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FLOW DEVELOPMENT REGION IN THE BOUNDARY LAYER:  

TWO-COMPONENT MOLECULAR VISCOSITY AND PARTIAL SLIP 
 

The subject of this study is the flow development region of laminar incompressible fluid flow in the boundary 
layer. This flow is an example where a direct application of the Navier-Stokes equations of gradient-free lami-

nar incompressible fluid flow, in which the molecular viscosity is assumed to be a constant value independent 

of spatial coordinates, leads to a redefinition of the mathematical model. It is about the fluid boundary layer in 

the region of flow establishment in the motion problem of a semi-infinite plane, where the pressure gradient is 

zero. There is a situation when the number of equations is equal to three (two equations of momentum conser-

vation and the equation of continuity), and the number of unknowns is equal to two - the number of the speed 

component. As a logical solution to the obtained inconsistency, it is proposed, as was already done for the 

problem of stationary motion of a plane and the problem of acceleration of a plane, to depart from the false 

statement about the constancy of molecular viscosity in the gradient-free boundary layer of an incompressible 

flow and consider molecular viscosity as a function of spatial coordinates. The need to consider the variable 

nature of molecular viscosity led to the discovery of another flaw in the Navier-Stokes theory. This non-trivial 

flaw was discovered during the application of the original numerical analytical method for solving the flow 
development region problem. The Navier-Stokes equations are supplemented by boundary conditions. The 

most important condition is the condition of fluid non-slipping on the surface of a solid body, which, by the 

way, does not follow any physical law. As a result, on the surface of a half-plane (or a moving body), the com-

ponent of the velocity, which coincides with the direction of motion, has a constant value equal to the velocity 

of the body.  It immediately follows from the continuity equation that the normal derivative of the normal com-

ponent of the velocity must be equal to zero along the surface of the plane (body), since the longitudinal deriv-

ative of the velocity becomes zero. However, it is quite obvious that the velocity component normal to the sur-

face of the plane (body) changes across the boundary layer in the region of current development, which indi-

cates the presence of a normal gradient (both components) of the velocity. The conflict or contradiction is 

overcome by moving away from the generally accepted condition of non-slipping to the condition of partial 

non-slipping, or essentially the presence of sliding. Even with the sudden braking of any vehicle, the complete 
stop does not occur instantly, but after some finite time and distance, so in the case of the motion of a body in a 

stationary fluid, there is not an instant sticking, but a gradual one - from complete sliding, when a particle of 

liquid has just met a moving plane (body), to complete non-slipping at the end (and further) of the flow devel-

opment region. Research methods. This work uses purely theoretical methods based on the use of calculus of 

variations, laws of physics, and ideas from everyday life. Conclusions. An improved model of a viscous New-

tonian fluid in the area of flow development in the boundary layer was derived. On the basis of assumptions 

about the variable nature of the molecular viscosity, which already has two components, and the departure 

from the non-slipping condition, analytical solutions for both components of the velocity and both components 

of the molecular viscosity were obtained. A comparison of the obtained results with the results of other studies 

is presented. 
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Introduction 

 

As a body moves in a fluid, contact friction occurs 

between the fluid and the surface of the body. As a re-

sult of this friction, the fluid is not able to instantly ac-

celerate to finite velocity.  This refers to the flow around 

the front part of the aircraft fuselage, its wings, helicop-

ter blades, and other parts of bodies that move in a still 

fluid. Therefore, the velocity field is generated only in a 

thin boundary layer, the correct calculation of which is 

extremely important for calculating the friction 

force [1]. Based on knowledge about the structure of the 

boundary layer on the wing, the optimal wing profile is 

determined [2]. 

More than 200 years ago, in 1822, Navier derived 

the equations that describe the deformation of a solid 

body and the motion of an incompressible fluid. But 

these equations received general recognition after the 

publication of Stokes' theory a little later, in 1845 [3]. 

Stokes was also based on the mathematical analogy be-

tween the equations describing the motion of a viscous 

fluid and the processes of heat transfer - the Fourier 

theory. However, Stokes did not take into account one 

important assumption of Fourier's theory: Fourier's sec-
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ond law, where the coefficient of thermal conductivity 

is considered a constant value, has no place (is not val-

id) in the region near the interface of different media 

(for details, see [4]). And this is because it is in the 

boundary layer that the behavior of one phase is inter-

connected with the behavior of another. In the case of 

the flow under consideration, the behavior of the fluid in 

the boundary layer is determined by the presence of a 

solid surface of the moving body. And this, in turn, does 

not correspond to homogeneity and spatial anisotropy, 

which guarantee, according to Fourier, the constancy of 

the thermal conductivity coefficient. Therefore, by 

means of simple logic, an important conclusion was 

obtained: for incompressible laminar fluid flow in the 

boundary layer, it is necessary to depart from the con-

cept of constancy of molecular viscosity and keep in 

mind that viscosity, generally speaking, can be a func-

tion of spatial coordinates. 

Now let's return to our problem. If you try to shed 

light and understand what is already known about the 

flow development region, the first surprise will be very 

funny: even now, this problem is not solved directly, but 

as an asymptotic transition of a non-stationary flow to a 

stationary one at very large time values. This fact in-

trigued us, and we made an attempt to directly solve the 

specified problem using known analytical methods. 

Moreover, the presence of an inverse relationship in the 

system fluid – moving body gives every reason to use 

the appropriate mathematical apparatus, which is the 

calculus of variations. 

The joint application of the calculus of variation 

method and information about the specifics of the 

movement of an incompressible fluid in the boundary 

layer led to a clear understanding the fact that in the 

flow development region the boundary condition of 

non-slipping does not take place. This fact prompted us 

to study the available information in modern sources 

about the fluid slipping past the surface of a solid body. 

Let's briefly dwell on the sources on which our attention 

was focused. 

First of all, it should be noted that Navier himself 

raised the issue of fluid sliding on the surface of a solid 

body a year after the publication of his equations [5]. 

Therefore, Navier did not reject the possibility of non-

meeting of the non-slipping condition, which Stokes 

actually postulated -- without any physical grounds. 

In the article [6] it is noted that nano -bubbles (air) 

were experimentally observed on smooth water-

repellent surfaces. In addition, cracks (of small scale) 

can serve as places for the accumulation of bubbles in 

the case of the use of fluids that partially wet the sur-

face. These bubbles can provide a zero shear stress 

boundary condition and significantly reduce the friction 

generated by the solid boundary. 

Also worthy of attention is the work [7], which 

considers the boundary conditions of (effective) slipping 

by the method of simulation (modeling) of molecular 

dynamics. An interesting fact is that the local boundary 

conditions, both on wetted and non-wetted regions, are 

characterized by finite Navier slip scale lengths. But the 

main thing for our work is the presence of liquid along 

the solid surface. The study of partial slipping is devot-

ed to work [8]. This work, according to the authors 

themselves, was motivated by the violation of the condi-

tion of fluid flow non-slipping in the millimeter scale 

domain. It seemed that the viscosity and the non-

slipping condition should play a significant role in the 

balance of forces. But it is not quite so. Among the im-

portant conclusions of the cited work, it should be noted 

the dependence of diffusion on the local conditions of 

the wall, which correlates with the results [4,9] about 

the spatial dependence of molecular diffusion. 

The presence of fluid slipping past a solid surface 

is studied in [10] from the point of view of stream func-

tion solutions for some boundary conditions of the con-

tact line. In other words, the interaction of a fluid with a 

solid body is identified with some contact line. But the 

boundary conditions considered in [11] are as follows: 

Navier slip, super-slip, and the generalized Navier 

boundary condition. So, without going into the details of 

the cited work, we can, however, confidently assert the 

presence of slippage. 

In an effort to reduce friction, scientists and engi-

neer resort to various means. One of them is the use of 

folds (corrugation) (grooves) and accumulation, as al-

ready clear from the previously cited works, of bubbles 

or fluid there, which leads to partial, or as it is also 

called, effective slipping. Research in this area is pre-

sented in [12]. 

Let's finish the short review of works with the arti-

cle [13]. This work is devoted to the movement of the 

contact line between two immiscible fluids. But the 

main thing that it states is that the Stokes equations do 

not allow to describe the specified flow when two dif-

ferent velocity values occur on two different boundaries 

of the contact line. 

So, the given brief overview of modern works con-

fidently asserts about the possible violation of the condi-

tion of non-slip on a solid body of a viscous fluid flow. 

We will only confirm this and show further that there 

are also flows within the Newtonian fluid model, where 

the condition of complete non-slip simply cannot be met 

and, thus, must also be replaced by the condition of par-

tial slipping. 
 

Problem formulation 
 

Consider a semi-infinite plane x (- ;0]  moving 

with some constant velocity in the positive direction of 
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the abscissa axis (see Fig. 1). At each subsequent mo-

ment, this plane involves fluid particles that were at rest 

before that into motion. The task is to determine, using 

analytical methods, the components of velocity and mo-

lecular viscosity in the region of development of incom-

pressible laminar fluid flow in the boundary layer dur-

ing the motion of a semi-infinite plane in a stationary 

fluid. 

 

 

 

 
 

 

 

 

 

Fig. 1. Motion of a semi-infinite plane  

with a constant velocity in a fluid  

at rest at infinity 

 

 

1. Expansion of the existing model  

of viscous laminar fluid flow development 

region in boundary layer 
 

According to the existing theory, such motion 

should be described by the Navier-Stokes equations. For 

our problem we obtain 

 

2 2V V V V Vx x x x xV V μ ;x y 2 2t x y x y

     
    
      

     (1) 

 

2 2V V V V Vy y y y y
V V μ ;x y 2 2t x y x y

     
    
     
 

    (2) 

 

VV yx 0.
x y


 

 
                       (3) 

 

For incompressible laminar flow, the molecular 

viscosity is a constant and thus we have three equations 

for the two unknown functions. That is, from a mathe-

matical point of view, the problem is overdetermined. 

What was not taken into account? The only possible 

way to overcome this discrepancy is to depart from the 

concept of constant viscosity in laminar incompressible 

fluid flow, which simply means: 

 

μ Const .                                (4) 

 
Taking into account relation (4), equations (1), (2) 

take the form: 

 

V V Vx x xV Vx y
t x y

  
  

  
 

2 2V V V Vμ μx x x xμ ;
2 2x x y y x y

     
    
       

    (5) 

 

V VVyy y
V Vx y

t x y

 
  

  
 

22V V Vμ μ Vyy y y
μ .

2 2x x y y x y

         
      
 

     (6) 

 

The system of equations (3), (5), (6) is now entire-

ly defined: three different equations correspond to three 

unknown functions. It seemed that all troubles were 

over. But no - the main intrigue of this work is still 

ahead. To solve the problem, differential equations must 

be supplemented with initial and boundary conditions. 

Since the changing nature of the molecular viscosity 

inside the laminar boundary layer of an incompressible 

flow was first described on the basis of a stationary flow 

[4], then we will limit ourselves to the stationary flow 

and instead of (5), (6) we will consider 

 

V V V Vμ μx x x xV Vx y
x y x x y y

    
   

     
 

2 2V Vx xμ ;
2 2x y

  
  
   

                         (7) 

 

V V Vμ μ Vyy y y
V Vx y

x y x x y y

    
   

     
 

2 2V Vy y
μ .

2 2x y

  
  
  
 

                           (8) 

 

The system of equations (3), (7), (8) is written in 

dimensional form. Without knowing in advance the spa-

tial extent of the flow establishment area, it is not con-

venient to formulate the boundary conditions. There-

fore, assuming the anisotropy of spatial scales 

 

ly
δ= <<1

lx
, 

 

consider the dimensionless analog of equations (3), (7), 

(8). This analogue is such a system 

 

2V V V Vμ2x x x xV V δx y 2x y x x x

    
    
      

  
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2V Vμ x xμ ;
2y y y

 
 
  

                       (9) 

 

2V V VVy μy y y2V V δx y 2x y x x x

        
     
 

 

2Vμ Vyy
μ ;

2y y y

 
 
  

                   (10) 

 

VV yx 0.
x y


 

 
                     (11) 

 

Now, after the transition to dimensionless quanti-

ties, the flow development region has the form of a 

square 

 

   x]×[y = 0;1]×[0;1 . 

 

Hereafter, we will neglect terms of the second or-

der of smallness - those containing 2δ . In this case, (9), 

(10) take on a simpler form: 

 

V Vx xV Vx y
x y

 
 

 

2V Vμ x xμ ;
2y y y

 


  
     (12) 

 

V Vy y
V Vx y

x y

 
 

 

2Vμ Vy y
μ

2y y y

 


  
.       (13) 

 

The main boundary condition of the viscous flow 

model is non-slip on the surface of a solid body. This 

condition postulates that the velocity of fluid particles 

touching the surface of a solid must be equal to the ve-

locity of the body. In other words, if the body does not 

move, then the non-slip condition means zero fluid ve-

locity on the surface of the body; if the body moves in a 

still fluid, then the velocity of the fluid on the surface of 

the solid body must be equal to the velocity of the body. 

We will show that this non-slip condition is not met in 

the flow development region. Indeed, from the continui-

ty equation  

(3 or 11) and the non-slip condition, it follows that 

along the entire flow development region, we have 

 

Vx 0
x






Vy
0

y


 


.                (14) 

 

It immediately follows from relation (14) that the 

normal component of the velocity in the region of the 

boundary layer does not change across this layer. It is 

known that this is not so. So, we have reached another 

contradiction of Stokes theory – the impossibility of 

fully complying with the condition of no slipping on the 

surface of a solid body in the region of flow develop-

ment. 

How to understand the resulting contradiction? For 

this, let's turn to physics as a science and life experi-

ence. We know very well that Newton's second law 

does not allow a body to instantly acquire a finite veloc-

ity - this requires an infinitely large force. Does the 

force of friction of a liquid against a solid belong to the 

category of infinitely large? Obviously not. We know 

from life experience that braking any vehicle requires a 

finite time, which corresponds to a finite path - to a 

complete stop of motion. By analogy, during the friction 

of a fluid against a body, an instantaneous transition 

from the rest of the fluid to a finite (and not small in the 

case of aviation and space technic) velocity value can-

not, in principle, occur. The only possible is a gradual 

increase in velocity: during friction against a surface, 

the fluid slides past this surface, gradually gaining speed 

and the acceleration process ends at the end of the de-

velopment region. Therefore, instead of the non-slip 

condition, we must satisfy the fluid acceleration condi-

tion - an increase in its velocity on the surface of the 

solid body from zero (at the beginning of the flow de-

velopment region) to the maximum body velocity (at the 

end of the development region). How to do it, i.e. how, 

according to which formula to set the law of growth of 

velocity on the surface of the body - is not yet known. 

Let's try to solve this problem. As for other boundary 

conditions in the region of flow establishment, they are 

obvious: at the outer boundary of the boundary layer, 

the velocity asymptotic tends to zero, and after passing 

the development region – the asymptotic decaying of 

the normal component of the velocity everywhere 

across the boundary layer. And also the equality to zero 

of the longitudinal derivatives for of all magnitudes: 

velocity and viscosity components. 

As mentioned above, attempts to solve the prob-

lem by numerical and analytical methods led to the real-

ization of the discussed inconsistency of the non-slip 

boundary condition. However, solving the problem 

turned out to be possible with the help of analytical 

methods. 

 

2. Application of calculus of variations  

for the analytical solution of the problem  

of establishing the flow during steady  

motion of a semi-infinite plane  

in a fluid at rest 
 

As in works [4, 9], we will assume that the fluid 

flow rate caused by friction against the surface of the 

moving body is extreme. Most likely, minimal: during 
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interaction with a solid body, the fluid tries to be in-

volved in the movement as little as possible. This is "as 

little as possible" and there is a minimal flow rate. Fluid 

consumption is determined by the longitudinal compo-

nent of the velocity and is described by the functional: 

 

1 V VV V y yx xJ= V , , , dy.x
x y x y0

   
      

         (15) 

 

It is no coincidence that the integral expression 

(15) is a function of the gradients of the velocity com-

ponents. The fact is that the motion of the fluid in the 

problem under consideration is completely dependent 

on the tangential stresses, which are known to be deter-

mined by the gradients of the velocity field. After apply-

ing the procedure described in detail in [4], we obtain 

the Euler equation of the calculus of variations for the 

longitudinal component of the velocity for the necessary 

condition of the extreme of the functional (15). This 

equation has the following form: 
 

V Vx x 0.
V Vx yx x

x y

  
    
    

           

             (16) 

 

We will search the solution of equation (16) using 

the method outlined in [9]. The essence of this method 

is that the asymptotic tendency of the flow, after passing 

through the development region, to the form corre-

sponding to the motion of an infinite plane, allows (16) 

to be split into two equations: 
 

V Vx x= =0
V Vx yx x

x y

  
    
  

           

.                 (17) 

 

Using the invariance of the first differential, we 

transform (17) into the form 
 

2 2

2 2

V V1 1x x= =0.
x x y yV Vx x

x y

  
  

     
               

   (18) 

 

The method of distribution of variables [9] can be 

applied to the system of differential equations (18). Ac-

cording to this method, 
 

V =X (x)Y (y)x x x .                           (19) 

 

Substituting (19) into (18), we get: 

2 2

2 2

X Y1 1x x= =0.
x x y yX Yx x

x y

  
  

     
               

   (20) 

 

The general solution of system (20) has the follow-

ing form 

 

x
X (x)=A +B expx x x

C1x

 
  
 

, 

(21) 

y
Y (x)=A +B expx y y

C1y

 
 
 
 

. 

 

According to the known information on the struc-

ture of the velocity field in the case of an infinite 

plane [4], as well as the need for the flow to reach the 

asymptotic regime without slipping, from (21) we have: 

 

xV (x, y) (1 exp( x))exp( y),    where  5.        (22) 

 

For the second, normal component of the velocity 

field, the necessary condition for the extremum of the 

functional must also be fulfilled (Fig. 2). She looks like 

this 

 

2 2

2 2

V V1 1x x= =0.
x x y yV Vy y

x y

  
  
    
        
  

    

    (23) 

 

The system of equations (23) can, theoretically, be 

solved analytically. But, as it turns out, it is easier to 

find V (x, y)y  from the continuity equation and show 

that the solution obtained in this way satisfies (23). Let's 

do it. After substituting (22) into (11), we obtain  

 

y x
V V

exp( (x y)).
y x

 
     

 
        (24) 

 

The solution of (24) is 
 

1V =exp( (x-y))+F (x).y                     (25) 

 

Taking into account the equality of the zero normal 

component of the velocity, it is finally obtained 

 

V exp( x)(1 exp( y)).y                    (26) 
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It should be pointed out that the solution (26) does 

not tend to zero, for each fixed value of x in flow devel-

opment region, as is the case with the longitudinal com-

ponent of the velocity. And this does not contradict the 

fact that at the boundary of the boundary layer, the ve-

locity practically decreases to zero: let's remember that 

the normal component of the velocity is many (hundreds 

or even more) times smaller than the longitudinal com-

ponent. Therefore, any velocity measurements will ac-

tually correspond to the decreasing of the longitudinal 

component. A similar result was obtained by Blasius 

[14] for the inverse problem. There, too, the normal 

component of the velocity becomes constant as y in-

creases. It should be especially noted that expressions 

(22) and (26) satisfy the system of equations (23), which 

confirms their validity: not only the continuity equation, 

but also both necessary conditions for the extreme of the 

fluid flow functional are satisfied. 
 

 
a) 

 

 
b) 

 

Fig. 2. Components of the velocity field  

in the area of flow development:  

a) – longitudinal component for values y=0; 0.25; 0.5;  

b) – normal component for values x=0; 0.25; 0.5; 0.75. 

We have again come to a "crossroads": we have 

analytical solutions for two velocity components and 

two rather than one equation where molecular viscosity 

is present. Before starting to determine the viscosity 

function, we should not forget that we should find two 

solutions that coincide on the surface. The second im-

portant point: the equations of conservation of momen-

tum are not equal in value in the boundary layer, be-

cause there is a very strong anisotropy of scales, which 

determines the fact that all components in the second 

equation of conservation of momentum have negligibly 

small values compared to the first equation. That is, 

without violating the assumption of a one-component 

viscosity function, we should find it from the momen-

tum conservation equation in the horizontal (longitudi-

nal) direction. But, continuing the expansion of existing 

ideas, let's move away from the dogma that molecular 

viscosity is a scalar function and assume that in the re-

gion of flow development, viscosity has two compo-

nents, both functions of two coordinates. Then every-

thing falls into place. 

As it was just said, we will find two different func-

tions - components of molecular viscosity. Let's start 

with μx . To define this function, we will need the fol-

lowing expressions: 

 

Vx =-α(1-exp(αx))exp(-αy),
y




 

(27) 
2

2

2

Vx =α (1-exp(αx))exp(-αy).
y




 

 

After substituting expression (27) and the others 

into the first equation (12), we obtain: 

 

μx -αμ =exp(αx)x
y




.                    (28) 

 

The general solution (28) is the desired x -

component of the molecular viscosity: 

 

1
exp(α(x-y))

μ (x,y)= +F (x) exp(αy).x
α

 
 
 

   (29) 

 

Similarly, we find 

 

2
2

2

Vy
=-α exp(αx)exp(-αy).

y




 

 

After substituting all the necessary terms and expres-

sions into equation (13), we obtain 
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μy
-αμ =1-exp(-αy)y

y




.                 (30) 

 

The solution of (30) is the following y -component 

of the molecular viscosity: 

 

2
exp(-αy)-2

μ (x,y)=exp(αy)F (x)+ .y
2α

         (31) 

 

Solutions (29) and (31) cannot coincide at all 

points of the flow development region. But we can re-

quire that they coincide on the surface of the plane, 

therefore 

 

μ (x,y=0)=μ (x,y=0)x y .                (32) 

 

Relationship (32) gives a single expression for the 

two components of molecular viscosity: 

 

exp(αx)
μ (x,y=0)=μ (x,y=0)=μ (x)=1- .x y 0 α

   (33) 

 

Expression (33) allows us to draw a completely 

physical conclusion: since α>1 , then at the beginning 

of the area of fluid acceleration (or flow development), 

the molecular viscosity has a value less than that corre-

sponding to the developed flow and in dimensionless 

quantities equal to unity. Fig. 3 presents the graph of 

this function. It can be seen that at the value α=5we 

have that at the beginning of the flow development re-

gion, the viscosity is about 20% lower than the asymp-

totic value. 
 

 
 

Fig. 3. Molecular viscosity function on the surface  

of a moving plane 

   

An important characteristic of the flow is tangen-

tial stress 

 

yx x
xy xy

VV V
τ =τ =μ + μ .

y x y

  
     

 

 

On the surface of the moving plane, we have: 

 

  τ =τ = - α-exp(α(x-y)) 1-exp(αx)xy xy .     (34) 

Therefore, the main component of viscous tangen-

tial stresses depends on both coordinates. And, obvious-

ly, after passing through the region of flow development 

due to friction, tangential stresses are constant: even the 

presence of a vertical coordinate no longer affects this. 

This is fully consistent with the results of previous stud-

ies on an infinite plane [4]. Fig. 4 presents graph (34), 

which clearly shows the output of the maximum tangen-

tial stress function (on the surface of the moving plane) 

to a constant value. For comparison, in the theory of 

Blasius [14], as well as that of Stokes and Ray-

leigh [15, 16], the tangential stress decreases inversely 

proportional to the square root of the longitudinal coor-

dinate. So, the friction is less and less. When a half-

plane moves in a still fluid, the frictional stress, on the 

contrary, as we have already seen, increases along the 

flow, and then reaches a constant value. And this is log-

ical. 

   
 

Fig. 4. Maximum tangential stresses: (34), y=0 

 

In conclusion, we will give an expression for the 

power of the friction force acting on the surface of the 

plane. 

 

 

x

2

exp(α(x-y))
P=τ V = - 1-xy

α

        1-exp(αx) exp(-αy).

 
 

 



           (35) 

 

The graph of the module of maximum values (on 

the surface of the moving body) of power (35) is pre-

sented in Fig. 5. Like all the values given earlier, the 

power reaches an asymptote - a constant value. In con-
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trast to the solutions [15, 16] obtained on the basis of 

constancy of molecular viscosity (in the case of an infi-

nite plane) where the power goes to zero in time. 

 

 
 

Fig. 5. The maximum power of friction: (34), y =0 

 

Discussion 

 

If you carefully study this work, it will be obvious 

that the proposed model is not ideal. Thus, the vertical 

component of the velocity, although obtained from the 

relevant equations, is not perfectly consistent with the 

fact that there should be no motion outside the boundary 

layer. And the resulting solution reaches an asymptote - 

a constant value. You should not be afraid of this, be-

cause the vertical component is several  times smaller 

than the longitudinal one. Since  it is a very small val-

ue (less than 0.01), it is clear that velocity measure-

ments at the outer boundary of the boundary layer will 

simply indicate its small values. But on the other hand, 

in the theory of the boundary layer, and therefore in this 

work, the vertical component of the velocity does not 

play any important role. Therefore, it should be per-

ceived obtained results as a certain approximation to the 

exact solution. As for the two-component function of 

molecular viscosity, here too, obviously, not everything 

is perfect. One could simply ignore the second momen-

tum conservation equation, as Blasius did [14], and then 

the viscosity would be a function of the coordinates. But 

deeper considerations led us to the opinion that nothing 

prevents us in the boundary layer, where the condition 

of anisotropy is violated, to consider that the viscosity 

may depend not only on the coordinates, but also on the 

direction. Therefore, it was decided to leave the second 

equation of conservation of momentum, but consider 

that the viscosity function in it is not completely the 

same as in the first equation. Of course, at the same 

time, we did not forget the fact that both viscosity func-

tions should coincide on the surface of the body, where 

the main events take place - the friction of the solid sur-

face and the fluid, which leads to the generation of the 

boundary layer and two components of the velocity in 

the area of the flow. 

In our previous work [17], with reference to 

known sources, it was stated that the non-slip condition 

must be met everywhere on the surface of a solid body, 

because the flow is viscous. We also criticized the well-

known method of discrete vortices, in which a velocity 

field is actually swept onto the surface of the wing [18, 

19]. Now it became clear why exactly this method had a 

certain success – due to the existing sliding of the fluid 

on the surface of the solid body in the flow development 

region. 

 

Conclusions 

 

As research has shown, there are such incompress-

ible fluid flows where the Stokes theory, which postu-

lates the independence of viscosity from spatial coordi-

nates and the mandatory fulfillment of the condition of 

sticking to a solid surface, cannot adequately describe 

them. One of such currents is the one generated during 

the movement of a semi-infinite plane in a stationary 

liquid. It is in the field of flow establishment that there 

is a situation where two, according to Stokes, unknown 

functions (velocity components) correspond to three 

equations: two conservation of momentum and the third 

– conservation of mass. Such a situation prompts to look 

for a way out of the resulting inconsistency. And such a 

way out, of course, is: to consider molecular viscosity as 

a function of coordinates, and not as a constant. If for an 

infinite plane, where there is no region of flow devel-

opment, this step is already sufficient (see [4, 9]), then 

in the presence of a region of flow development, one 

more important step should be taken - to assume that the 

condition of complete adhesion to the surface of a solid 

body in the region flow development is not performed. 

Instead, there is partial sliding, from complete at the 

beginning of the flow generation region to complete 

sticking at the end of this region and further down-

stream. As in previous works [4, 9], optimization meth-

ods based on finding the extremum of the fluid flow 

functional in the boundary layer could not be dispensed 

with. It was the possibilities of variational calculus that 

contributed to the finding of the fields of velocity com-

ponents and molecular viscosity. As is commonly be-

lieved, the tangential (principal) stresses corresponding 

to the normal derivative of the longitudinal component 

of the velocity are constant after passing through the 

area of flow development in any cross-section of the 

boundary layer. Also, together with the strength of the 

frictional force, the tangential stresses reach an asymp-

totic constant value at the end of the flow development 

region, which is logical. 
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ОБЛАСТЬ РОЗВИТКУ ТЕЧІЇ В ПРИМЕЖОВОМУ ШАРІ:  

ДВОКОМПОНЕНТНА МОЛЕКУЛЯРНА В’ЯЗКІСТЬ  ТА ЧАСТКОВЕ КОВЗАННЯ  

П. В. Лук’янов, Лінь Сун 

Предметом даної роботи є область розвитку ламінарної нестисливої течії рідини в примежовому шарі. 

Ця течія являє собою приклад, де пряме застосування рівнянь Нав’є-Стокса без-градієнтної ламінарної не-

стисливої течії рідини, у якому молекулярна в’язкість вважається сталою величиною, що не залежить від 

просторових координат, призводить до перевизначення математичної моделі. Йдеться про примежовий шар 

рідини в області встановлення течії в задачі про рух пів-нескінченої площини, де градієнт тиску рівний ну-

леві. Наявна ситуація, коли кількість рівнянь дорівнює трьом (два рівняння збереження кількості руху і рів-

няння нерозривності), а кількість невідомих дорівнює двом – числу компонент швидкості. У якості логічно-

го розв’язання отриманої невідповідності запропоновано, як це вже було зроблено для задачі про стаціонар-

ний рух площини і задачі про розгін площини, відійти від хибного твердження про сталість молекулярної 

в’язкості в без-градієнтному примежовому шарі нестисливої течії та вважати молекулярну в’язкість функці-

єю просторових координат. Необхідність в урахуванні змінного характеру молекулярної в’язкості призвела 

до відкриття ще одного, другого, недоліку теорії Нав’є-Стокса. Цей нетривіальний недолік було виявлено 

під час застосування оригінального чисельно-аналітичного методу розв’язання задачі про течію рідини в 

області встановлення руху. Як відомо, рівняння Нав’є-Стокса доповнюються граничними умовами. Найваж-

ливішою умовою є умова прилипання (не ковзання) рідини на поверхні твердого тіла, яка, до речі, не випли-

ває ні з якого фізичного закону. В результаті на поверхні пів-площини (або тіла), що рухається, складова 

швидкості, що співпадає із напрямком руху, має стале значення, яке дорівнює швидкості тіла. З рівняння 

нерозривності одразу випливає, що нормальна похідна від нормальної компоненти швидкості повинна бути 

рівною нулеві уздовж поверхні площини (тіла), так як повздовжня похідна від повздовжньої компоненти 

швидкості перетворюється на нуль. Однак, цілком очевидно, що нормальна до поверхні площини (тіла) 

компонента швидкості змінюється поперек примежового шару – в області розвитку течії, що означає наяв-

ність нормального градієнту (обох складових) швидкості. Конфлікт, або протиріччя, долається шляхом від-

ходу від загальноприйнятої умови прилипання до умови часткового прилипання, або по суті наявності ков-

зання. Так як і при різкому гальмуванні будь якого транспортного засобу повна зупинка відбувається не 

миттєво, а за деякий скінчений час и шлях, то і в випадку руху тіла в нерухомій рідині відбувається не мит-

тєве прилипання, а поступове – від повного ковзання, коли частинка рідини щойно зустрілася із рухомою 

площиною, до повного прилипання наприкінці ( і далі) області розвитку течії. Методи досліджень. В роботі 

використовуються суто теоретичні методи, що базуються на використанні варіаційного числення, законів 

фізики та уявлень із повсякденного життя. Висновки. Вдосконалена модель в’язкої н’ютонівської рідини в 

області розвитку течії в примежовому шарі. На підставі припущень про змінний характер молекулярної 

в’язкості, яка вже має дві складові, та відходу від виконання умови прилипання, отримані аналітичні 

розв’язки для обох складових швидкості, а також обох складових молекулярної в’язкості. Наведено порів-

няння отриманих результатів із результатами інших робіт.  

Ключові слова: літак; вертоліт; область розвитку течії; примежовий шар; часткове ковзання.  
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