74	45								119
1969	70	40								110
1970	81	29	2	1	1					114
1972	74	31		1						106

Гот	CCCP /	CHIA	Ф	П	I/	Велико-	14	Иомания	A mion com c c c	Sea	ВСЕГО
Год	Россия	США	Франция	RNHOIIK	Китаи	британия	индия	израиль	Arianespace	Launch	BCEIO
1973	86	23									109
1974	81	24		1							106
1975	89	28	3	2	3						125
1976	99	26		1	2						128
1977	98	24		2							124
1978	88	32		3	1						124
1979	87	16		2					1		106
1980	89	13		2			1				105
1981	98	18		3	1		1		2		123
1982	101	18		1	1						121
1983	98	22		3	1		1		2		127
1984	97	22		3	3				4		129
1985	98	17		2	1				3		121
1986	91	6		2	2				2		103
1987	95	8		3	2				2		110
1988	90	12		2	4			1	7		116
1989	74	18		2					7		101
1990	75	27		3	5			1	5		116
1991	59	18		2	1				8		88
1992	54	28		1	4		1		7		95
1993	47	23		1	1				7		79
1994	48	26		2	5		2		6		89
1995	32	27		1	2			1	11		74
1996	25	33		1	3		1		10		73
1997	28	37		2	6		1		12		86
1998	24	34		2	6				11		77
1999	26	30			4		1		10	2	73
2000	35	28			5				12	3	82
ВСЕГО	2634	1220	10	53	65	1	9	3	129	5	4128

Анализ рисков для аварий ракетоносителей

В таблице 2 приведены сводные данные по отказам РН, сгруппированные в соответствии со странами-разработчиками РН (СССР/Россия, США, другие страны и международные проекты Arianespace и Sea Launch). Графическое отображение данных из таблицы 2 представлено на рис. 1, 2. Риски запуска РН (вероятность

1, 2. Риски запуска РН (вероятность аварии) рассчитывались как отношение числа аварийных пусков $N_{\rm aB,PH}$ к общему числу $N_{\rm .PH}$ успешных $N_{\rm ycn.PH}$ и аварийных пусков по формуле:

$$Risk_{\mathrm{PH}} = N_{\mathrm{ab,PH}} / (N_{\mathrm{ycn.n.}} + N_{\mathrm{ab,PH}}).$$

. Таблица 2 Анализ рисков для отказов ракетоносителей в период 1961-2000 г.г.

	CCC	Р/Россия	is pher		ША			ие страні			Всего	
	Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во	
Год	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск
	пусков	PH		пусков	PH		пусков	PH		пусков	PH	
1961	6	3	0,333	29	13	0,31	0	0	_	35	16	0,314
1962	20	2	0,091	52	9	0,148	0	0	_	72	11	0,133
1963	17	7	0,292	38	8	0,174	0	0	_	55	15	0,214
1964	30	6	0,167	57	8	0,123	0	0	_	87	14	0,139
1965	48	6	0,111	63	8	0,113	1	0	0	112	14	0,111
1966	44	9	0,17	73	4	0,052	1	3	0,75	118	16	0,119
1967	66	11	0,143	59	3	0,048	2	3	0,6	127	17	0,118
1968	74	8	0,098	45	4	0,082	0	1	1	119	13	0,098
1969	70	14	0,167	40	1	0,024	0	1	1	110	16	0,127
1970	81	7	0,08	29	0	0	4	0	0	114	7	0,058
1971	83	9	0,098	32	3	0,086	5	2	0,286	120	14	0,104
1972	74	5	0,063	31	2	0,061	1	0	0	106	7	0,062
1973	86	4	0,044	23	2	0,08	0	2	1	109	8	0,068
1974	81	4	0,047	24	1	0,04	1	1	0,5	106	6	0,054
1975	89	4	0,043	28	4	0,125	8	0	0	125	8	0,06
1976	99	2	0,02	26	0	0	3	1	0,25	128	3	0,023
1977	98	3	0,03	24	3	0,111	2	0	0	124	6	0,046
1978	88	4	0,043	32	1	0,03	4	0	0	124	5	0,039
1979	87	0	0	16	0	0	3	2	0,4	106	2	0,019
1980	89	0	0	13	2	0,133	3	1	0,25	105	3	0,028
1981	98	0	0	18	1	0,053	7	0	0	123	1	0,008
1982	101	0	0	18	0	0	2	1	0,333	121	1	0,008
1983	98	0	0	22	0	0	7	0	0	127	0	0
1984	97	0	0	22	0	0	10	0	0	129	0	0
1985	98	0	0	17	1	0,056	6	1	0,143	121	2	0,016
1986	91	0	0	6	3	0,333	6	1	0,143	103	4	0,037
1987	95	1	0,01	8	1	0,111	7	1	0,125	110	3	0,027
1988	90	0	0	12	0	0	14	1	0,067	116	1	0,009
1989	74	0	0	18	0	0	9	1	0,1	101	1	0,01
1990	75	0	0	27	0	0	14	1	0,067	116	1	0,009
1991	59	0	0	18	1	0,053	11	0	0	88	1	0,011
1992	54	0	0	28	1	0,034	13	0	0	95	1	0,01
1993	47	0	0	23	2	0,08	9	1	0,1	79	3	0,037

Продолжение таблицы 2

	CCC	Р/Россия	FI .	С	ША		Другі	ие страні	Ы	Всего		
Год	Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во	
ТОД	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск
	пусков	PH		пусков	PH		пусков	PH		пусков	PH	
1994	48	1	0,02	26	1	0,037	15	2	0,118	89	4	0,043
1995	32	0	0	27	5	0,156	15	2	0,118	74	7	0,086
1996	25	0	0	33	0	0	15	3	0,167	73	3	0,039
1997	28	3	0,097	37	1	0,026	21	1	0,045	86	5	0,055
1998	24	2	0,077	34	2	0,056	19	2	0,095	77	6	0,072
1999	26	2	0,071	30	6	0,167	17	2	0,105	73	10	0,12
2000	35	3	0,079	28	0	0	20	1	0,048	83	4	0,046

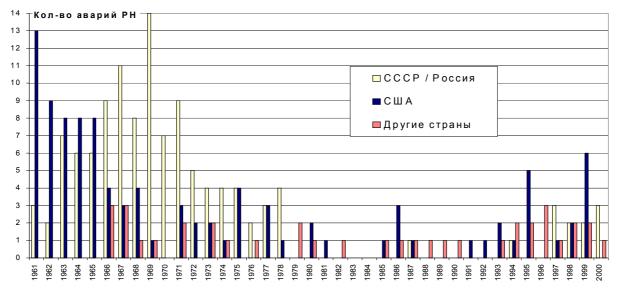


Рис. 1. Распределение аварий ракетоносителей между странами-изготовителями

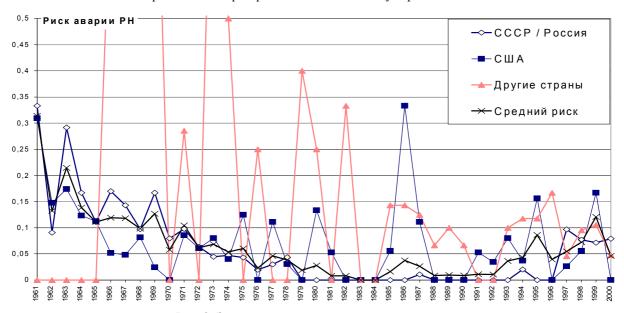


Рис. 2. Значения рисков аварии ракетоносителей

Средние значения рисков рассчитывались от общего количества пусков и аварий, а не как среднее арифметическое от трех показателей по странам. Следует отметить, что количество аварий РН, как и численное значение риска аварии и для России, и для США с самого начала освоения космоса имело стойкую тенденцию к снижению. Риск аварии РН снизился от 30% в начале 60-х г.г. до нулевого значения в середине 80-х. Остальные страны в то время несколько отставали в развитии РКТ от СССР и США. Количество пусков во всем остальном мире (исключая СССР и США) не превышало десятка в год, РН проходили этап приработки, поэтому значения рисков были весьма велики и отличались значительными флуктуациями. Со второй половины 80-х г.г. количество аварий РН и соответствующие риски опять возрастают. Это объясняется возросшим количеством коммерческих пусков, обусловленным бурным развитием телекоммуникационных технологий. Значения рисков имеют значительные флуктуации, но их

максимальные значения не превосходят 0,167 (другие страны – 1995 г., США – 1999 г.). Среднее значение рисков во второй половине 90-х г.г. колеблется в диапазоне 0,05–0,10. Похоже, что данная тенденция приняла устойчивый характер и может сохраняться в ближайшие годы. Следовательно, фирмам, работающим в ракетно-космической отрасли, придется смириться с потерями от 5 до 10 ракет на каждые 100 пусков.

Анализ рисков для аварий космических аппаратов

В таблице 3 приведены сводные данные по отказам КА, сгруппированные в соответствии со странами-разработчиками РН (СССР/Россия, США, другие страны). Риски аварии КА определялись из расчета на один успешный пуск:

$$Risk_{KA} = N_{ab. KA} / N_{ycn. n.}$$

Под успешным пуском КА здесь понимается его вывод на расчетную орбиту и эксплуатация в течение всего установленного срока службы.

Таблица 3 Анализ рисков для отказов космических аппаратов в период 1961-2000 г.г.

	CCCF	Р/Россия		C	США		Другі	ие страні	Ы	Всего		
Год	Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во	
ТОД	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск
	пусков	КА		пусков	КА		пусков	КА		пусков	КА	
1961	6	1	0,167	29	1	0,034	0	0	_	35	2	0,057
1962	20	2	0,1	52	0	0	0	0	_	72	2	0,028
1963	17	3	0,176	38	0	0	0	0	_	55	3	0,055
1964	30	2	0,067	57	1	0,018	0	0	_	87	3	0,034
1965	48	8	0,167	63	1	0,016	1	0	0	112	9	0,08
1966	44	0	0	73	2	0,027	1	0	0	118	2	0,017
1967	66	2	0,03	59	1	0,017	2	0	0	127	3	0,024
1968	74	4	0,054	45	0	0	0	0	_	119	4	0,034
1969	70	3	0,043	40	0	0	0	1	_	110	4	0,036
1970	81	0	0	29	1	0,034	4	1	0,25	114	2	0,018
1971	83	5	0,06	32	1	0,031	5	0	0	120	6	0,05
1972	74	0	0	31	0	0	1	0	0	106	0	0
1973	86	3	0,035	23	2	0,087	0	0	_	109	5	0,046

Продолжение таблицы 3

	CCCF	Р/Россия		C	США		Другі	ие страні	Ы	В	сего	
Го-	Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во		Кол-во	Кол-во	
Год	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск	успешных	аварий	Риск
	пусков	КА		пусков	КА		пусков	КА		пусков	КА	
1974	81	2	0,025	24	1	0,042	1	0	0	106	3	0,028
1975	89	2	0,022	28	0	0	8	0	0	125	2	0,016
1976	99	4	0,04	26	0	0	3	0	0	128	4	0,031
1977	98	4	0,041	24	2	0,083	2	0	0	124	6	0,048
1978	88	1	0,011	32	0	0	4	0	0	124	1	0,008
1979	87	0	0	16	0	0	3	0	0	106	0	0
1980	89	0	0	13	0	0	3	0	0	105	0	0
1981	98	0	0	18	0	0	7	0	0	123	0	0
1982	101	0	0	18	0	0	2	0	0	121	0	0
1983	98	0	0	22	0	0	7	0	0	127	0	0
1984	97	0	0	22	0	0	10	0	0	129	0	0
1985	98	0	0	17	0	0	6	0	0	121	0	0
1986	91	0	0	6	0	0	6	0	0	103	0	0
1987	95	1	0,011	8	0	0	7	0	0	110	1	0,009
1988	90		0	12	0	0	14	0	0	116	0	0
1989	74		0	18	0	0	9	0	0	101	0	0
1990	75		0	27	1	0,037	14	1	0,071	116	2	0,017
1991	59		0	18	1	0,056	11	1	0,091	88	2	0,023
1992	54		0	28	0	0	13	0	0	95	0	0
1993	47		0	23	0	0	9	0	0	79	0	0
1994	48		0	26	1	0,038	15	1	0,067	89	2	0,022
1995	32		0	27	2	0,074		1	0,067		3	0,041
1996	25		0	33	1	0,03	15	0	0	73	1	0,014
1997	28	7	0,25	37	2	0,054		3	0,143		12	0,14
1998	24		0,208		9	0,265		2	0,105		16	0,208
1999	26	3	0,115		7	0,233		2	0,118		12	0,164
2000	35		0	28	1	0,036	20	2	0,1	83	3	0,036

Визуальное отображение данных из таблицы 3 представлено на рис. 3, 4.

В 60-е г.г. большее (по сравнению с США) число аварий происходило с советскими КА. Ситуация между СССР и США выровнялась в начале 70-х г.г., а к концу 70-х г.г. аварии КА практически прекратились. Это объясняется тем, что технологии проектирования, изготовления и эксплуатации КА достигли этому времени определенного К совершенства, а наиболее сложные программы межпланетных полетов к Луне, Марсу, Венере были уже выполнены. Другие страны в это время эксплуатировали незначительное количество КА, поэтому как количество аварий, так и значения рисков КА для них имеют нулевое значение.

Возрастание количества аварий КА началось с 90-x Г.Г. связано развитием телекоммуникационных технологий, усложнением выполняемых задач и возрастанием требований к надежности работы и сроку службы КА. К концу 90-х г.г. значения рисков КА превысили показатели, характеризующие самое начало космической эры и превысили значение 25%. Соответственно, каждый четвертый КА ≪не доживает» конца запланированного срока эксплуатации. Разумеется, этот факт не может не тревожить разработчиков и заказчиков, так как цена таких отказов крайне велика.

На рис. 5, 6 проведен сравнительный анализ количества аварий и значений рисков для РН и КА. На рис. 6, кроме средних значений рисков аварий КА и РН, добавлено значение суммарного риска выполнения задачи КА, составляющими которого являются риск аварии КА и риск аварии РН.

Получим формулу для определения риска выполнения задачи КА. Вероятность выполнения задачи:

$$P_{\mathrm{Вып.з.}} = 1 - Risk_{\mathrm{Вып.з.}}$$

В то же время

$$P_{\text{\tiny BBIII.3.}} = P_{\text{\tiny PH}} \cdot P_{\text{\tiny KA}} = (1 - Risk_{\text{\tiny PH}}) \cdot (1 - Risk_{\text{\tiny KA}})$$

Отсюда

$$1 - Risk_{\text{Вып.3.}} = (1 - Risk_{\text{PH}}) \cdot (1 - Risk_{\text{KA}}),$$

и окончательно

$$Risk_{{\scriptscriptstyle \mathrm{Biii}.3.}} = Risk_{{\scriptscriptstyle \mathrm{PH}}} + Risk_{{\scriptscriptstyle \mathrm{KA}}} - Risk_{{\scriptscriptstyle \mathrm{PH}}} \cdot Risk_{{\scriptscriptstyle \mathrm{KA}}}$$
 .

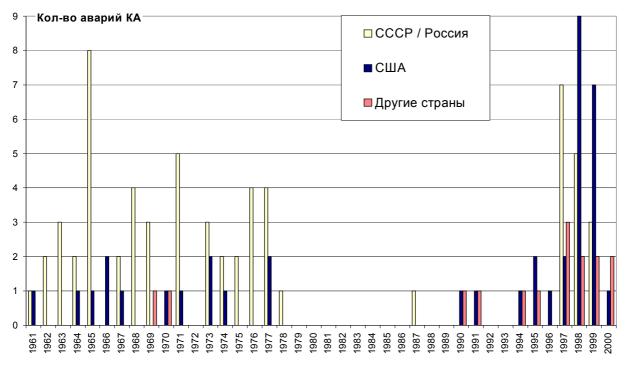


Рис. 3. Распределение аварий космических аппаратов между странами-изготовителями

Рис. 4. Значения рисков аварии космических аппаратов

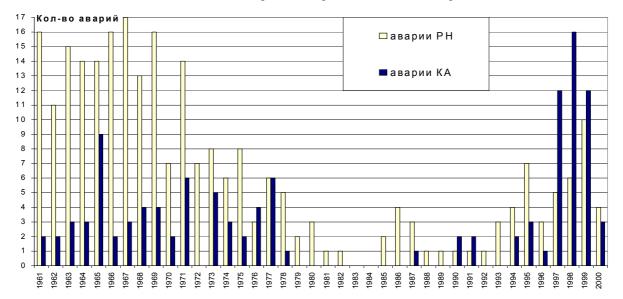


Рис. 5. Сравнительный анализ количества аварий ракетоносителей и космических аппаратов

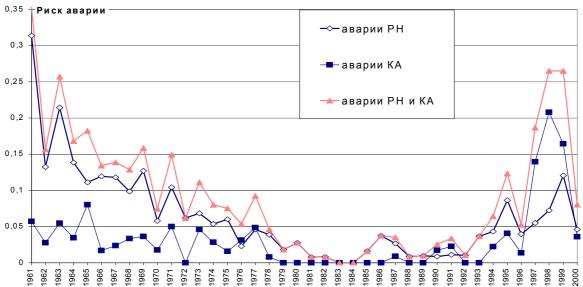


Рис. 6. Сравнительный значений рисков аварий ракетоносителей и космических аппаратов

Проведенный анализ показал, что до середины 70-х г.г. риск аварий РН в 2 и более раз превосходил риск аварий КА. Затем значения этих рисков приблизительно выровнялись, а со второй половины 90-х г.г. риски аварий КА превзошли риски аварий РН. Таким образом, на современном этапе развития РКТ наиболее «узким» местом выполнения возложенной на КА миссии является не его доставка на орбиту, а обеспечение безотказной работы КА в течение запланированного срока эксплуатации.

Анализ тенденций изменения рисков аварий из-за отказов различных составляющих РН и КА

В таблице 4 исследована динамика изменения процентного соотношения отказов, приведших к авариям РН и КА. Расчеты проводились для временных интервалов длительностью 10 лет. Отдельно выделен ряд причин отказов, общих для

РН и КА. Следует отметить, что для 60-80-х г.г. изза недостатка информации не произведена дифференциация отказов для КА. Результаты анализа данных таблицы 4 представлены на рис. 7-11. Обозначения причин отказов на этих рисунках соответствуют таблице 4.

Для определения риска аварии из-за отказа той или иной составляющей в ходе выполнения космического полета необходимо воспользоваться формулой:

$$\mathit{Risk}_i = N_{\mathrm{аварий}\,i} \, / \! \left(N_{\mathrm{усп.\,п.}} + N_{\mathrm{аварий}\,\mathrm{PH}} \right) .$$

Риски аварий из-за отказов составляющих РКТ, отражающие современные тенденции, приведены в таблице 5 (рассчитаны на основе статистики за 90-е г.г.). При этом учтено, что в 90-х г.г. было осуществлено 816 успешных пусков и произошло 44 аварии РН (см. таблицу 1, 2).

Таблица 4 Причины отказов РКТ

Причины аварий	60-6	Э Г.Г.	70-6	Э Г.Г.	80-6	Э Г.Г.	90-6	Э Г.Г.
при ины изирии	кол-во	%	кол-во	%	кол-во	%	кол-во	%
Отказы и взрывы ступеней	136	79	60	66	38	90	31	29
ракетоносителя (РН)								
Отказы космических аппаратов	9	5	9	10	0	0	0	0
(KA)								
Отказы двигательных	6	3	5	5	1	2,5	10	10
установок (ДУ)								
Отказы радиоаппаратуры (РА)	2	1	2	2	1	2,5	7	7
Отказы разгонных блоков (РБ)	3	2	1	1	1	2,5	6	6
Отказы систем электропитания	2	1	1	1	0	0	9	9
и кабельных сетей (СЭП)								
Отказы системы управления	16	9	14	15	1	2,5	24	23
(СУ)								
Отказы аппаратных средств	0	0	0	0	0	0	6	6
бортовых компьютеров (АС)								
Отказы программных средств	0	0	0	0	0	0	10	10
бортовых компьютеров (ПС)								
ВСЕГО	174	_	92	_	42	_	103	_

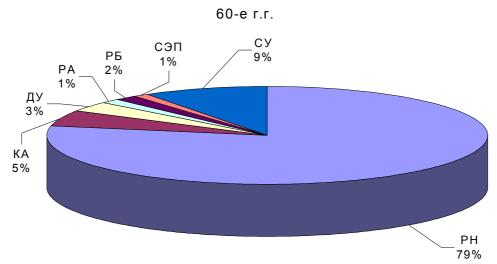


Рис. 7. Распределение причин отказов ракетно-космической техники в 60-е г.г. 70-е г.г.

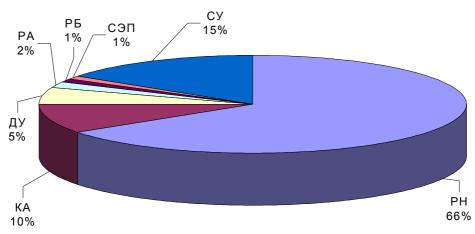


Рис. 8. Распределение причин отказов ракетно-космической техники в 70-е г.г.

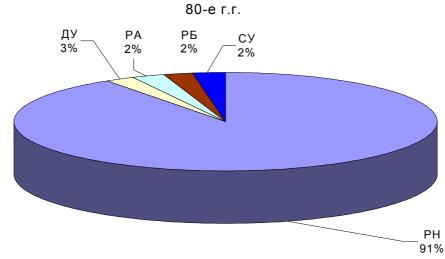


Рис. 9. Распределение причин отказов ракетно-космической техники в 80-е г.г.

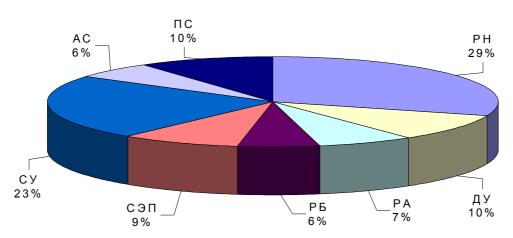


Рис. 10. Распределение причин отказов ракетно-космической техники в 90-е г.г.

Для определения риска аварии из-за отказа той или иной составляющей в ходе выполнения космического полета необходимо воспользоваться формулой:

$$Risk_i = N_{\text{аварий }i}/(N_{\text{усп. п.}} + N_{\text{аварий PH}}).$$

Риски аварий из-за отказов составляющих РКТ, отражающие современные тенденции, приведены в таблице 5. При этом учтено, что в 90-х г.г. было осуществлено 816 успешных пусков и произошло 44 аварии РН (см. таблицу 1, 2).

Приведенные в таблице 5 значения рисков могут быть уточнены, если учесть дифференциацию рисков для отказов компонент РН и КА

Проведенный анализ показывает, что наиболее подвержены аварийным отказам ступени РН, второе место занимают системы управления. Однако, современный этап характеризуется появлением новых которые обусловлены применением в рисков, бортовых системах управления компьютерной техники. Отказы программных средств (ПС) бортовых компьютеров вместе с отказами двигательных установок делят 3-4 место среди всех причин отказов. В среднем из-за отказов ПС заканчивается аварией каждый 100-й пуск (в среднем - раз в год). Следует отметить, что аппаратные средства (AC) отказывают почти в два раза реже, чем ПС. В таблице 6 приведены данные об отказах АС и ПС бортовых компьютеров с 1991 по 2000 г.г.

Направления дальнейших исследований

Дальнейшие исследования целесообразно проводить в следующих направлениях:

- 1) уточнение статистики за счет анализа новых данных об отказах и авариях РКТ и проведение регрессионно-корреляционного анализа статистических данных для прогноза будущих тенденций развития РКТ;
- 2) уточнение модели оценки рисков с учетом составляющих РН и КА и последствий аварии;
- 3) проведение сопоставительного анализа причин аварий, в частности, при внедрении новых информационных и других технологий с иными критическими системами, такими как атомная энергетика, транспорт и др. [1,7];
- 4) разработка методов и средств повышения надежности и безопасности СУ и бортовых компьютеров на основе внедрения отказоустойчивых проектных решений [8];

Риски аварий из-за отказов составляющих РКТ на основе статистики за 90-е г.г. (в пересчете на один пуск РН)

Причина аварии	Кол-во отказов	Риск аварии
Отказы и взрывы ступеней ракетоносителя (РН)	31	0,036
Отказы двигательных установок (ДУ)	10	0,012
Отказы радиоаппаратуры (РА)	7	0,008
Отказы разгонных блоков (РБ)	6	0,007
Отказы систем электропитания и кабельных сетей (СЭП)	9	0,01
Отказы системы управления (СУ)	24	0,028
Отказы аппаратных средств бортовых компьютеров (АС)	6	0,007
Отказы программных средств бортовых компьютеров (ПС)	10	0,012

5) исследование методов снижения влияния дефектов ПС на аварии РКТ путем создания и использования инструментальных систем поддержки экспертизы и верификации, внедрения многоверсионных технологий.

Заключение

В статье выполнен анализ рисков РКТ, который позволил выявить следующие тенденции:

- 1) значение рисков для аварий РН колеблется в диапазоне 0,05–0,10;
- 2) значение рисков для аварий КА во второй половине 90-х г.г. превзошло аналогичный показатель для РН и составляет 0,15–0,20;
- 3) аварии РКТ из-за отказов ПС во второй половине 90-х годов происходили в среднем 1 раз в год (1 отказ на 100 пусков РН). Следует отметить, что ПС бортовых компьютеров отказывают чаще, чем АС, а для РН отказы аппаратных средств вообще не характерны из-за короткого времени работы.

Литература

- 1. Айзенберг Е.Я., Ястребенецкий М.А. Сопоставление принципов обеспечения безопасности систем управления ракетами-носителями и атомными электростанциями // Космічна наука і технологія.— 2002.— Т. 8.— № 1.— С. 55-60.
- 2. Кагинский А.Б., Агаркова Н.В. Исследование тенденций и характера изменений чрезвычайных ситуаций в Украине // Проблемы управления и информатики.— 2002.— № 5.— С. 127-136.

- 3. Лабенский В.Б. Применение корреляционнорегрессионного анализа при планировании работ в ракетно-космической отрасли // Проблемы управления и информатики.— 2001.— № 4.— С. 101-110.
- 4. Радаев Н.Н. Повышение точности прогноза вероятности катастроф за счет ущерба неоднородных статистических данных по ущербу // Автоматика и телемеханика. 2000. № 3. С. 183-189.
- Железняков А.Б. Взлетая, падала ракета... СПб: "Система", 2003, 220с.
- 6. Згуровский М.З. и др. Информационный подход к анализу и управлению проектными рисками // Проблемы управления и информатики.— 2000.— № 4.— С. 148-156.
- 7. Харченко В.С., Ястребенецкий М.А., Скляр В.В. Новые информационные технологии и проблема безопасности информационно-управляющих систем АЭС// Ядерная и радиационная безопасность. 2003. №2. С.18-29.
- 8. Харченко В.С. Выбор технологий проектирования и базовых архитектур для дефектоустойчивых управляющих и вычислительных систем реального времени // Космічна наука і технологія.— 1997.— Т. 3.— № 5-6.— С. 109-119.

Поступила в редакцию 23.09.03

Рецензент: д-р техн. наук, профессор Краснобаев В.А., Харьковский государственный технический университет сельского хозяйства, г. Харьков

Отказы бортовых компьютеров за период с 1991 по 2000 г.г

				Место	Причина	Страна-	
Дата	Дата	Тип РН	Тип КА	отказа	отказа	изгото-	Причина отказа
аварии	пуска	1 111 1 11		(PH/KA)	(АС/ПС)	витель	
02.05.95	03.04.95	Pegasus	Orbcomm	KA	AC	США	Сбои в бортовом процессоре.
02.03.73	03.01.73	1 egasas	FM-2	10.1	710	CIIII	Память очищена и работа вос-
			11112				становлена.
08.09.97	20.02.86	Протон	OC	КА	AC	CCCP	Вышел из строя бортовой ком-
		8K82K	«Мир»				пьютер (БК). Нарушена ориен-
			1				тация комплекса, отключены
							некоторые бортовые системы.
02.01.98	23.09.97	Космос-	FAISAT-	КА	AC	США	Неисправности в БК. Снижение
		3M	2V				мощности солнечных батарей и
							неустойчивая работа аппаратуры
							в тени Земли.
30.05.98	20.02.86	Протон	OC	КА	AC	CCCP	Вышел из строя центральный
		8K82K	«Мир»				БК. В результате остановились
							системы ориентации комплекса.
							Из-за ограничения электроснаб-
							жения отключены многие борто-
							вые системы. Снизилась темпе-
							ратура в жилых помещениях
040=00	10.12.02		5564			G777 1	комплекса.
04.07.98	18.12.93	Ariane-	DBS-1	КА	AC	США	Отказ управляющего процессора
		4.44L					SCP. Управление было автома-
							тически передано на резервный
							процессор, и аппарат продолжил
							работу без последствий для об-
20.12.99	18.12.99	Atlas-	Terra	КА	AC	США	служиваемых им клиентов. Отказ БК. Специалистам NASA
20.12.99	16.12.99	2AS	16114	NA	AC	США	удалось восстановить работу
		ZAS					бортового компьютера
							02.01.2000.
19.07.91	17.07.91	Ariane-	Orbcomm	КА	ПС	США	Отказ ПС системы управления
17.07.71	17.07.51	4.40	-X	101	110	CIIII	электропитанием КА через 40 ч
							после вывода на орбиту.
01.05.95	03.04.95	Pegasus	Orbcomm	КА	ПС	США	Сбои в ПО управления КА. Про-
		3	FM-1				ведена коррекция ПО.
04.06.96	04.06.96	Arian 5	4 спутника	PH	ПС	EC	Переполнение операнда вызвало
			типа				выдачу БК ошибочной команды
			«Cluster F»				и привело к автоподрыву РН.
17.08.97	20.02.86	Протон	OC	КА	ПС	CCCP	Из-за ошибки в программе БК не
		8K82K	«Мир»				состоялась повторная стыковка
							грузового корабля "Прогресс М-
							35" и ОК "Мир".
20.07.98	18.10.89	MTKK	Космиче-	КА	ПС	США	Обнаружено аномальное пове-
		OV-104	ский зонд				дение одной из двух подсистем,
		«Atlantis	«Galileo»				ответственных за прием команд
		№ 5»					с Земли. КА перешел в режим
							защиты от ошибок. 23.07.1998
							специалистам Лаборатории ре-
							активного движения в Пасадене
							удалось устранить неисправно-
							сти. Для этого потребовалось
							послать на зонд корректирую-
							щую программу, которая смогла
							заменить собой сбойные элементы в ПО бортового компьютера.
I	I	l	ı l		l	l	ты в 110 обртового компьютера.

Продолжение таблицы 6

	I	Π		3.6	-	<u> </u>	
Дата	Дата	m 5.7-	Тип КА	Место	Причина	Страна-	Причина отказа
аварии	пуска	Тип РН	InnKA	отказа	отказа	изгото-	причина отказа
	Ÿ		~	(РН/КА)	(AC/IIC)	витель	
27.08.98	27.08.98	Delta-3	Galaxy-10	РН	ПС	CIIIA	На 70-й секунде полета произо- шел сбой в ПО системы управ- ления, и ракета начала откло- няться от намеченного курса. Когда отклонение от курса пре- высило допустимые пределы, по команде с Земли ракета была уничтожена. Скорректированное ПО будет установлено на всех последующих экземплярах РН
							"Delta-3".
09.09.98	09.09.98	Зенит-2	Globalstar (12 шт.)	РН	ПС	Украина	Логическая ошибка в алгоритме наземной автоматизированной системы предстартовой подготовки. Не была выдана команда на закрытие клапана пневмосистемы 2-й ступени, что привело к отказу двух каналов СУ и к аварийному прекращению полета
27.11.98	18.10.89	MTKK OV-104 «Atlantis №5»	Космический зонд «Galileo»	КА	ПС	США	Произошли два сбоя в программном обеспечении, происшедших с интервалом в 6 часов, привели к потере части информации, которую ученые надеялись собрать о Юпитере и спутниках планеты.
30.07.99	20.02.86	Протон 8К82К	ОС «Мир»	KA	ПС	СССР	При проведении очередного эксперимента из-за ошибки в составлении программы вышла из строя вычислительная машина ЦВМ-1. Ориентация комплекса нарушилась, была восстановлена через 4 дня после аварии.
23.09.99	11.12.98	Delta-2- 7425	AMC «Mars Klimate Orbiter»	КА	ПС	США	Навигационная ошибка из-за неперевода футов и дюймов в метрическую систему. Станция прошла через атмосферу Марса и сгорела.
12.03.00	12.03.00	Зенит- 3SL	ICO F1	РН	ПС	Украина	Логическая ошибка в программном алгоритме наземной автоматизированной системы предстартовой подготовки. Не была выдана команда на закрытие клапана пневмосистемы 2-й ступени, что привело к остановке двигателя