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UNSTEADY FLOW OF DROPLET LIQUID IN HYDRAULIC SYSTEMS OF
AIRCRAFTS AND HELICOPTERS: MODELS AND ANALYTICAL SOLUTIONS

The subject of this study is the unsteady flow of liquid in pipelines, which are part of the design of airplanes
and helicopters. This name means, first of all, the phenomenon of a sharp increase in pressure in the pipeline,
which is known as a hydraulic shock. Although we have already learned to deal with this phenomenon in some
parts of the systems, in many structural elements (flexible pipelines), inside which the working pressure reach-
es several hundred atmospheres, this phenomenon is still quite dangerous. As you know, the best way to deal
with an unwanted phenomenon is through theoretical study. To date, there has been a huge amount of work in
the direction of hydraulic shock research. This article does not fully cover these studies. It is limited to refer-
ences to reviews and relevant works. Because the phenomenon of hydraulic shock has a significantly nonlinear
character, analytical solutions of systems of equations corresponding to the simplest models were unknown un-
til recently. This work presents, as an overview, already known analytical solutions describing the process of
shock wave propagation. Most importantly, new achievements are given, both for the inviscid approximation
and for considering internal viscous friction. It is shown that the internal friction within the considered model
is negligible almost everywhere, except for the thin shock layer. The asymptotic is proportional to the tangent
function and inversely proportional to the square root of the product of the Reynolds number and the dimen-
sionless parameter characterizing the convection effect. Convection of the velocity field significantly affects the
distribution of characteristics in hydraulic shock. If the self-similar solutions that were obtained earlier have a
power-law character for the velocity distribution in the shock wave, then the simultaneous consideration in the
model of convection and friction on the pipeline walls (according to the Weishach-Darcy model) made it pos-
sible to obtain a distribution in the form of an exponential function that decays with increasing distance from
the shock wave front. In addition, the work includes an original approach to solving a nonlinear system of dif-
ferential equations that describes the propagation of a shock wave without considering the friction on the
walls. Analytical solutions were obtained in the form of a function of pressure versus the velocity of shock
wave propagation. Research methods. This work uses purely theoretical approaches based on the use of well-
known fluid flow models, methods of analytical solution of differential equations and their systems, asymptotic
methods, derivation of self-model equations, and finding their solutions. Conclusions. Analytical solutions of
systems of differential equations were obtained, which describe models of hydraulic shock without considering
viscous effects. A comparison of the obtained results with the results of other studies is given.

Keywords: plane; helicopter; structural elements; hydraulic shock (shock wave); stress; friction; surface de-
formation; fatigue.

began to be used in aviation: 200-300 atm. Thus, at a
working pressure of 200 atm., an increase up to 350 atm

Introduction

The phenomenon of non-stationarity of the fluid
flow, which leads to the formation of a shock wave,
occurs at flight speeds close to the speed of sound [1]
and greater than the speed of sound [2]. When designing
hydraulic and other systems of airplanes and helicop-
ters, one should take into account the fact that during
flight in structural elements, which are both relatively
rigid and flexible pipelines, an undesirable phenomenon
of water hammer may occur. From a hydrodynamic
point of view, this is essentially an unsteady flow of a
droplet liquid in a closed volume.

Already at the end of the 60s - beginning of the
70s of the last century, very high working pressures

was observed during water hammer [3]. Therefore, in
[4], a nonlinear model of shock wave propagation was
considered. In this model, in contrast to [3], the nonline-
ar mechanism of friction of the liquid against the pipe
wall is already taken into account. But further theoreti-
cal studies of the phenomenon of hydraulic shock in a
two-phase fluid revealed some discrepancies in model-
ing approaches. This determined (became the generator
of) this work.

In the 1860s, Riemann managed to show that there
is a special solution to the system of gas-thermodynamic
equations. This solution does not belong to the class of
general or partial solutions. Instead, it represents a break
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in the pressure, density, and velocity functions of the
medium, i.e., a sharp jump in parameters that has no
width.

Later, in 1885-1887, there appeared works [5, 6]
devoted to hydraulic shock. But the works of Joukowski
[7] and Allievi [8] attracted considerable attention of the
scientific community.

In his theory, Allievi took into consideration the
speed of propagation of the shock wave a [8]:

1 ol 1D
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In formula (1) E, ¢, D, e, @, the modulus of elas-
ticity of the pipe, the modulus of elasticity of the liquid,
the diameter of the pipeline, the thickness of the pipe-
line, and the density of the liquid mean, respectively.
For relatively thin steel pipes, the speed of wave is ap-
proximately 600-700 m/s. And for relatively thick pipes,
its value reaches 1200-1300 m/s. Since the speed of
sound c in water varies within 1403<c<1555m/s, it
means that, in an elastic shell, a shock wave propagates
at a speed lower than the speed of sound in a liquid.

According to Alliveti, the pressure in the form of a
column and the shock wave propagation speed are de-
scribed by the following relations [8]:

y=Yo+F+f, (2
V:V0+F-g(F-f). 3)

At the same time, the arguments of the functions
are such that
F:F(tlj, f=f (t+ 5). )
a a

A simple conclusion follows from expressions (4):

both functions have a constant value if their argu-
ments are constants. And this is possible under the con-
ditions of propagation of direct and opposite shock
waves with a speed of a. The given data already have,
as shown below, their meaning, because they indicate
the form of self-similar variable selection.

In his theoretical studies, Joukowski [7] refers to
Riemann's work [9], where the general structure of the
solution according to (4) is shown. It should be noted
that in the model considered by Joukowski, the convec-
tive term in the equation of conservation of momentum
(momentum) was not neglected. The fact is that the
problems considered by Alliveti and others at the end of
the 19th century were devoted to pipelines — long pipes.
Therefore, the length scale was such that it allowed Al-
liveti to neglect the convective term. On the other hand,

shock wave in the structural elements of aviation
equipment does not necessarily occur in very long pipe-
lines. For more than half a century, flexible connections
in the form of rather short tubes have been used in avia-
tion. On the other hand, as experiments show (let's take
at least the same work by Joukowski [7]), the shock
wave practically decays at a distance of the order of ten
diameters of the pipe. Therefore, it is impossible to ne-
glect the longitudinal gradient of the flow. At the end of
a brief review of Joukowski's work, it should be noted
that it presents the forms of the velocity distribution that
are similar to the function of the square root of the co-
ordinate. This is the form of one of the solutions ob-
tained further in this paper.

Despite the significant number of works in the
theory of hydraulic shock (water hammer) [10], let's pay
attention to those that continued the development of the
ideas of Alliveti and Joukowski. Thus, the analytical
solution of the system that takes into account Weisbhach
- Darcy model for wall friction was obtained relatively
recently [11]

AR I (5)
X a’pq ot
ﬂ+ia_p+iv|v|—gsin((p)=0, (6)

where X, t— the direction of wave propagation and

time;, V, p—speed and pressure in the liquid, p,, a, 2 —

respectively, the density of the liquid, the speed of
sound propagation in it, and the coefficient of friction;
R, g — hydraulic radius, free fall acceleration, and ¢ —

the angle of inclination of the pipeline to the horizon.

In the model described by equations (5) and (6),
the effect of friction on the propagation of the shock
wave has already been taken into account. It uses the
hydraulic approximation — the Weishach-Darcy viscous
friction model [12, 13].

The solution of system (5) and (6) is [11]:

V(x,H)=C " tanh (artanh (VoC) -xD) ., px,b)= % V(x,1),
0

where C:1 )” ,
2\ Rgsine

Vi

D=__PoPoYo

fgsin(px
2(cp®VEp3)V R

Three types of self-similar solutions of the system
(5) and (6) in the case of a horizontal pipeline were also
obtained in [4].
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Self-similar (general, with two constant of integra-
tion) solution of the first kind:

2_
Cl(a :Z)ZZWCZ) .}2cl(a2—1)/a/e.

Self-similar solution of the second kind:

\% (n) =tanh

()
V)= 1-a% + avgn '

()
Self-similar (general, with one constant of integra-
tion) solution of the third kind:

C (2a-)(1+ad)
v nl"‘+Cl(1+a2)(2a—l)n“. ©

In addition to those three self-similar solutions, an
analytical solution of the problem was obtained in [4] as
well. This (general, with three constants of integration)
solution in dimensionless coordinates (indicated by a
dash from above) has the form:

2(c§ -C2 )tanh [C+C,%+C5T ]

V(x1) 0

An interesting fact is that partial solutions (7) and
(8) make it possible to obtain discontinuous functions,
which is in agreement with [14, 15] (see [4], Fig. 1).
Other solutions have the form of a blurred jump with the
speed decaying away from this jump (see [4], Fig. 2, a).
As shown below, this result is close to the solution ob-
tained in this paper taking into account the convective
term. Therefore, taking into account the friction of the
liquid against the wall leads to a smearing of the veloci-
ty profile. In addition, the profile of the shock wave can
have not only a smooth character (hyperbolic tangent),
but also the appearance of a sharp, almost instantaneous
increase, which changes to a decrease. All this testifies
to the diversity and physical complexity of the phenom-
enon of hydraulic shock (unsteady flow) in a droplet
liquid.

Problem formulation

1. Study the effects of convection and internal fric-
tion in the unsteady flow of a droplet liquid.

2. Obtain analytical solutions of the problem and
make a comparative analysis of them with already
known solutions given in the introduction, in which

only the friction of the liquid against the wall is taken
into account in the hydraulic approximation (the
Weishach-Darcy friction model).

3. Obtain the function that allows to find the pres-
sure value based on the values of the wave propagation
speed.

2. Shock wave model that takes into account
the velocity field convection

2.1. Derivation of the equation in dimensional
and dimensionless forms

If, when considering an unsteady flow, one does
not take into account viscosity, but only convection,
then the corresponding system of equations of conserva-
tion of momentum and mass has the following form:

ap N oV
P [NV vV 9
ox po[at 8xj ©
o 5 oV
_P_ g2, N 10
P Po (10)

To exclude pressure, p we take the partial deriva-
tives of each of the equations. The first — by time, the
second — by the x coordinate. After that, the system of
equations (9) and (10) will turn into the following:

2 2 2
_ﬂ:po ﬂ.}ﬂﬁ-}-\]ﬂ ; (11)
oxot o2 ot ox  oxot
02 o’V
~2P _a?p — (12)
otox oX

From equations (11) and (12), excluding pressure,
we have:

2 2 2
2V PV Vv ey

ox2 a2 ot ox oxot

(13)
For an infinite domain, equation (13) is supple-
mented by two initial conditions [4]:

V(x0)=9(x); %(x,om(x). (14)

So, the task was reduced to finding a solution to
equation (13) that satisfies the initial conditions (14).
For a qualitative analysis of the solutions, let us switch
to the dimensionless form of equation (13). For this
purpose, we formally introduce the scales of length and
time, the scale of speed, etc. [4]:
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[x]=L, [t]=T, [V]=UT. (15)
We consider the balance of forces, assuming that
the terms of the linear wave equation have the same

(main) order of magnitude:
0%V
Edl

202V
a —2 =
oX
Based on relations (15), we obtain the following
expressions:

(16)

2= 2rl==. an
ox% | TL2 ac | T

2 azv}_azL_ {azv}_h

Substitution (17) in (16) makes it possible to ob-
tain

a’L

L =L
T2 T T

Taking into account the obtained scale estimates,
equation (13) is transformed to the following dimen-
sionless form:

CAVARG VAR VA VAR Y]
TS = V——|. (19
X2 ot ot ox  oxot

Equation (18) contains a single dimensionless parameter

L2
a2-|—2 ’

The parameter 0 indicates how significant non-
linear effects are in this problem.

2.2. Self-similar equation of shock wave
propagation and its solution

As it was already mentioned in the introduction,
starting with the work of Riemann [9], then Joukow-
ski [7] and Alliveti [8], it is convenient and logical from
a physical point of view to represent the solutions of
equation (18) in the form of a propagating wave:

V(x,t)=f(x—at+C)="f(n). (19)

Let's go from function V to function f(n) taking

into account the ratio, substituting it into equation (18).
In this way we obtain:

2 2 2
i LN PR
dn®  dn dn dn dn

For ease of solution obtaining, let's rewrite equa-
tion (20) in the following form:

2 2
(1—52 +§e-f)ﬂ:—ae[£) . 1)

dnz dn

It should be noted, taking into account the dimen-
sionless relations, the value a =1. So, equation (14) is
essentially equivalent to a simpler one:

(0f_ _(ﬁf
dn2 dn
In addition to the elementary solution in the form

of a constant, equation (22) also has the following two
general solutions:

fi(n) =y2C+2C,, £, (n) =—2Cn+2C,.

Solutions (23), according to (19), indicate two op-
posite speeds of propagation. If we take as the scale of
the domain of propagation, at each moment of time, the
shock wave as Lg,, , then under the conditions

(22)

(23)

f; (n=0)=-f, (n=0)=1,
fL (n=Lew / 2)=f, ("=-Lsw /2)=0

we obtain

fi(n)=J1-2nLgy, 0<n<Lgy/2;
fo(n)=-{1+21/Lgy , Lgy /2 <M <0.

Outside the domain, -Lg, /2<n<Lg, /2both

solutions (24) converge to zero (see Fig.1), a constant
value that is also the solution of equation (22). It should
be noted that for fluid mechanics, if the effect of viscos-
ity is neglected, the following results are quite possible:
the wave front (direct and inverted) is clearly defined.
As already mentioned in the introduction, these solu-
tions are similar to those given in [7] and are observed
at the initial stages of shock momentum rising in gas-
es [16].

If you follow the ideas presented in [4], you can
use a different approach to obtaining a self-similar equa-
tion and its solution. For this purpose, let's at once sub-
stitute in the system of equations (9) and (10) the repre-
sentation in the form:

(24)
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Fig. 1. The velocity distribution function in the shock
wave according to solutions (24)

V=V(n), p=p(n). (25)
Then the dimensionless analogue of the system (9)
and (10) takes the following form:

(26)
&5 @7)

Only now we eliminate the pressure function. As a
result, we obtain:

_ld_V_( a)—+9 Vd—v. (28)

a dn dn dn

For the physical analysis of equation (28), let’s
rewrite it in the form:

[—1+a 9- vj V_o 29)
a dn

For the physical analysis of equation (28), let’s
rewrite it in the form:

[—1+a 0. Vj V_o (29)
a dn

The solutions of (22) are the set of constant num-
bers. But under condition a =1 we obtain:

d(v?/2)
—2=0. (30)
dn

So, under the condition of approximate constancy
of density, we have the fact that the shock wave (pres-
sure) propagates at a constant speed. As we can see,
this approach is less meaningful than the previous one:
we did not get solutions of the type (24) that differ from
the constant.

2.3. Analytical solution
in pressure-velocity variables

In classical studies of shock waves, one can find
such a concept as the Rankine-Hugonio shock adiabat
[17, 18]. As it turned out, in the case of shock wave in a
droplet liquid, it is possible to obtain the function

p=p(V). (31)

In relation (31), the notation in dimensionless

quantities is already used. First, let's write down the

dimensionless analogue of system (9) and (10). We ob-
tain:

N —@—e"&, (32)
ot X X
BN (33)
X

Let's divide the left and right parts of equation (25)
by left and right parts of equation (26), respectively:

N_o v,

(34)
d X X

0v=P . ov.
oV
Since we assumed that the pressure depends only

on the velocity (the only independent variable), equation
(34) can thus be presented in the following form:

(d_Ej ov P i (35)
dv dv
Equation (35) has two solutions:
2
-0V £4/(6V)" +4
dp _ (6V) (36)

dv 2

The solutions of equations (36) are such the func-
tions of pressure versus velocity:
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The constant Cq is determined from the condition:

p(V=0)=po. (37)

In equation (37) py means undisturbed pressure.

Since we do not know the exact form of the pressure in
the given solutions, it should be found. For this we will
write down

P_RBN (38)

OX oV oX

Now let's rewrite the equation (32) in such the
form:

_(‘2_\{+e\‘/a—vj=6—p— PN (@)

X ) ox dVox

Next, it is convenient to switch to the self-similar
variable in equation (39). We have:

[ aWV gy dV | R AV (40)
dn dn) dVv dn
Substitution of expression (36) into equation (40)
results into:

a Y gy TNV POV
5 (41)

dn dn 2

Equation (41) not only indicates the constant ve-
locity of propagation of the shock wave, but also allows
us to find the value of this speed. Indeed, after reducing
to the derivative, we have

a2 -1
a0

\7:

(42)

Now the problem can be treated to be completely
solved: it was found that under the conditions of the
absence (not taking into account) of friction, the shock
wave propagates at a constant speed, and the value of
the pressure in the liquid can be found by analytical
function.

3. Nonlinear models of water hammer
in which frictional forces are taken
into account

3.1. Taking into account the viscous mechanism
of the momentum exchange due to the spatial
variability of the flow

If the friction on the wall is not taken into account,
even in the hydraulic approximation, then the viscosity
is taken into account by the fact that the Navier-Stokes
equations are used instead of the Euler equations. So,
instead of equation (32), we have a dimensionless equa-
tion

_ _ _ e
AP NN A
ot oX X Re gx?

In equation (43) Re=[V][L]/v is Reynolds

number. This equation physically corresponds to the
propagation of the wave taking into account its viscous
blur. In self-similar variables, the system of equations
(27), (43) has the form of equation (28) and the follow-
ing:

- _ oo
—aN gy N 1NV 1OV

n am Reog?’

or, in a form convenient for integration

e _
oV Re(e\"/_aJrija—V .
on? a)n

(44)

Equation (44) has three solutions. The first is a
constant speed value, the second and third are like these

2
TR SN
a0 ~/Re6

xtg| \2Re0C; (C, +1) .
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Qualitative analysis of the obtained solution indi-
cates a propagating wave, and inside it only near the
points for which

J2Re0C; (Cp+1)~=+

the velocity amplitude is significantly different from the
constant. This relatively thin layer directly at the front
of the shock wave is called, by analogy with the thin
boundary layer, the shock layer.

NS

3.2. A model that takes into account both
friction on the walls and viscous exchange
of momentum, convection as well

According to the title, the momentum conservation
equation now includes the longitudinal gradient (the
Weisbach-Darcy model [12, 13]) of the velocity and the
inhomogeneity of the velocity field along the flow di-
rection (pipe axis):

2
Po (8_V_V6_V+LV|V|) :_@+HG_V-
ot ox B8R OX

The mass conservation equation remains the same
that is (10). Dimensional approach more convenient
now, since we still need to estimate the ratio of forces.
Instead of the term with the speed modulus, you can
write a double sign

—V2, V<0;

V|V|= (46)
V2, Vv>0.
Now let's use self-similar variable. In this way:
2
o|-a vy oy | B AV g
dn  dn 8R d an
ad—p: a? Od_V (48)
dn dn

Substituting equation (48) into (47) gives us:
2
Po [—ad—V—Vd—Vilej =-apg @+ud—\2/. (49)
n dn  dn

After simplification, equation (49) becomes:

2

+ 50

In equation (50) v is kinematic viscosity. Despite
the apparently relatively simple form of equation (50),
its solution is quite complex and is not presented in an
explicit form. Since the value of the coefficient of mo-
lecular viscosity is significantly less than unity and both
nonlinear terms are practically everywhere except for a
thin layer with a sharp continuous velocity gradient, it is
logical to introduce the ratio of molecular viscosity to
the viscosity on the pipe walls and rewrite equation (50)
in a more convenient for analysis form:

g =V| —— 4V

2
d \2/ (8R dv ] 51)
dn A dn

where £¢=v8R/Ais a small parameter, the physical
meaning of which is the ratio of the molecular viscosity
to the friction force on the pipe wall.

Let's apply the theory of asymptotic approxima-
tions with a small parameter to equation (51). Accord-
ing to this theory, we present the unknown velocity
function in the form of a power series with on small
parameter:

V(n)=Vo(n)+&Vy (1’])+82V2 (n)+... (52)

The corresponding approximations,
Vo(n).V1(n), Vo (n)..., are found by substituting (52)
into (51) and picking up all terms with the correspond-
ing powers ¢. For the "0-th" approximation, the follow-
ing equation is obtained:

V,
0=V, 8—Rd—OiV0 : (53)
A dn
The solution of (50) is
Vo (n)—cleXP(¢Lﬂj- (54)
8R

Recall that the signs in the argument are chosen in
such a way that the exponent decreases. That is, "-" cor-
responds to positive values of the self-similar variable,
and "+" — to negative values. Fig. 2 shows a graph of
this function.

The next approximation is found from the follow-
ing equation

2 2

V,

Fes d_zo_l,_gd_\zll :(VO +8V1))(
dn dn

X 8—R %-FSM i(VO"rSVl) .
A dn dn

(55)
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-2

Fig. 2. Velocity distribution: curve | corresponds
to taking into account only friction on the walls (8);
curve Il also takes into account convection (54)

We pick up the terms with the first power of the
small parameter € . The following equation is obtained:

2
dn® A dn dn

Now let's use the explicit form of the O-th order
approximation (54) and substitute it into the equation
(55). After algebraic simplifications, the following
equation is obtained:

3
M=¢LV1+( x] |

— 57
dn 8R 8R ®7)

The solution (57) has the following form:

3
] (T]) = (Lj n+C, exp (1%7}) . (58)

8R

The first term in (58) is a linear function of the
self-similar variable. Therefore, in order to be able to
"bend" the solution and force it to approach zero, we
take into account one more approximation - the second
order of smallness with &. We write the required equa-
tion again in the following form:

d?V, 2V, 2V,
€ 20+sd 21+82d 22
dn dn dn

=|Vy +sV1+32V2 X
5 |

{8;[(&&

2
82dig i(VO +8V1+€2V2) .
dn dn dn

After algebraic transformations and reductions that
take into account the explicit form of previous approxi-
mations, the following equation is obtained:

dV. 6
—24DV, = —z—nexp(iDn) .
1

an (59)

where D=X/8R,

exp((D+1)n)D6( D+1)n-1)
C, (D+1)?

Vz(n)—[

n=>0.

+C2]6XP(-H),

v, (1)~ exp(-(D+1)n)D6((D+1)n+1)
2 C,(D+1)?

+C2Jexp(n),
n<0.

So, the general form of the asymptotic solution
with accuracy up to the second order on a small parame-
ter eis obtained. As the quantitative analysis of taking
into account the first and second asymptotic approxima-
tions for smooth pipes showed, they are negligibly small
compared to the zero approximation. Therefore, for ap-
plied calculations it is sufficient to limit ourselves to
expression (54). On the other hand, comparing the
curves in Fig. 2 shows the importance of convection
velocity fields during shock wave propagation.

Discussion

Undoubtedly, in the modern world, the computer
experiment plays a significant role in the research of
complex phenomena, in particular, hydraulic shock.
Today, there are not only one-dimensional models of
shock wave propagation in droplet liquid, but also two-
dimensional ones, as well as those that take into account
the turbulent nature of the flow during the passage of
the shock wave [19]. But, on the other hand, the rapid
development of computer technology made it possible
the analytical solution finding in for many nonlinear
differential equations and their systems. The combina-
tion of the experience of obtaining self-similar equa-
tions and their solutions opened up new opportunities
for finding analytical solutions that describe the phe-
nomenon of hydraulic shock. For technical needs, this is
absolutely necessary, as it makes it possible to estimate
the pressure increase and the consequences of this in-
crease - elastic deformation of the pipeline surface and
fatigue phenomena [20]. These deformations are associ-
ated with the translational motion of cavitation accom-
panying the shock wave [21]. Ultimately, they lead to
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fatigue corrosion of the pipe surface [22], which is an
extremely undesirable phenomenon.

Conclusions

The paper considers the phenomenon of unsteady
flow in a droplet liquid. An unsteady flow essentially
forms a shock momentum, although it is commonly
called a shock wave. Based on the previous works of the
authors, and taking into account the achievements of
others, an analytical study of nonlinear and viscous ef-
fects during shock wave propagation was carried out.
Molecular viscosity, according to obtained solution, is
significant only in the thin shock layer, at the wave
front. But the convection mechanism of the momentum
(velocity field) should be taken into account in the en-
tire domain of the shock wave's existence. As it turned
out, an analytical relationship between the pressure
function and the velocity function can be found for a
droplet liquid within the framework of the inviscid ap-
proximation.

Future research could consider unsteady flow in a
multiphase fluid.
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HECTAIIIOHAPHA TEYISI KPATIEJBHOI PITMHU B TTIPABJITYHUX CUCTEMAX
JIITAKIB I BEPTOJIBOTIB: MOJEJII TA AHAJIITUYHI PO3B’SI3KH

II. B. JIyx’anoe, K. C. Ilasnosa

IIpenmeToM maHOi poOOTH € HECTAIiOHAPHA TeUisl PiIMHH B TPYyOOIPOBOIAX, IO € YACTHHOO KOHCTPYKIIT Ji-
TaKiB Ta BepTONHOTIB. 11i TakorO Ha3BOIO PO3YMIETHCS, TIEpIIIe 3a BCE, SIBUILE PI3KOTO ITiABHUIEHHS TUCKY B TPYOO-
MIPOBO/Ii, SIKE BiOME K TiAPaBIIYHHAN ymap. Xoda B)KE HABUMWIHACS OOPOTHUCS 3 LM SIBHIIEM B OKPEMHX YaCTHHAX
CHCTeM, aje y 0araThboX eJeMEHTaX KOHCTPYKINH (THY4Ki TpyOOmpOBOIM), BCEpPEemUHI SKUX poOO0Uill THUCK csArae
KUTBKOXCOT atMocdep, Iie sBHUIlle 1e i Joci € qoBoii HebesmeunuM. Haiikpariiii crioci6 60poTs0u i3 HeGakaHUM
SIBUIIIIEM, SIK BiIOMO, € HOro TeopernyHe BHBUCHHA. Ha ChOTOAHIMIHIA JeHb HasBHA BeIMYe3HAa KUIBKICTH POOIT B
HaAIPSAMKY JOCTIKEeHb TiApaBIidHOro yaapy. [laHa cTtaTTs He CTaBUTH 3a METy ITIOBHE OXOIUICHHS X poOiT. B Hilt
00MEXYEThCS TIOCHJIAHHAM Ha OTJIIIOBI Ta BiAMOBiAHI poboTr. OCKIIBKH SBUINE TiAPABIIYHOTO yAapy Ma€ CyTTe-
BO HENIHIMHUKA XapaKTep, TO JOHEAABHA Oy HEBIJIOMi aHANITHYHI PO3B’S3KH CHCTEM PiBHSHB, IO BiAIOBIAAIOTH
HaUMmpoCTimMM MoaessiM. Y NaHiil poOoTi MpecTaBIeHo, Y SKOCTI OTJISAY, BXKE BiIOMI aHATITHYHI PO3B’S3KH, II0
OIMMCYIOTh TIPOIEC TOMMPEHHS yOapHOi XBHII, 1 , TOJIOBHE, HABEIEHO HOBI 37J00YTKH, SIK JJIS HEB’S3KOr0 HaOIH-
JKEHHS, TaK 1 3 ypaxyBaHHSAM BHYTPIIIHBOTO B’s3KOro TepTs. [loka3aHo, M0 BHYTPIIIHE TepTs, B paMKax PO3TIITHY-
TOi MOZENi, € HE3HAYHUM MaiKe YCIOIU, OKPiM TOHKOTO yAapHOTO IIapy. ACHMIITOTHKA TPOIOpItiiiHa QpyHKIi{ TaH-
reHca i 00epHEeHO MPOMOpIIiifHa KOPEHIO KBAAPATHOMY 13 HoOYTKY uncia PeitHonbaca ta 6e3po3MipHOTo mapamerpa,
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o xapakTepusye edekt KoHBekii. B Toif e yac KOHBEKIis Mo MBUAKOCTI iICTOTHO BIUTUBAE HA PO3MOIUIN Xapa-
KTEPUCTHK Y TiPaBIIYHOMY yaapi. SIKIo aBToMOIeNbHI PO3B’I3KH, 0 OYIIM OTpUMaHi paHilie, MaIOTh CTCTICHEBUN
XapaxTep po3NOALTY IIBHAKOCTI B yAapHINA XBWIII, TO OJJHOYACHE BpaXyBaHHsS B MOZENI KOHBEKIIii 1 TepPTs Ha CTIHKaxX
TpyOonpoBoy (3a Momentro Beiicbaxa-Jlapci) mamo 3MOry OTpUMATH PO3TOALN Y BUTIISAII €KCIIOHCHITIABHOI (YHK-
1ii, o0 crajae 31 3pOoCTaHHAM BiJCTaHi Bif (poHTY yaapHOi xBwi. KpiM Toro, B po0OOTi 311ificCHEHO OpHTiHAIBHUHA
ITiJIX1J] MO0 PO3B’sI3aHHA HETIHIMHHOI cucTeMu AudepeHIlialbHUX PiBHIHB, IO OMKCYE TOIIUPECHHS yIapHOI XBUII
0e3 ypaxyBaHHS TepTs Ha cTiHKaxX. OTpUMaHi aHAJIITHYHI PO3B’SA3KM Y BUIVISAL (DYHKINT TUCKY BiJl IIBUIKOCTI ITO-
mMpeHHsT yaapHoi xBwiIi. MeToam gociaimkeHb. B poOoTi BUKOPHUCTOBYIOTHCS CyTO TEOPETHYHI MiAXOaH, o Oa-
3YIOTHCSI HA BUKOPHCTaHHI BiJIOMUX MoJENel Tedii KparenbHol piJuHI, METO/IaX aHAIITHYHOrO PO3B’si3aHHs qude-
PEHIAIBHAX PIBHSHD Ta IX CHCTEM, aCHMITOTUYHI METOIM, BHBEICHHS aBTOMOJEIBHHUX PIBHAHB Ta 3HAXOMKEHHS
iX po3B’s3KiB. BucHoBku. OTprMaHa aHAJITHYHI PO3B’SI3KH CUCTEM AW(EpPEHIIAIbHUX PiBHSIHD, SIKI OMUCYIOTH MO-
JIeTTi TiAPaBIIYHOTO yaapy Sk 0e3 ypaxyBaHHS B S3KHX €(EKTIB , Tak i3 ypaxyBaHHsM iX. HaBemeHo mMOpiBHSHHS
OTPUMAaHUX Pe3yJbTaTiB i3 pe3yJbTaTaMH 1HIIHX POOIT.

Koarouosi ciioBa: nitak; BEpTOJIT; €1EMEHTH KOHCTPYKIIT; TrifpaBimiuHui yaap (yaapHa XBUWJIS); HAIPYKEHHS,
TepTsl; nedopmallist IOBEpPXHi; BTOMA.
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