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Finding antiderivatives of the given functions is an important component in a number of problems
of applied mathematics. Difficulties occur in a case when the antiderivative in question cannot be
expressed in terms of the elementary functions. In this paper we propose to use the atomic gen-
eralized Taylor series (AGTS), modified appropriately, for finding antiderivatives. More convenient
formulas for the basic functions of AGTS are proposed.
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1. Statement of the problem and analysis of recent research and publications

In a number of problems of applied mathematics it is necessary to find antideriva-
tives of the given functions

FO) = f ()t (1)
0

and these antiderivatives cannot be expressed in terms of elementary functions. One of
the examples of such a problem is a problem of finding the distribution function for the

1 2
normal law with probability density ——e€ X /2.

J2n

Solving the linear non-homogeneous differential equations with constant coeffi-
cients, which often occur in applications, by the method of variation of constants, re-
quires finding antiderivatives.

Solving of non-linear differential equations by the iteration method requires re-
peated finding antiderivatives of the given functions in a form convenient for the next
iteration.

For example, the initial value problem for the differential equation of the first order

y(X) = F(X, y(X)),
y(X0) = Yo

is equivalent to the Volterra integral equation

y(x) = Yo+ | F(ty()at.

X0
If we solve this equation by iteration method, assuming Yg(X) = Yo and
X
Yne1(¥)=Yo+ [ F(tyn@)et,
X0

then for every iteration step we should find the antiderivative of a function F (X, Y, (X)) .

We cannot use usual quadrature formulas in this case, since the upper limit of
the integral is variable. Classical Taylor series has some restrictions in application, first-
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ly since its radius of convergence may be insufficient, and mainly because the substitu-
tion of the power series instead Y, (t) into a function F(t, Yy, (t)) requires further trans-

formations for the obtaining the power series under the integral sign.

In this paper we propose to use for finding antiderivatives the atomic generalized
Taylor series (AGTS) [1-4], modified appropriately. This series for the antiderivative
F (X) in question has a form

FOO=> > FO(x0)0nk(X). )

n=0kONp
Here the functions ¢, (X) are so called basic functions of AGTS, which can be

expressed in terms of the atomic function up(x) [5-8].
These functions have the following properties, which define them uniquely.
m — smxk
O (X1 ) = S5
The points X, | are defined as follows:
for n=0 Xy =k,
for n>0 X = k2"t

_ _k _k
So X i =K, X9 =5 X3 K =2 and so on.

2. Modification of the atomic generalized Taylor series and the more
convenient formulas for the basic functions

In the series (2) in its standard form Ng =Z, Xy, =K, so we should know the
values of the integrals

k
F(k) = j f (t)dt
0

that is not convenient in our case, because of the necessity to calculate the definite in-
tegrals.
We propose to modify this series in such a way that Ny ={0} , knowing that

F(0)=0. In this process the basic functions of the generalized Taylor series ¢, i (X)
are substituted by the modified basic functions of AGTS @, | (X). Namely, instead of

defining the values of a function F(X), represented by AGTS, at the points k # 0, we
define the derivative of this function at the points K—1/2,k> 0,k + 1/ 2k < ( Thus

. K
the modified X 25.

The corresponding modified basic functions for k <0 are of the form

_[0.8up(x—-k)x<Kk,
G1x-1/2(%) _{0.5,x> ‘
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Similarly we build the basic functions §; y+1/2(X) for k>0.
Further, all the other modified basic functions @, , (X) we obtain from the stand-
ard basic functions by subtraction of functions o [ ;_1/2(X), where 0 we choose to

make the first derivatives of ¢n,k(x) at the points k=1/2,k>0,k+ 1/2 k< (equal

to 0.
Consider in a bit more detail the case of the initial value problem for the differen-
tial equation of the first order with a smooth right-hand side

y'(x) = F(X,y(x)),
y(X0) = Yo.

which is equivalent to the Volterra integral equation of the second kind

X
V(9 =Yo+ | F(t.yt)et.
X0
Expanding both sides of this equation to atomic generalized Taylor series using

its modification mentioned above in the right-hand side, we obtain the infinite system of
non-linear equations with respect to the unknown coefficients of the AGTS. Let

f(t)=FEy®).

Then

y'(x) = f(x),

y (x) = £(x),

yW ()= f "D n>1.
In its turn

20 =3—';<t,y(t» +3—§(t,y(t))y'(t).

A representation obtained above one can also use for the calculation of Duha-
mel’s integral

t
X(t) = mwidj p(t)e "V singy ¢ - 1),
0

which obviously is the indefinite integral.
When using constructions mentioned above for practical computations it is im-
portant to obtain convenient expressions for the basic functions of the atomic general-

ized Taylor series. In their turn the formulas for ¢n,k(x) are based on the formulas for

the atomic function up(x) and the atomic functions fupy, (X).

Let us introduce a function up® (X)= up( — 1), which is equal to 0 for X< 0.
Notice that this function is also used in [9]. It satisfies the functional-differential equation

y'(x) =2y(2x)- 2y (- 2], (3)
Now let us introduce a function up™ (x,0), which is equal to up’ (x) on [0, 1]
and is equal to 1 for Xx=>1.
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This function is infinitely differentiable, as at a point 1 the function up+ (X) is

equal to 1, and all of its derivatives at this point are equal to O.
It is easily seen that

(up™ (x,0))'= 2up™ ()
Similarly, let's introduce the functions

up” (x), x0[0,27"],
P,(x), x>2"",
where B, (X) is an algebraic polynomial of the degree N, which is the expansion of the

up™ (x,n) =

function up+ (X) to a Taylor series at a point 27" Coefficients of this polynomial are the

rational numbers, which can be calculated by the recurrent formulas given in [5]. These
functions are also infinitely differentiable by the construction. Thus

(up* (x,n =) = MV 2yp* (x),
Basic functions of the atomic generalized Taylor series are the linear combina-

tions of shifts of the functions up™ (x,n), and the coefficients of these linear combina-
tions and the values of the shifts are given by the simple formulas. In its turn, calculation

of the functions up+(x,n) reduces itself to the obtaining of the function

up® (x) =up(x —1), and the formulas for up(x) are given in [5].

In many of the important applications of the mechanics and electrodynamics the
right-hand side of the ordinary differential equation of the first order or of a system of
such equations is a function, which contains the integrals with respect to space varia-
bles, that is, the equation is integro-differential. In this case it's appropriate to use the
atomic generalized Taylor series twice, that is with respect to both time and space vari-
able. Thus it's necessary to calculate integrals of the products of basic functions of the
atomic generalized Taylor series (bfAGTS) and from the product of basic function AGTS
by the function not represented by AGTS. In this case it is convenient to change the
representation in terms of bfAGTS with one in terms of the orthonormal system, ob-
tained by orthogonalization of the sequence bfAGTS, which we denote by AOS (atomic
orthogonal system). If we use Gram — Schmidt process for the orthogonalization, it's
easy to obtain the formulas for bfAGTS in terms of AOS, since the corresponding trans-
formation matrices are triangular. To orthogonalize bfAGTS we need to calculate the

integrals of the products of functions up™ (X, n)
b
_[up+ (x,Nup™ (x,m)dx
a

with sufficient precision. All of these integrals can be expressed precisely in terms of the
integral of up(X) squared, which in turn is a sum of a quickly convergent series, ob-

tained by Parseval’s identity.
Give the values of the function up(X), which are necessary for the calculation of

the polynomials P,_;(X) using the definition of the functions up*(x,n)
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up(-1/2)=up® (1/2} 1/2= 0.5,
up(-3/4=up* (1/4)= 5/72 0.060 § ,
up(-7/8=up” (1/8)y= 1/288 0.00347)2 ,
up(-15/1§ =up” (1/16} 143/2073669 0.00EBD62,
up(-31/32)=up* (1/32)= 19/33177608 5.712 10,
up(-63/64)=up™ (1/ 64)= 1153/ 56182749440= 2.05] 17,
up(-127 /128)=up™ (1/128) = 583/179789679820880 0316,
up(-255/ 256)=up* (1/ 256)= 1616353/ 70420021792210944080@ 2130
up(-511/512)=up™ (1/512)= 132809 / 1802752557 &&W1664000= 710 1°
up(—1023/1024F up™ (1/1024)=
=134926369 / 1246394851358539387238350848000 1210
up(—2047 / 2048 up™ (1/ 2048)=
= 46840699 / 6381541638955721662660356341768000 7'10

up(-4095 / 4096)= up™ (1/ 40%) =
= 6754549621315782214732887898713986916575925257070976008000

~20103L
Indeed,
n-1 (K)
up (2
o= > P g
k=0 -

and, as it was mentioned above
(up* (x,n = 1))\ = 21D Zp* (),
Particularly
+ ok n) _ n+1)/2 .+ +n
(up* (2, =W = 2MD2yp* (F*N)
Give the recurrent formulas for the basic functions of the atomic generalized Tay-
lor series. Formulas for the basic functions, corresponding to the values and the first de-
rivatives are given above. Functions corresponding to N-th derivatives, we build as fol-

lows.
The function

Xnk(¥) =27 D 2up* (x - (k- 1)Z" p- 1
at a point X, i = k2_n+1 has the n-th derivative equal to 1, and at the other points

Xn| s # K its n-th derivative is equal to 0.
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Its derivatives of the mM-th order, M<n are of the form
Xnk™ () =27 MMDEMIDRPT M (- (K- 2" )n-m- 1

and at the points Xy, 5 ,M<nN are equal to the known numbers

an k,m,s — Xn ,k(m) (Xm,s) =

— 2—n(n+1)/2+m(m+1)/2up+ (2m (Xm <~ (Z( _ 1)2—n )n -m- 1)
Since the basic functions of AGTS

n-1
bOn k(X)) =Xnk(X) - Z Z an k msPms(X).

m=0sNp,
This is the required recurrent formula for the basic functions of AGTS ¢,  (X)
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O0unciIeHHS MEPBICHUX 32 J0NIOMOI0K0 Y3arajibHEeHOI 0
psaay Teisiopa

O6uuncneHHs nepBiCHUX 3agaHNX OYHKLIN € BaXKIMBOKO CKNagoBot BaraTbox 3a-
Aay npuknagHol MatemaTuku. TpyaHOLL BUHUKAKTL Y BUNAAKy, KONW LWyKaHa nepsicHa
He Moxe OyTu BUpaxeHa 4Yepes eneMeHTapHi PyHKuil. Y uin ctatTi NponoHYeTbLCS BU-
KOPMUCTOBYBaTK ANA OBYMCNEHHS NEpBIiCHUX aTOMapHUKW y3aranbHeHun psg Tewnnopa
(AYPT), BMAO3MIHEHMI BI4MNOBIAHMM YMHOM. 3anponoHoBaHO Oinblu 3pyyHi hopmynu
ans 6asncHux yHkuin AYPT.

Knroyoei cnoea: nepsicHa, iHTerpanbHe PiBHSAHHA, aTOMapHUW y3aranbHeHUn
psaa Tennopa, 6a3ncHi pyHKLiT aToMapHOro y3aranbHeHoro psay Tennopa.

BorunciaeHue nepBoodpa3HbIX ¢ MOMOIIbLI0 0000IIEHHOT O
psajaa Teiopa

BbluncneHne nepBoobpasHbIX 3af4aHHbIX PYHKUMI ABNAETCA BaXXHOW COCTaBs-
tOLLEeNn MHOrMX 3agay NpuknagHon matemMaTtuki. TpyoHOCTU BO3HMKAKOT B Cyyae, Korga
nckomas nepsoobpasHasa He BblpaXkaeTcs Yepes aneMeHTapHble pyHKuun. B aton cta-
Tbe npeanaraeTcsa WUCNonb3oBaTb A5 BblMUCAEHUS NepBoO6pasHbiX aTOMapHbIN
0606weHHbIn pag Tennopa (AOPT), BUOOUM3MEHEHHbIN COOTBETCTBYHOLWMM 0Bpasom.
MpennoxeHbl 6bonee yaobHble popmynbl 4na 6asncHblix yHkumn AOPT.

Knroyeeble cnoea: nepBoobpasHad, WHTerpanbHOE YypaBHEHWEe, aTOMapHbIN
0600weHHbIN pag Tennopa, 6a3ucHble oyHKLMM aToMapHOro o6obuweHHoro psga Ten-
nopa.
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