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FLOW DEVELOPMENT REGION IN THE BOUNDARY LAYER:
TWO-COMPONENT MOLECULAR VISCOSITY AND PARTIAL SLIP

The subject of this study is the flow development region of laminar incompressible fluid flow in the boundary
layer. This flow is an example where a direct application of the Navier-Stokes equations of gradient-free lami-
nar incompressible fluid flow, in which the molecular viscosity is assumed to be a constant value independent
of spatial coordinates, leads to a redefinition of the mathematical model. It is about the fluid boundary layer in
the region of flow establishment in the motion problem of a semi-infinite plane, where the pressure gradient is
zero. There is a situation when the number of equations is equal to three (two equations of momentum conser-
vation and the equation of continuity), and the number of unknowns is equal to two - the number of the speed
component. As a logical solution to the obtained inconsistency, it is proposed, as was already done for the
problem of stationary motion of a plane and the problem of acceleration of a plane, to depart from the false
statement about the constancy of molecular viscosity in the gradient-free boundary layer of an incompressible
flow and consider molecular viscosity as a function of spatial coordinates. The need to consider the variable
nature of molecular viscosity led to the discovery of another flaw in the Navier-Stokes theory. This non-trivial
flaw was discovered during the application of the original numerical analytical method for solving the flow
development region problem. The Navier-Stokes equations are supplemented by boundary conditions. The
most important condition is the condition of fluid non-slipping on the surface of a solid body, which, by the
way, does not follow any physical law. As a result, on the surface of a half-plane (or a moving body), the com-
ponent of the velocity, which coincides with the direction of motion, has a constant value equal to the velocity
of the body. It immediately follows from the continuity equation that the normal derivative of the normal com-
ponent of the velocity must be equal to zero along the surface of the plane (body), since the longitudinal deriv-
ative of the velocity becomes zero. However, it is quite obvious that the velocity component normal to the sur-
face of the plane (body) changes across the boundary layer in the region of current development, which indi-
cates the presence of a normal gradient (both components) of the velocity. The conflict or contradiction is
overcome by moving away from the generally accepted condition of non-slipping to the condition of partial
non-slipping, or essentially the presence of sliding. Even with the sudden braking of any vehicle, the complete
stop does not occur instantly, but after some finite time and distance, so in the case of the motion of a body in a
stationary fluid, there is not an instant sticking, but a gradual one - from complete sliding, when a particle of
liquid has just met a moving plane (body), to complete non-slipping at the end (and further) of the flow devel-
opment region. Research methods. This work uses purely theoretical methods based on the use of calculus of
variations, laws of physics, and ideas from everyday life. Conclusions. An improved model of a viscous New-
tonian fluid in the area of flow development in the boundary layer was derived. On the basis of assumptions
about the variable nature of the molecular viscosity, which already has two components, and the departure
from the non-slipping condition, analytical solutions for both components of the velocity and both components
of the molecular viscosity were obtained. A comparison of the obtained results with the results of other studies
is presented.
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boundary layer on the wing, the optimal wing profile is
determined [2].

Introduction

As a body moves in a fluid, contact friction occurs
between the fluid and the surface of the body. As a re-
sult of this friction, the fluid is not able to instantly ac-
celerate to finite velocity. This refers to the flow around
the front part of the aircraft fuselage, its wings, helicop-
ter blades, and other parts of bodies that move in a still
fluid. Therefore, the velocity field is generated only in a
thin boundary layer, the correct calculation of which is
extremely important for calculating the friction
force [1]. Based on knowledge about the structure of the

More than 200 years ago, in 1822, Navier derived
the equations that describe the deformation of a solid
body and the motion of an incompressible fluid. But
these equations received general recognition after the
publication of Stokes' theory a little later, in 1845 [3].
Stokes was also based on the mathematical analogy be-
tween the equations describing the motion of a viscous
fluid and the processes of heat transfer - the Fourier
theory. However, Stokes did not take into account one
important assumption of Fourier's theory: Fourier's sec-
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ond law, where the coefficient of thermal conductivity
is considered a constant value, has no place (is not val-
id) in the region near the interface of different media
(for details, see [4]). And this is because it is in the
boundary layer that the behavior of one phase is inter-
connected with the behavior of another. In the case of
the flow under consideration, the behavior of the fluid in
the boundary layer is determined by the presence of a
solid surface of the moving body. And this, in turn, does
not correspond to homogeneity and spatial anisotropy,
which guarantee, according to Fourier, the constancy of
the thermal conductivity coefficient. Therefore, by
means of simple logic, an important conclusion was
obtained: for incompressible laminar fluid flow in the
boundary layer, it is necessary to depart from the con-
cept of constancy of molecular viscosity and keep in
mind that viscosity, generally speaking, can be a func-
tion of spatial coordinates.

Now let's return to our problem. If you try to shed
light and understand what is already known about the
flow development region, the first surprise will be very
funny: even now, this problem is not solved directly, but
as an asymptotic transition of a non-stationary flow to a
stationary one at very large time values. This fact in-
trigued us, and we made an attempt to directly solve the
specified problem using known analytical methods.
Moreover, the presence of an inverse relationship in the
system fluid — moving body gives every reason to use
the appropriate mathematical apparatus, which is the
calculus of variations.

The joint application of the calculus of variation
method and information about the specifics of the
movement of an incompressible fluid in the boundary
layer led to a clear understanding the fact that in the
flow development region the boundary condition of
non-slipping does not take place. This fact prompted us
to study the available information in modern sources
about the fluid slipping past the surface of a solid body.
Let's briefly dwell on the sources on which our attention
was focused.

First of all, it should be noted that Navier himself
raised the issue of fluid sliding on the surface of a solid
body a year after the publication of his equations [5].
Therefore, Navier did not reject the possibility of non-
meeting of the non-slipping condition, which Stokes
actually postulated -- without any physical grounds.

In the article [6] it is noted that nano -bubbles (air)
were experimentally observed on smooth water-
repellent surfaces. In addition, cracks (of small scale)
can serve as places for the accumulation of bubbles in
the case of the use of fluids that partially wet the sur-
face. These bubbles can provide a zero shear stress
boundary condition and significantly reduce the friction
generated by the solid boundary.

Also worthy of attention is the work [7], which
considers the boundary conditions of (effective) slipping
by the method of simulation (modeling) of molecular
dynamics. An interesting fact is that the local boundary
conditions, both on wetted and non-wetted regions, are
characterized by finite Navier slip scale lengths. But the
main thing for our work is the presence of liquid along
the solid surface. The study of partial slipping is devot-
ed to work [8]. This work, according to the authors
themselves, was motivated by the violation of the condi-
tion of fluid flow non-slipping in the millimeter scale
domain. It seemed that the viscosity and the non-
slipping condition should play a significant role in the
balance of forces. But it is not quite so. Among the im-
portant conclusions of the cited work, it should be noted
the dependence of diffusion on the local conditions of
the wall, which correlates with the results [4,9] about
the spatial dependence of molecular diffusion.

The presence of fluid slipping past a solid surface
is studied in [10] from the point of view of stream func-
tion solutions for some boundary conditions of the con-
tact line. In other words, the interaction of a fluid with a
solid body is identified with some contact line. But the
boundary conditions considered in [11] are as follows:
Navier slip, super-slip, and the generalized Navier
boundary condition. So, without going into the details of
the cited work, we can, however, confidently assert the
presence of slippage.

In an effort to reduce friction, scientists and engi-
neer resort to various means. One of them is the use of
folds (corrugation) (grooves) and accumulation, as al-
ready clear from the previously cited works, of bubbles
or fluid there, which leads to partial, or as it is also
called, effective slipping. Research in this area is pre-
sented in [12].

Let's finish the short review of works with the arti-
cle [13]. This work is devoted to the movement of the
contact line between two immiscible fluids. But the
main thing that it states is that the Stokes equations do
not allow to describe the specified flow when two dif-
ferent velocity values occur on two different boundaries
of the contact line.

So, the given brief overview of modern works con-
fidently asserts about the possible violation of the condi-
tion of non-slip on a solid body of a viscous fluid flow.
We will only confirm this and show further that there
are also flows within the Newtonian fluid model, where
the condition of complete non-slip simply cannot be met
and, thus, must also be replaced by the condition of par-
tial slipping.

Problem formulation

Consider a semi-infinite plane X e (-00;0] moving
with some constant velocity in the positive direction of
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the abscissa axis (see Fig. 1). At each subsequent mo-
ment, this plane involves fluid particles that were at rest
before that into motion. The task is to determine, using
analytical methods, the components of velocity and mo-
lecular viscosity in the region of development of incom-
pressible laminar fluid flow in the boundary layer dur-
ing the motion of a semi-infinite plane in a stationary
fluid.

Vo =
-1 0

V><

Fig. 1. Motion of a semi-infinite plane
with a constant velocity in a fluid
at rest at infinity

1. Expansion of the existing model
of viscous laminar fluid flow development
region in boundary layer

According to the existing theory, such motion
should be described by the Navier-Stokes equations. For
our problem we obtain
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For incompressible laminar flow, the molecular
viscosity is a constant and thus we have three equations
for the two unknown functions. That is, from a mathe-
matical point of view, the problem is overdetermined.
What was not taken into account? The only possible
way to overcome this discrepancy is to depart from the
concept of constant viscosity in laminar incompressible
fluid flow, which simply means:

p = Const . 4)

Taking into account relation (4), equations (1), (2)
take the form:
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The system of equations (3), (5), (6) is now entire-
ly defined: three different equations correspond to three
unknown functions. It seemed that all troubles were
over. But no - the main intrigue of this work is still
ahead. To solve the problem, differential equations must
be supplemented with initial and boundary conditions.
Since the changing nature of the molecular viscosity
inside the laminar boundary layer of an incompressible
flow was first described on the basis of a stationary flow
[4], then we will limit ourselves to the stationary flow
and instead of (5), (6) we will consider
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The system of equations (3), (7), (8) is written in
dimensional form. Without knowing in advance the spa-
tial extent of the flow establishment area, it is not con-
venient to formulate the boundary conditions. There-
fore, assuming the anisotropy of spatial scales

I
6=l<<1,
X

consider the dimensionless analog of equations (3), (7),
(8). This analogue is such a system

2
vy Vy vy OVx _ 52| On 0Vx Wa Vx|,
ox oy X OX ox2
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Now, after the transition to dimensionless quanti-
ties, the flow development region has the form of a
square

[X]x[y]=[0;11%[0;1].

Hereafter, we will neglect terms of the second or-

der of smallness - those containing 52 . In this case, (9),
(10) take on a simpler form:

2
v, I +Vy Ny _ O NVx 0 \;X; (12)
x Yy oy g
2
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The main boundary condition of the viscous flow
model is non-slip on the surface of a solid body. This
condition postulates that the velocity of fluid particles
touching the surface of a solid must be equal to the ve-
locity of the body. In other words, if the body does not
move, then the non-slip condition means zero fluid ve-
locity on the surface of the body; if the body moves in a
still fluid, then the velocity of the fluid on the surface of
the solid body must be equal to the velocity of the body.
We will show that this non-slip condition is not met in
the flow development region. Indeed, from the continui-
ty equation
(3 or 11) and the non-slip condition, it follows that
along the entire flow development region, we have

Vy
—2=0=>—>=0. (14)
oX oy
It immediately follows from relation (14) that the
normal component of the velocity in the region of the
boundary layer does not change across this layer. It is
known that this is not so. So, we have reached another

contradiction of Stokes theory — the impossibility of
fully complying with the condition of no slipping on the
surface of a solid body in the region of flow develop-
ment.

How to understand the resulting contradiction? For
this, let's turn to physics as a science and life experi-
ence. We know very well that Newton's second law
does not allow a body to instantly acquire a finite veloc-
ity - this requires an infinitely large force. Does the
force of friction of a liquid against a solid belong to the
category of infinitely large? Obviously not. We know
from life experience that braking any vehicle requires a
finite time, which corresponds to a finite path - to a
complete stop of motion. By analogy, during the friction
of a fluid against a body, an instantaneous transition
from the rest of the fluid to a finite (and not small in the
case of aviation and space technic) velocity value can-
not, in principle, occur. The only possible is a gradual
increase in velocity: during friction against a surface,
the fluid slides past this surface, gradually gaining speed
and the acceleration process ends at the end of the de-
velopment region. Therefore, instead of the non-slip
condition, we must satisfy the fluid acceleration condi-
tion - an increase in its velocity on the surface of the
solid body from zero (at the beginning of the flow de-
velopment region) to the maximum body velocity (at the
end of the development region). How to do it, i.e. how,
according to which formula to set the law of growth of
velocity on the surface of the body - is not yet known.
Let's try to solve this problem. As for other boundary
conditions in the region of flow establishment, they are
obvious: at the outer boundary of the boundary layer,
the velocity asymptotic tends to zero, and after passing
the development region — the asymptotic decaying of
the normal component of the velocity everywhere
across the boundary layer. And also the equality to zero
of the longitudinal derivatives for of all magnitudes:
velocity and viscosity components.

As mentioned above, attempts to solve the prob-
lem by numerical and analytical methods led to the real-
ization of the discussed inconsistency of the non-slip
boundary condition. However, solving the problem
turned out to be possible with the help of analytical
methods.

2. Application of calculus of variations
for the analytical solution of the problem
of establishing the flow during steady
motion of a semi-infinite plane
in a fluid at rest

As in works [4, 9], we will assume that the fluid
flow rate caused by friction against the surface of the
moving body is extreme. Most likely, minimal: during
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interaction with a solid body, the fluid tries to be in-
volved in the movement as little as possible. This is "as
little as possible” and there is a minimal flow rate. Fluid
consumption is determined by the longitudinal compo-
nent of the velocity and is described by the functional:

1 Ny dVy OVy dVy
oxX oy

J (j)VX x oy ]dy. (15)

It is no coincidence that the integral expression
(15) is a function of the gradients of the velocity com-
ponents. The fact is that the motion of the fluid in the
problem under consideration is completely dependent
on the tangential stresses, which are known to be deter-
mined by the gradients of the velocity field. After apply-
ing the procedure described in detail in [4], we obtain
the Euler equation of the calculus of variations for the
longitudinal component of the velocity for the necessary
condition of the extreme of the functional (15). This
equation has the following form:

_ 0| aVk | o avy
aX OVX ay OVX
OX oy

=0. (16)

We will search the solution of equation (16) using
the method outlined in [9]. The essence of this method
is that the asymptotic tendency of the flow, after passing
through the development region, to the form corre-
sponding to the motion of an infinite plane, allows (16)
to be split into two equations:

0| vy |_ o] vk
OX oy

=0. 17)

Using the invariance of the first differential, we
transform (17) into the form

olovy 1

_olovy 1
x| X 9%V

—|=0.

oy oy 8°Vy
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(18)

The method of distribution of variables [9] can be
applied to the system of differential equations (18). Ac-
cording to this method,

Vx =Xy () Yx (¥) - (19)

Substituting (19) into (18), we get:

X Y
01Xy 1 |_0jd¥x 1 =0. (20)
x| Ox 32Xy | Oy| Y a%Yy

The general solution of system (20) has the follow-
ing form

Xy (X)=Ax +Bxexp X ]
Clx

Y.
Ciy

According to the known information on the struc-
ture of the velocity field in the case of an infinite
plane [4], as well as the need for the flow to reach the
asymptotic regime without slipping, from (21) we have:

(21)

YX (X):Ay +Byexp

V, (X, y) = (L—exp(ax)) exp(—ay), where a~5. (22)

For the second, normal component of the velocity
field, the necessary condition for the extremum of the
functional must also be fulfilled (Fig. 2). She looks like
this

oo 1 |_afavx 1 | 29
ox| ox azvy oy| oy azvy
ox2 oy2

The system of equations (23) can, theoretically, be
solved analytically. But, as it turns out, it is easier to
find Vy(x,y) from the continuity equation and show

that the solution obtained in this way satisfies (23). Let's
do it. After substituting (22) into (11), we obtain

oVy oV ~
o x aexp(o(X —y)). (24)
The solution of (24) is
Vy =exp(a(x-y))+R (x). (25)

Taking into account the equality of the zero normal
component of the velocity, it is finally obtained

Vy =exp(ax)(1-exp(-ay)). (26)
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It should be pointed out that the solution (26) does
not tend to zero, for each fixed value of x in flow devel-
opment region, as is the case with the longitudinal com-
ponent of the velocity. And this does not contradict the
fact that at the boundary of the boundary layer, the ve-
locity practically decreases to zero: let's remember that
the normal component of the velocity is many (hundreds
or even more) times smaller than the longitudinal com-
ponent. Therefore, any velocity measurements will ac-
tually correspond to the decreasing of the longitudinal
component. A similar result was obtained by Blasius
[14] for the inverse problem. There, too, the normal
component of the velocity becomes constant as y in-
creases. It should be especially noted that expressions
(22) and (26) satisfy the system of equations (23), which
confirms their validity: not only the continuity equation,
but also both necessary conditions for the extreme of the
fluid flow functional are satisfied.

Vx
o8}
06}
0.4}
lx Y A A A
1 0.8 -06 04 -02 0
a)
1 -
Vy
o8}
06}
0.4}
o2}
e i - Y
) 0.2 0.4 0.6 0.8 1
b)

Fig. 2. Components of the velocity field
in the area of flow development:
a) — longitudinal component for values y=0; 0.25; 0.5;
b) — normal component for values x=0; 0.25; 0.5; 0.75.

We have again come to a "crossroads”: we have
analytical solutions for two velocity components and
two rather than one equation where molecular viscosity
is present. Before starting to determine the viscosity
function, we should not forget that we should find two
solutions that coincide on the surface. The second im-
portant point: the equations of conservation of momen-
tum are not equal in value in the boundary layer, be-
cause there is a very strong anisotropy of scales, which
determines the fact that all components in the second
equation of conservation of momentum have negligibly
small values compared to the first equation. That is,
without violating the assumption of a one-component
viscosity function, we should find it from the momen-
tum conservation equation in the horizontal (longitudi-
nal) direction. But, continuing the expansion of existing
ideas, let's move away from the dogma that molecular
viscosity is a scalar function and assume that in the re-
gion of flow development, viscosity has two compo-
nents, both functions of two coordinates. Then every-
thing falls into place.

As it was just said, we will find two different func-
tions - components of molecular viscosity. Let's start
with py . To define this function, we will need the fol-

lowing expressions:

Nx =-q(1-exp(0x))exp(-ay),
(27)

2
aay—vzx=on2(1-exp(oo<)>e><p(-°‘Y)-

After substituting expression (27) and the others
into the first equation (12), we obtain:

Wx. -apy =exp(ox) . (28)

oy

The general solution (28) is the desired x -
component of the molecular viscosity:

Hx (X,y)=(——EXp(0§X_y»

+F1(X)jexp(a}’). (29)

Similarly, we find

2
=—azexp(ax)exp(-ay).

2

After substituting all the necessary terms and expres-
sions into equation (13), we obtain
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op

y
—=-apy=1-exp(-ay) .
oy y

(30)
The solution of (30) is the following y -component
of the molecular viscosity:

31)

~ay)-2
py (y)exp(ay)Fy (o ZEE2

Solutions (29) and (31) cannot coincide at all
points of the flow development region. But we can re-
quire that they coincide on the surface of the plane,
therefore

px (X,y=0)=py (x,y=0) . (32)

Relationship (32) gives a single expression for the
two components of molecular viscosity:

exp(ox)
—y (33)

Hx (6y=0)=y (X,y=0)=pg (x)=1-

Expression (33) allows us to draw a completely
physical conclusion: since a>1, then at the beginning
of the area of fluid acceleration (or flow development),
the molecular viscosity has a value less than that corre-
sponding to the developed flow and in dimensionless
quantities equal to unity. Fig. 3 presents the graph of
this function. It can be seen that at the value a=5we
have that at the beginning of the flow development re-
gion, the viscosity is about 20% lower than the asymp-
totic value.

0.8

0.6

0.4

0.2

Fig. 3. Molecular viscosity function on the surface
of a moving plane

An important characteristic of the flow is tangen-
tial stress

oV,
>

OVy 6Vy
Ty “Txy =M oy + v ~ U

On the surface of the moving plane, we have:

Txy =Txy = - (0-exp(a(x-y)))(1-exp(ox)) . (34)
Therefore, the main component of viscous tangen-
tial stresses depends on both coordinates. And, obvious-
ly, after passing through the region of flow development
due to friction, tangential stresses are constant: even the
presence of a vertical coordinate no longer affects this.
This is fully consistent with the results of previous stud-
ies on an infinite plane [4]. Fig. 4 presents graph (34),
which clearly shows the output of the maximum tangen-
tial stress function (on the surface of the moving plane)
to a constant value. For comparison, in the theory of
Blasius [14], as well as that of Stokes and Ray-
leigh [15, 16], the tangential stress decreases inversely
proportional to the square root of the longitudinal coor-
dinate. So, the friction is less and less. When a half-
plane moves in a still fluid, the frictional stress, on the
contrary, as we have already seen, increases along the
flow, and then reaches a constant value. And this is log-
ical.

-3

4l

Fig. 4. Maximum tangential stresses: (34), y=0

In conclusion, we will give an expression for the
power of the friction force acting on the surface of the
plane.

| exp(a(x-y) j )

P=tyyVy=-
Xy Vx ( o

(35)
X (l-exp(ax))2 exp(-ay).

The graph of the module of maximum values (on
the surface of the moving body) of power (35) is pre-
sented in Fig. 5. Like all the values given earlier, the
power reaches an asymptote - a constant value. In con-
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trast to the solutions [15, 16] obtained on the basis of
constancy of molecular viscosity (in the case of an infi-
nite plane) where the power goes to zero in time.

Fig. 5. The maximum power of friction: (34), y =0

Discussion

If you carefully study this work, it will be obvious
that the proposed model is not ideal. Thus, the vertical
component of the velocity, although obtained from the
relevant equations, is not perfectly consistent with the
fact that there should be no motion outside the boundary
layer. And the resulting solution reaches an asymptote -
a constant value. You should not be afraid of this, be-
cause the vertical component is several & times smaller
than the longitudinal one. Since § it is a very small val-
ue (less than 0.01), it is clear that velocity measure-
ments at the outer boundary of the boundary layer will
simply indicate its small values. But on the other hand,
in the theory of the boundary layer, and therefore in this
work, the vertical component of the velocity does not
play any important role. Therefore, it should be per-
ceived obtained results as a certain approximation to the
exact solution. As for the two-component function of
molecular viscosity, here too, obviously, not everything
is perfect. One could simply ignore the second momen-
tum conservation equation, as Blasius did [14], and then
the viscosity would be a function of the coordinates. But
deeper considerations led us to the opinion that nothing
prevents us in the boundary layer, where the condition
of anisotropy is violated, to consider that the viscosity
may depend not only on the coordinates, but also on the
direction. Therefore, it was decided to leave the second
equation of conservation of momentum, but consider
that the viscosity function in it is not completely the
same as in the first equation. Of course, at the same
time, we did not forget the fact that both viscosity func-
tions should coincide on the surface of the body, where
the main events take place - the friction of the solid sur-

face and the fluid, which leads to the generation of the
boundary layer and two components of the velocity in
the area of the flow.

In our previous work [17], with reference to
known sources, it was stated that the non-slip condition
must be met everywhere on the surface of a solid body,
because the flow is viscous. We also criticized the well-
known method of discrete vortices, in which a velocity
field is actually swept onto the surface of the wing [18,
19]. Now it became clear why exactly this method had a
certain success — due to the existing sliding of the fluid
on the surface of the solid body in the flow development
region.

Conclusions

As research has shown, there are such incompress-
ible fluid flows where the Stokes theory, which postu-
lates the independence of viscosity from spatial coordi-
nates and the mandatory fulfillment of the condition of
sticking to a solid surface, cannot adequately describe
them. One of such currents is the one generated during
the movement of a semi-infinite plane in a stationary
liquid. It is in the field of flow establishment that there
is a situation where two, according to Stokes, unknown
functions (velocity components) correspond to three
equations: two conservation of momentum and the third
— conservation of mass. Such a situation prompts to look
for a way out of the resulting inconsistency. And such a
way out, of course, is: to consider molecular viscosity as
a function of coordinates, and not as a constant. If for an
infinite plane, where there is no region of flow devel-
opment, this step is already sufficient (see [4, 9]), then
in the presence of a region of flow development, one
more important step should be taken - to assume that the
condition of complete adhesion to the surface of a solid
body in the region flow development is not performed.
Instead, there is partial sliding, from complete at the
beginning of the flow generation region to complete
sticking at the end of this region and further down-
stream. As in previous works [4, 9], optimization meth-
ods based on finding the extremum of the fluid flow
functional in the boundary layer could not be dispensed
with. It was the possibilities of variational calculus that
contributed to the finding of the fields of velocity com-
ponents and molecular viscosity. As is commonly be-
lieved, the tangential (principal) stresses corresponding
to the normal derivative of the longitudinal component
of the velocity are constant after passing through the
area of flow development in any cross-section of the
boundary layer. Also, together with the strength of the
frictional force, the tangential stresses reach an asymp-
totic constant value at the end of the flow development
region, which is logical.
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OBJIACTH PO3BUTKY TEUIi B TIPUMEKOBOMY IIIAPI:
JABOKOMIIOHEHTHA MOJIEKYJISIPHA B’A3KICTh TA YACTKOBE KOB3AHHA

II. B. J/Iyk’anoe, JIine Cyn

IIpeamerom naHoi poOOTH € 00IACTH PO3BUTKY JIAMiHAPHOI HECTUCIHMBOI TeUil PiIMHU B MIPUMEKOBOMY LIapi.
s Teuis sBiIsIE COOOKO MPHUKIIAN, NI MPsAME 3aCTOCyBaHHs piBHAHL Hap’e-CTokca Oe3-TpajieHTHOI JIaMiHApHOI He-
CTHCIIUBOI Teyil PiIMHY, Y SIKOMY MOJIEKYJSIpHA B’S3KICTh BBa)KA€THCS CTAJIOI0 BEIWYMHOIO, IO HE 3aJISKUThH BiJ
IPOCTOPOBHX KOOPMHAT, HPH3BOIMTH [0 MEPEeBU3HAUYCHHS MATeMAaTHUHOI Mojeri. MieThcs mpo mpuMexoBHii map
piavHM B 00JacTi BCTAHOBJIEHHS Tedii B 3a7a4l PO PyX IMiB-HECKIHUYEHOI IUIOLIMHY, JIe TPAIi€HT THCKY PiBHUHA HY-
neBi. HasiBHa cuTyarlisi, KoJIM KijIbKICTh PiBHSIHB JIOPIBHIOE TPHOM ([Ba PIBHSHHS 30€peKeHHsI KUIBKOCTI pyXy i1 piB-
HSIHHSI HEPO3PHUBHOCTI), @ KUIBKICTh HEBIIOMUX JIOPIBHIOE JBOM — YHCITY KOMIOHEHT IIBUIKOCTI. Y SKOCTI JIOT14HO-
T'0 PO3B’sA3aHHS OTPUMAHOI HEBIMOBIIHOCTI 3aIPOITOHOBAHO, 5K II¢ BXkKe 0YyII0 3p00JICHO 1S 3a/1adi PO CTaIliOHAp-
HUH pyX IUTOLIMHHM 1 3aj[a4i PO PO3TiH IUIOMIMHHM, BIAIWTH BiJi XMOHOIO TBEPIHKEHHS MPO CTAJICTh MOJEKYISIPHOL
B’SI3KOCTI B 0€3-TpaJlieHTHOMY IIPUMEXOBOMY II1api HECTUCIIUBOI Tedii Ta BBAXKATH MOJIEKYJISPHY B’ SI3KICTh (DyHKITI-
€10 MTPOCTOPOBHX KoopauHaT. HeoOXimHICTh B ypaXyBaHHI 3MIHHOTO XapakTepy MOJEKYJIspHOI B’SI3KOCTI MpHU3BeIa
JI0 BIAKPHUTTS ILIe OXHOrOo, Apyroro, Henoiiky Teopii Has’e-Crokca. Lleit HeTpuBianbHUil HeloNiK OysI0 BUSBICHO
i/l Yac 3aCTOCYBaHHSI OPUTiHAJIBHOTO YHCEIbHO-aHAJITHYHOTO METONY PO3B’S3aHHs 3ajadi MPO TEUil0 PIIUHU B
obacti BCTaHOBJIGHHSI pyXy. Sk BizoMo, piBHsiHHs Hap’e-Crokca JOMOBHIOIOTHCS TPAaHUYHIUMHU yMoBaMu. HaiiBax-
JIMBIILIOI0 YMOBOIO € YMOBA NPHJIMIIAHHS (HE KOB3aHHS) PiAMHU Ha MMOBEPXHI TBEPAOTO TiJia, SKa, 10 Pedi, He BUILIH-
Ba€ Hi 3 AKOro (hi3u4HOro 3akoHy. B pe3ysnbTaTi Ha MOBEpXHI MIiB-TUIOMMHM (a0 TiNa), MI0 PYXaEThCs, CKIIaIoBa
IIBUJIKOCTI, 1[0 CMIBNAAA€ i3 HAMPSIMKOM PYXY, Ma€ CTaje 3HAueHHs, sIKe JOPIBHIOE MIBHIKOCTI Tiia. 3 PiBHSHHA
HEPO3PUBHOCTI 0fipa3y BUILIMBAE, 10 HOPMAaJIbHA MOX1/IHA BiJl HOPMAIBGHOI KOMIIOHEHTH IIBUJIKOCTI OBUHHA OYyTH
PIBHOIO HYJIEBI Y3JIOBXK TOBEpPXHI IUIOMMHU (Tija), TaK SIK IMOB3/IOBXHS TOXIJHA BiJ TIOB3J0BKHHOI KOMIIOHEHTH
LIBUJKOCTI MEPETBOPIOEThCS HA HYJb. OfHAK, LIJIKOM OYEBHMJIHO, II0 HOpPMaJlbHA JI0 MOBEPXHI IUIOMMHU (TiNa)
KOMITOHEHTA LIBUJKOCTI 3MIHIOEThCS TOMEPEK IPUMEKOBOro Mapy — B 00J1acTi PO3BUTKY Tedil, 110 O3HAYAE HAsIB-
HICTh HOPMAJILHOI'O I'pajiieHTy (000X CKJag0BUX) MBHAKOCTI. KoHQUIIKT, a00 IpOTHPIYYS, JONAETHCS HIISIXOM Bij-
XOJly BiJl 3arajibHONPHUHHATOI YMOBU NPUITUIAHHS JI0 YMOBH 4aCTKOBOTO MPHWIIUIIAHHS, a00 MO CYTI HasiBHOCTI KOB-
3aHHs. Tak sK 1 MpH Pi3KOMY rajibMyBaHHI Oy/b SIKOTO TPAaHCHOPTHOrO 3aco0y IOBHA 3yIHMHKA BiJOYBAa€ThCS HE
MUTTEBO, a 3a JISIKUH CKIHYEHUH Yac W LUIX, TO 1 B BUMAJKY PyXy Tijia B HEPYXOMii pijuHi BiIOyBaeThCs HE MHT-
TEBE MPWIKIAHHS, a MOCTYMOBE — Bijl IOBHOTO KOB3aHHsI, KOJW YaCTUHKA PIJMHU IOWHO 3ycTpijacs i3 pyXxoMolo
TUIOLIMHOO, JI0 TIOBHOT'O TIPWITUIIAHHS HAMPUKIHI (1 1ani) o0nacTi po3BUTKY Tedii. MeToamn qociixkenb. B podori
BHUKOPHCTOBYIOTBCS CYTO TEOPETUYHI METOIH, IO 0a3yOThCS Ha BHUKOPUCTAHHI BapiallifHOrO YKMCIEHHS, 3aKOHIB
(bi3UKH Ta ySABIICHD 13 MOBCSKACHHOrO XHUTTA. BucHoBkHU. BiockoHaneHa Mojesb B’SI3K0i H IOTOHIBCHKOI PiIMHH B
obyacTi po3BUTKY Tewil B MpuMexoBoMy miapi. Ha mijcraBi npumyiieHb Mpo 3MIiHHHNA XapakTep MOJEKYISpHOT
B’SI3KOCTI, siIKa B)KE Ma€ /Bl CKJIaJOBi, Ta BIIXOAY BiJ| BUKOHAHHS YMOBH MPWJIHIAHHSI, OTPUMAaHI aHAJITHYHI
PO3B’s13KU JUTs 000X CKJIAJIOBUX IIBUAKOCTI, @ TAaKOX 000X CKIIQJIOBHX MOJEKYISpHOI B’si3kocTi. HaBeneHo mopis-
HSIHHSI OTPUMAaHUX PE3YJITATIB 13 pe3ynbTaTaMu iHIIUX POOiT.
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