
ISSN 1814-4225 (print) 
АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2023, № 5(191)   ISSN 2663-2012 (online) 

4 

UDC 533.65.013:532.517.43  doi : 10.32620/aktt.2023.5.01 
 

Pavlo LUKIANOV, Lin SONG 
 

National Aviation University, Kyiv, Ukraine 
 

COMPACT ANALOGS OF THE MODELS  

OF VORTEX FLOWS GENERATED BY AIRCRAFT FLIGHT   
 

The subject of this work is the development of compact analogs of vortex flows models, which are used in the 
modeling of vortex structures observed during the flight of an aircraft and the motion of a body in a fluid. In 

particular, two significant misunderstandings prevailing in this area of science are highlighted. The first misun-

derstanding is that the stationary motion of fluid parcels in a circle is treated as an inviscid vortex. Therefore, 

any vortex flow model that does not explicitly contain viscosity is considered to describe inviscid vortex motion. 

It has been proven that this is not so: the stationary viscous motion of fluid parcels in circular orbits corresponds 

to the self-balance of one force - the force of viscosity. This conclusion, in an explicit form, was made for the 

first time. This is very important because it changes our ideas about force balance, where two or more forces of 

different natures must necessarily be present. Overcoming this misunderstanding opens the way for creating 

compact analogs of existing models of vortex motions. Along the way, one more - the second general misunder-

standing in the field of vortex dynamics was eliminated. Wherever we read it, we can see that the compactness 

of the vortex flow is associated with the compactness of the vorticity field. This is facilitated by the fact that the 
equations for vorticity and not for velocity are considered. As a result, except for one or two models of vortices, 

which correspond to the rotation of the entire space, up to infinity, this violates the fundamental law of physics 

- the law of conservation and transformation of energy. It is about the fact that, as a second misunderstanding, 

an error is assumed when calculating the kinetic energy of the vortex flows: the Jacobian in cylindrical (polar) 

coordinates is not considered. As a result, all the mentioned models of vortex flows, which correspond to the 

hyperbolic law as their asymptotics in the periphery, have infinite kinetic energy. Certainly, this does not corre-

spond to the formation and evolution of compact vortex structures. Therefore, in this work, based on overcoming 

the aforementioned misunderstandings, many previously obtained models of compact vortex flows, as well as 

those obtained for the first time, are presented. In particular, this applies to the turbulent vortex flow during the 

formation of a vortex sheet, which is a compact analog of the Burgers-Rott vortex - both the classical one cor-

responding to laminar motion and the one consisting of a laminar flow in the core and a turbulent flow on the 

periphery of the vortex. Research methods are entirely theoretical. Well-known theorems of theoretical mechan-
ics, mathematical theory of field, and calculus of variations, etc. are used. The obtained solutions are compared 

with the existing corresponding analogs of non-compact flows. Conclusions. Using the methods of calculus of 

variation, it was possible to show the possibility of the formation of quasi-solid-like rotational motion in a bound-

ary layer of an incompressible fluid.   The very presence of viscosity, or rather its taking into account (boundary 

layer), indicates a possible transition of the flow from plane-parallel motion to the just-mentioned rotational one 

due to the Kelvin-Helmholtz instability. In addition, two new models of the Burgers-Rott vortex flow were ob-

tained in this study. The first model uses the general solution obtained by Burgers, but this model corresponds 

to a combined vortex: although the velocity field is continuous, the vorticity field has a discontinuity - at the 

point of maximum velocity. It is proved that such an approach is quite possible: the equation of motion is satisfied 

everywhere, i.e., at every point in space, and the tangential stresses are continuous functions. Since the periphery 

of the Burgers-Rott vortex is an unstable flow, another model is proposed - with a laminar core and a turbulent 
periphery. Certainly, the motion of fluid parcels in the peripheral region is described by a velocity distribution 

other than that of Burgers. Finally, the possible use of known models of compact vortex flows to simulate the 

von Karman vortex street is considered, with an indication of the advantages of these models.  

 

Keywords: aircraft; vortex flows; Burgers-Rott vortex; vortex sheet; Karman vortex street; two misuderstand-

ings in vortex dynamics.  

 

Introduction 

 

Of all the physical fundamental laws of 

conservation in mechanics, conservation of momentum 

occupies a special place. Regardless of the nature of the 

interaction (elastic or inelastic collision), this law is 

always valid for the total momentum of the interacting 

(both discrete and distributed) system of bodies. In con-

nection with what has just been said, it is not by chance 

that the inertial component of motion is the main one in 

the creation of lifting force. Pushing air down from them-

selves, birds and insects are able to hover in the air thanks 

to the law of conservation of momentum. The aircraft, as 

you know, is not capable of flapping its wings. To create 
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lifting force, aircraft needs to have a component of the 

velocity of rectilinear motion. Being tilted at some angle 

(attack) in relation to the movement of the aircraft, the 

wing, like birds and insects, repels the oncoming air flow 

from itself down and, thus, creates the main (inertial) 

component lifting force [1]. 

When a body moves in the fluid, in the immediate 

vicinity of its surface a boundary layer is formed - a flow 

region in which the velocity changes from the maximum, 

equal velocity of the body's motion at this point in space, 

to an almost zero value, 100-1000 times less than the 

maximum. In the early period of its development, when 

the theory of viscous fluid was not yet developed or ac-

cepted, in hydromechanics the boundary layer was inter-

preted as a mass attached to the body [2]. So, in order to 

get closer to a real description of the phenomenon, it was 

proposed to consider, on the basis of the model of invis-

cid fluid flow, the motion of a body together with some 

volume of fluid around it. It is quite obvious that this ap-

proach to describing the motion of an airplane is not suit-

able - at each subsequent moment of time, the aircraft, 

during its motion, interacts with new and new air masses. 

As you know, the flight and the interaction of the 

wing with the wind causes the generation of vortex mo-

tions. In particular, this applies to the detachment of the 

vortex from the surface of the wings and other parts of 

the aircraft [3], as well as the formation of a vortex flow 

in the wake behind the aircraft [4]. One of the first sys-

tematizations of the physics of vortex formation was 

made in [5]. Works [6, 7] are devoted to the study of the 

vortex sheet. For a comprehensive understanding of vor-

tex flow models, one should refer to the monograph [8]. 

The nature of the creation of any vortex flow is the pres-

ence of a velocity shift. This conclusion follows directly 

from the general formula (definition) of vorticity as a 

mathematical operator of the rotor of the velocity vector: 

the absence of gradients (shift) of velocity along spatial 

coordinates cannot create a vortex. But that's not all: even 

a potential flow in circular orbits (a point vortex) is a vis-

cous motion, and those other vortex flows, which are 

considered inviscid due to the obvious lack of viscosity 

in the solution, are nothing another, as a viscous station-

ary motion, in which the forces of viscous tangential 

stresses balance themselves [9]. 

In his speech to the Royal Society of Great Britain 

on the occasion of his awarding of the gold medal, Lud-

wig Prandtl described in detail all the knowledge known 

to him at that time about the vortical nature of a body 

being flown around a by stream of fluid impinging on it 

(reverse problem) [5]. According to Prandtl, vorticity is 

not generated anywhere, but in the boundary layer, the 

nature of which is the presence of viscosity in shear 

flows. In his report, Prandtl presented methods of pre-

vanting  the separation of vortices in the boundary layer, 

which are used in modern research [10]. However, like 

everyone else, Prandtl mistakenly considered the rever-

seability of the direct and inverse problems - the motion  

of a body in a fluid  and the flow of a fluid past  a immo-

bile body. This, as it became known recently [11, 12], is 

incorrect.  

In shear flows, at the interface of two media, the 

Kelvin-Helmholtz instability may appear. One of the 

early works is the article by Meyron et al. [13], which is 

devoted to the analytical structure of the vortex sheet. 

The study of the formation of features (singularities) at 

the early stage of the nucleation of the vortex sheet is 

given attention in the paper [14]. The works [15, 16] are 

devoted to the testing and modeling of the Kelvin-Helm-

holtz instability, and [17, 18] to the study of the nonlinear 

properties of this instability. 

A study of the stability of the unsteady Kelvin-

Helmholtz flow can be found in [19]. In vortex dynamics, 

there is such a concept as self-organization - the for-

mation of certain vortex structures from chaotic motion, 

which are called coherent or long-lived. From this point 

of view, the two-dimensional Kelvin-Helmholtz instabil-

ity is considered in [20]. Various initial conditions can be 

used to control the boundary layer and the Kelvin-Helm-

holtz instability. The work [21] is devoted to the influ-

ence of the initial conditions on the further development 

of the Kelvin-Helmholtz instability. This instability leads 

to the formation of a vortex sheet, which makes a signif-

icant contribution to the formation of the lifting force of 

the wing [5]. 

Despite the specified nature of vortex formation due 

to the presence of viscosity, methods based on the use of 

Euler's equations, i.e., those in which viscosity is not 

taken into account, have been widely used for calculating 

the lift force (and resistance). One of them is the so-called 

Method of discrete vortices, which is described in mono-

graphs [22, 23] and article [24]. Further development of 

this method and its application to applied problems is 

contained in [25, 26]. This method ignores the presence 

of a fluid boundary layer on the surface of the body and 

considers that the fluid flows around the body, the mag-

nitude and direction of the velocity of which is modeled 

by a pair of oppositely directed vortices - a dipole (see 

also work [27]). In order to take into acount the structure 

of the boundary layer, one should consider (model) a vis-

cous vortex flow a priori. Fortunately, over the previous 

10-15 years, there has been a clear awareness of the short-

comings of existing vortex flow models and, as a result, 

a more accurate description of them. The starting point 

was the reluctance to put up with the fact that natural vor-

tices have a compact structure and, instead, they are put 

in line with current models where the entire space rotates 

- up to infinity. This is how the first work [28] appeared. 

But the point vortex model, on the basis of which the 

above-mentioned method of discrete vortices was cre-
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ated, still reigned supreme. But it was replaced by a com-

pact analogue – the model of a quasi-point vortex [29], 

the main advantage of which is the ability to specify any 

finite size of the vortex, which is close to the classic – 

point vortex.  

Since the vast majority of fluid flows are turbulent, 

the model of a quasi-point (laminar) vortex was general-

ized to the case of a turbulent flow - under certain re-

strictions [30, 31]. A little later, it became clear how on 

the basis of one model it is possible to obtain, through 

limit transitions, all existing basic models - point vortex, 

quasi-point vortex and Rankin vortex. Therefore, this 

model was called the universal compact vortex 

model [32]. The theoretical justification, based on classi-

cal theorems, of the possibility of the existence of com-

pact vortex flows came a little later - after numerous dis-

cussions and speeches at seminars of leading institutes of 

the National Academy of Sciences of Ukraine [33]. 

Finally, since the notion of inertial stability in vor-

tex motion is extremely important, because it indicates 

whether the flow is laminar or turbulent, a study was con-

ducted, the results of which are contained in [34]. Aware-

ness of the need to take into account the variability of 

viscosity in the boundary layer [11, 12] made it possible 

to look at the analyzed motion in a new way: since the 

vortex sheet is formed in the boundary layer, in the vortex 

model, viscosity has the right to be a variable value - in-

side the boundary layer, of course. The just mentioned 

ideas served as the generator of this work. Later, during 

a comprehensive study of the problem of vortex for-

mation during the motion of a body in a fluid, and an air-

plane in particular [4], it became clear that one should not 

limit oneself to a single vortex sheet - one should also pay 

attention to free vortex flows, such as the Burgers-Rott 

vortex [35, 36] and the von Kármán vortex street. 

Further presentation is structured as follows: the 

problems and purposes of this work are formulated, 

general misunderstandings in the theory of vortex 

motions are clarified, in particular, the identification of 

viscous coherent (long-lived) vortices with inviscid ones 

and modeling of compact free vortex flows using velocity 

distributions, kinetic energy in which is equal to infinity, 

which is obviously impossible due to the law of 

conservation of energy. Next, the models of the vortex 

sheet, the descending  free vortex, and  Karman vortex 

street are considered. It should be noted that the concept 

of a mathematical model is also being expanded [37]: 

while remaining in the class of continuous functions for 

the velocity field, which is important for the continuity of 

the pressure field, it is possible to use piecewise 

continuous distributions for the vorticity field while 

maintaining generality. At the same time, the equation 

describing the motion remains valid (is fulfilled) at all 

points of the vortex flow domain. 

 

1. Problem formulation 
 

The purpose of the work to describe, with the help 

of models of compact vortices corresponding to a viscous 

fluid flow: 

 motion in a vortex sheet; 

 free descended vortex flow, described by a 

Burgers-Rott vortex, as well as a von Kármán vortex 

street, which is also described by models of inviscid 

vortices (by with the exception of [38]); 

 in the course of solving the problem, in addition 

to using already known models, obtain new models of 

compact vortex flows generated during aicraft flight. 

 

2. Two serious misunderstandings  

as for models of vortex flows 
 

Misunderstanding 1. It is treated that if the vortex 

flow is described by an equation or a system of equations 

where molecular viscosity is absent in an explicit form, 

then the flow is inviscid. At the same time, intuitively, vis-

cosity is considered unambiguously as a source of non-

stationarity of the flow, which leads to the diffusion of 

vorticity. 

This misunderstanding is very serious – not trivial. 

From a formally mathematical point of view, when there 

is no viscosity in the solution, we claim that there is no 

vortex diffusion mechanism and thus the vortex flow is 

inviscid. But few could guess that such a state corre-

sponds to the stationary flow of a viscous fluid along cir-

cular trajectories. Batchelor [9] showed that the force of 

viscosity in a fluid can be in self-equilibrium. How! - eve-

ryone will exclaim. After all, balance means the presence 

of two or more forces. That is why it is a balance - to 

equate one force with another. However, a balance of one 

force is possible. Given its exceptional importance for 

understanding the physics of the phenomenon, we will 

show, following Batchelor, how this balance occurs. 

One of the main theorems of theoretical mechanics 

is the theorem on the change in the angular momentum 

of a body during its rotation. Let L  be the angular mo-

mentum and the momentum of external forces Mo ap-

plied to the body be: 

 

L=m r×V ,     eM =M Ro o . 

 
Then the theorem on the change of the angular mo-

mentum is described by the following equality [39]: 

 

 dLo e
=Mo R

dt

.                         (1) 
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If we now imagine the motion of fluid parcels  along 

circular trajectories (the domain  along the axis of 

rotation is infinite), then the internal friction in the fluid 

is described by a single component of the viscous stress 

tensor 

 

V Vθ θσ =μ -rθ r r

 
 
 

.                        (2) 

 
The momentum of external forces applied to an in-

finitely thin ring cross-section domain is equal to [9] 

 

V V2 θ θM =2πμr -z
r r

 
 
 

.                (3) 

 

At the same time, the angular momentum is 

determined by the formula [9] 

 

ZL =2πrρ r V .θ 

                          
(4) 

 

Substituting (3) and (4) into (1), we obtain 

 

 22πρr Vθ V V2 θ θ= 2πμr -
t r r r

      
  

     
,          (5) 

 

or, after calculating the derivatives in the right and left 

parts of (5), we obtain the well-known Navier-Stokes 

equation in the Gromeka-Lamb form [9, 40] 

 

                     

2V V V V1θ θ θ θ=ν + -
2 2t r rr r

   
 
   

.             (6) 

 

The long-awaited conclusion follows from (1) and 

(6): during steady-state viscous motion of fluid parcels in 

circular orbits, the main vector of external forces applied 

to fluid cylindrical surfaces is zero. This becomes possi-

ble thanks to the self-balance of viscous friction in the 

fluid. And by no means refers to the lack of viscosity. The 

mistake of all those who believe this inviscid flow is ex-

plained by the stationary analog (6), which has the form 

 

                     

2V V V1θ θ θ0= + -
2 2r rr r

  
 
  

.                   (7) 

 

Yes, indeed, there is no viscosity in (7) – in an ex-

plicit form. But it corresponds to nothing else but viscous 

the self-balance. That is why the fundamental solution of 

(7) has the form  

 

-1V =C r+C rθ 1 2                          
(8) 

 

that is widely used in vortex dynamics. To close the issue 

of viscosity, we will show that the point vortex and Ran-

kine vortex models correspond to viscous flows. Indeed, 

the distribution of the velocity field in a point vortex is 

described by the expression [8] 

 

θ

Γ
V =

2πr

.                                 (9) 

 
Let's substitute (9) in (2). We then obtain that 

 

Γ 1 1 Γ
σ =μ - - =-μ 0rθ 2 2 22π r r πr

 
 

 
.           (10) 

 

Thus, in its entire flow domain, a point vortex has 

non -zero viscosity stresses. Since a Rankine vortex con-

sisting of a core 0 r a  and a periphery r a has a ve-

locity distribution of the form 

 

0

θ
0

V r
,   0 r a,

a
V =

V a
,   r>a.

r

 



                     

(11) 

 

then the entire peripheral region, according to (10), is a 

viscous flow. 

Misunderstanding 2. Second misunderstanding is 

also present everywhere. This is the identification of the 

compactness of the vorticity field with the compactness 

of the velocity field, that is, of the vortex flowt itself. As a 

result, practically all models of vortex flows, having a 

compact vorticity field, have the same unnatural prop-

erty: they cover an infinite domain of space with their ro-

tation and have infinite kinetic energy. It is obvious that 

the generation of the vortex in a finite time is due to the 

finite power (instability) is by no means capable of cre-

ating an object with infinite kinetic energy. 

We will show that the kinetic energy in a point vor-

tex, and at the same time in any other in which the veloc-

ity field tends asymptotically to such a distribution, is 

equal to infinity. Indeed, according to the definition of 

kinetic energy and expression (9), we have: 

 

2r1 Γ
E =ρ2π rdrk 2 2πra

 
  
 

, 

2Γ rE =ρ lnr ,  rak 4π
  .             (12) 

 
What does almost everyone do? They forget to 

multiply by the Jacobian r when transition to a cylindrical 

(or polar) coordinate system. And instead of (12) they ob-

tain 
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2 2
ρ Γ ρ Γ 1

E = dr=k 2 2πr 2 2π ra a

2
ρ Γ 1

     0, r .
2 2π a

   
    

   

 
    

 

         (13) 

 

It turns out "just fine": according to (13), the kinetic 

energy of the periphery of any vortex, which has the 

asymptote of a point vortex, has a negative value (the 

initial one at the boundary of the vortex core has a minus 

sign). So, complete nonsense. How can the kinetic energy 

of any part of a vortex, as well as any body of a system 

of bodies, have a negative value? This issue is not 

covered in the literature. Unfortunately, and why it was 

necessary to dwell on this issue in such detail, at present, 

the Rankine vortex and the point vortex are considered 

inviscid flows [41] with finite kinetic energy. 

 

3. Vortex sheet and its simulation 
 

When modeling the vortex sheet as a system of di-

poles, it is assumed that the flow is inviscid. Indeed, each 

of the point vortices (9) satisfies the stationary Navier-

Stokes equation in the form of Gromecka-Lamb (7). 

Since within the framework of the constant molecular 

viscosity model equation (7) is linear, it is assumed that 

the superposition of these solutions is also a solution 

of (7). 

The correct understanding of the physics of the 

studied phenomenon is constantly hindered by the error 

that the direct and inverse problems are completely 

reversible. If a viscous fluid (air) flows past immobile 

body then near each point of the body's surface, the ve-

locity of the fluid, generally speaking, is different due to 

the presence of flow development region. The value of 

this velocity, along with the direction of the flow, is mod-

eled by a pair of elementary vortices [22]. And the vortex 

sheetis considered (modeled) as a singular field of vorti-

city capable of generating a saltus of the velocity vector 

of finite magnitude. Recall that the velocity fields inside 

the gradient and gradient-free boundary layers are de-

scribed by different functions, that is, they are differ-

ent [11]. And the main thing - when a body moves in a 

fluid (flight), the molecular viscosity inside the gradient-

free boundary layer is variable. Since it is important to 

define the "initial conditions" as accurately as possible 

for the use of modern design and calculation systems, the 

structure of the vortex sheet at the stage of its formation 

is of great importance. In this regard, it should be noted 

the works [42, 43], which in particular indicate three 

types of vortex structures formed in turbulent flows: the 

core of the Burgers vortex (the periphery is not described 

by this vortex), structures similar to a curved vortex layer 

and a flat vortex sheet. 

We will try to answer, based on the available infor-

mation, the main question: how, in what way is the vortex 

sheet formed? We will assume that the formation (gener-

ation) of the vortex sheet occurs in the boundary layer. 

Since, as noted, any vortex flow is shear, the presence of 

a boundary layer contributes to the formation of vortices. 

The physical nature of the formation of vortices is the 

Kelvin-Helmholtz instability. You can give the simplest 

analogy with theoretical mechanics. If the outer boundary 

of the gradient-free boundary layer (direct problem) is 

identified with the ground, and the speed of the surface 

of the moving body is identified with the speed of the 

wheel at the top point (double the speed of motion of the 

wheeled vehicle), then we obtain that a vortex, like a 

wheel, rolls along the outer still (approximately) bound-

ary at the boundary layer. It should be noted that this rep-

resentation is, in fact, similar to Milyonshchikov 's hy-

pothesis [44], which for the inverse problem (flow along 

a still surface) suggest that turbulent vortices seem to roll 

along the surface of the body. Such a hypothesis allowed 

Milyonshchikov to obtain the well-known logarithmic 

law of wall for a turbulent flow. Since the translational 

speed of the wheel is half the maximum (relative to the 

instantaneous center of rotation - the point of contact of 

the wheel with the ground), then, by analogy, the vortices 

formed in the vortex sheet will rolling downstream from 

the body (wing) with a finite speed (perhaps equal to half 

the speed of moving body). 

Since the discovery of different structures of gradi-

ent and gradient-free boundary layers of incompressible 

fluid flows [11] is based on the variational principles of 

mechanics, it is logical to use them here as well - to de-

scribe the nature of the vortex sheet formation. In order 

to correctly choose the appropriate functional, we recall 

that Prandtl also indicated the turbulent nature of the vor-

tex sheet [5]. We now substantiate his statement on the 

basis of the calculus of variations. Omitting the details, 

we note that the vortex nature of the flow in the boundary 

layer requires us to consider not the extreme of the fluid 

flow rate through the cross-section of the boundary 

layer [11], but the extreme (maximum) of the rotor ve-

locity vector 

 

J= rotVdΩ extr
Ω

 .                 (14) 

 

This extreme, generally speaking, is conditional, 

because we must add to (14) the corresponding Navier-

Stokes equation for Vθ  and take into account the variable 

nature of μ(r) . As we consider 

 

 V= V =0,V (r),V =0r zθ ,                  (15) 
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then, according to (15), the only component of the veloc-

ity rotor is 

 

 
1

rot V= rVz θr r




.                     (16) 

 

Condition (14), according to (16), acquires the ex-

plicit form  

 

 
2π δ/2 1

J= rV rdr extr.θr r0 -δ/2


 


   

      

(17) 

 

If we consider the usual extreme (17), then the 

corresponding Euler equation turns into the identity. So 

let's consider a conditional extreme. The corresponding 

Lagrange function has the form: 

 

dV dV Vdμ 2μθ θ θΦ=V +r +λ + - +θ dr dr r dr r

2d V dV V1θ θ θ          +λμ - + .
2 r dr rdr

   
   
   

 
 
 
 

   (18) 

 

Since   contains two unknown functions, we 

have two additional Euler-Lagrange (calculus of 

variations) equations at our disposal. They are 

 

1 dμ 2μ d dμ 2μ
1+λ - + - r+λ + +

r dr r dr dr r

2d
      + λμ=0,

2dr

dV V 2λ dλθ θ- - =0.
dr r r dr

       
       

      




    
   

   (19) 

 

From the second equation of system (19), it follows 

that the Lagrange multiplier has the form: 

 

2λ=C r .                           (20) 

 

It is easy to check that substituting (20) into the first 

equation of system (19) turns it into an identity. The fol-

lowing conclusion can be drawn from the above: within 

the framework of the variable molecular viscosity model 

within the boundary layer, the vortex motion (15) auto-

matically delivers the conditional extreme of the vorticity 

functional (17). Therefore, whatever velocity distribution 

in the framework of (15) we set in advance, it will meet 

the necessary conditions of the conditional extreme for 

the vorticity functional. This conclusion gives us the op-

portunity to use different models of viscous stationary 

vortex flows that are the solutions of equation (19). On 

the other hand, we have not been able to determine ex-

actly which velocity distribution is natural for the vortex 

sheet formed in the boundary layer. The standard trick is 

to complicate the model. Let's change from the Navier-

Stokes equations with variable molecular viscosity for 

the corresponding Reynolds equations (turbulent fluid 

motion) 

 

2dV V d V dV Vdμ 2μ 1θ θ θ θ θ0= + - +μ - + +
2dr r dr r r dr rdr

              

 

dV dVd 2θ θA +θdr dr r dr

 
   

 
.                      (21) 

 

Having carried out similar procedures for finding 

the conditional extreme, we will also obtain the expres-

sion (20) and additionally the equation 

 

2d V2 θ-Cr =0
2dr

,                       (22) 

 

the solution of which is 

 

V =C r+Cθ 1 2 .                          (23) 

 

So, after considering  the general case of turbulent 

motion , we obtained as a result that a moving plane can 

generate a quasi-solid rotational motion (see formula 

(23)). This means that when the transition  to unstable 

(turbulent) type of motion, boundary layer  can turn into 

a system of vortices, the centers of which move (down-

stream) with a speed equal to half the maximum speed 

relative to the solid surface. At the same time, we do not 

forget that molecular viscosity and turbulent viscosity are 

functions of the distance to the surface of the body. Next, 

the vortex sheet detaches from the surface and the vortex 

flow becomes compensated - the integral of the vorticity 

over the entire domain of the vortex is equal to zero. This 

is a necessary and sufficient condition that the vortex is 

isolated - it occupies a finite domain  of space. This 

process is called  shedding [45, 46]: a peripheral domain  

of vorticity of the opposite sign is formed around the 

main (core) domain  of vorticity of one sign. It is this, the 

peripheral domain, that allows the vortex to have a finite 

size - at any  time moment after detaching. The effect of 

distance to boundary on Kelvin-Helmholz instability 

studied in [47].  

 

4. Descending vortex: the Burgers-Rott 

model and its compact counterpart 
 

After the separation of the vortex sheet, a so-called 

desending vortex is formed. This vortex is approximated 
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by the Burgers-Rott vortex model [35, 36]. The Burgers-

Rott vortex is an exact solution of the stationary Navier-

Stokes equations. The following velocity field is under-

stood under this model 

 

V =-α r,r

V =2 α z,z

Γ
V = g(r).θ 2πr


 


 

 


                       (24) 

 

If, instead of the third equation (24), that is, the ex-

pression for the azimuthal velocity, we just write 

 

V =V (r)θ θ ,                            (25) 

 

and substitute (25) and the first two equations (24) into 

the following system of Navier-Stokes equations (in cy-

lindrical coordinates) 

 

2VVV V V Vθ θr r r rρ +V + +V - =r z
t r r θ z r

 
    

    
 

2 2 2V V V Vp 1 1r r r r=- +μ + + + -
2 2 2 2r r rr r θ z

    

   

VV 2 θr- -
2 2 θr r




,

 
V V V V V V Vrθ θ θ θ θ θρ +V + +V - =r z 2t r r θ z r

    
 
    

2 2 2V V V V1 p 1 1θ θ θ θ=- +μ + + + -
2 2 2 2r θ r rr r θ z

    

  

 

V V2r r- +
2 2 θr r




,

 
VV V V V pθz z z zρ +V + +V =- +r z

t r r θ z z

     
 
     

,

2 2 2V V V1 Vz 1z z z+μ + + +
2 2 2 2r rr r θ z

   
 
    

            (26)

 
 

     
1

rV + rV + rV =0,r zθr r θ z

  

             
(27) 

 

then we obtain: 

 

2V 1 p2 θα r- =-
r ρ r




, 

2d V dV1 α α 1θ θ+ + r + + V =0θ2 2r ν dr νdr r

  
  

   
,      (28) 

1 p24α z=-
ρ z




. 

 

The general solution of the equation (28) will be 

precisely the Burgers vortex 

 

1 1 2V = C +C exp - Λrθ 1 2r 2

  
  

  
.            (29) 

 

In (29) 

 

α
Λ=

ν
.                                (30) 

 

The parameter  indicates the physics of the process 

- the balance between viscosity and advection in the ra-

dial direction. Vorticity field in such a vortex is compact 

according to Saffman [7] 

 

1 2ω =-Λ C exp - Λr .z 2 2

 
   

                

(31) 

 

However, the velocity field is not compact. According to 

(12), the kinetic energy in the Burgers-Rott vortex is 

equal to infinity, which contradicts the law of conserva-

tion of energy. To overcome this problem (inconsistency 

with the energy conservation law), let's transform (29) 

into a compact vortex. We made an attempt to use the 

representation based on a quasi-point (compact) vortex 

instead of the third relation (24) [28] 

 

2
Γ r

V = 1- g(r)θ 2πr RV

 
  
     

 

, 

 

where RV is a vortex radius that is valid further for 

other formulars as well.  

As a result, the solution (29) is obtained. So what to 

do to solve this problem? The answer is that for this we 

need to depart from the usual notions that not only veloc-

ity but also its derivative must be continuous functions. 

Fortunately for us, that was exactly what it was about dur-

ing the discussion of the modeling of the vortex sheet : 

there the vortex field has a saltus. The fact is that from a 

physical point of view, equation (7) holds not only for 

velocity distributions given by one function, but also for 

any finite number of piecewise continuous distributions 

constructed on the basis of (29). In other words, like the 

composed Rankine vortex (11), we can consider the 

Burgers-Rott vortex also as a composed, the field of the 

azimuthal component of the velocity in which is given by 

the relations: 
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Γ 1 21-exp - Λr , 0 r r ;          k2πr 2
V =θ

Γ 1 2C +C exp - Λr , r r R ,V3 4 k2πr 2

   
    

   


         

  (32) 

 

where kr is a vortex core radius.  

Constants C ,C3 4  are determined under the 

following conditions: continuity of the velocity field 

 

1 Γ 12 2C +C exp - Λr = 1-exp - Λr3 4 k k2 2πr 2

    
    

    
 

 

and the condition for the compactness of thevelocity field 

(the vortex is isolated) 

 

 

1 1 20= C +C exp - ΛR3 4 VR 2V

  
  

  
. 

 

After solving the system of equations with respect 

to С ,С3 4  we obtain a desired model that is compact an-

alog for Burgers-Rott vortex  

 

×

×

Γ 1 21-exp - Λr , 0 r r ;k2πr 2

1 21--exp - Λr
k2

V =θ 1 12 2Γ exp - ΛR -exp - Λr , r r R .V k Vk2 22πr

1 12 2exp - ΛR -exp - Λr
V2 2

   
   

  


     
   

    
         

     
       

     

 



 

 

                                                                                  (33) 

 

The vorticity field, according to (33), has the 

following distribution  

 

z

Γ 1 2Λ exp - Λr , 0 r r ;k2π 2

1 12 2= 1--exp - Λr exp - Λr
k2 2Γ

Λ , r r R .Vk2π 1 12 2exp - ΛR -exp - Λr
V k2 2

  
  

 
       
      

       
     
           

 





 

                                                                                   (34)   

 

One can see at Fig. 1 velocity and vortixity distri-

butions of Burgers-Rott vortex and just obtained it’s 

compact counterpart.  According to velocity distribution 

(33) all the space is rotating.  In return, the solution (29) 

shows that the rotation is finite space domain (approxi-

mately 3 non-dimensional units in radial direction).  Vor-

ticity distribution has two domains of opposite sign that 

make it possible the existance of vortex flow in compact 

domain. 

 
 

(a) 

 
 (b) 

 

Fig. 1. Distributions of azimuthal velocity (a)  
and vorticity (b) in the Burgers-Rott vortex  

and its compact counterpart 

 

The value rk corresponds to the point of maximum 

for the function 

 

Γ 1 2V = 1-exp - Λrθ 2πr 2

  
  

  
. 

 

5. A compact Burgers vortex with a laminar 

core and a turbulent periphery 
 

According to solution (29), the velocity field at the 

periphery of the Burgers-Rott vortex decreases faster 

than that of the point vortex (hyperbolic law). This, in 

turn, means the inertial instability of the incompressible 

fluid flow [48, 49]. It may not be by chance that Burgers 

considered the flow to be turbulent, although he actually 

used the Navier-Stokes equation of laminar motion (see 

0.6 
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0.2 
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1/2r( / 2 )   

1 
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-0.5 

1/2r( / 2 )   
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-1 
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equation in [35]). At that time (1948) direct numerical 

simulation of turbulence based on the Navier-Stokes 

equations was out of the question - computers simply did 

not exist yet. In order for the Burgers vortex model to 

correspond as closely as possible to reality, consider a 

combined vortex. The core of the vortex is a Burgers vor-

tex (29), and the periphery is a turbulent flow based on 

relations (24) and (25), which now are understood as av-

eraged velocity fields. The same as for the case of lami-

nar flow, let's consider the general equations describing 

the turbulent type of flow. These are the Reynolds equa-

tions [50] in the cylindrical coordinate frame [40]: 

 

V VV V V Vθ θr r r rρ +V + +V - =r z 2t r r θ z r

    
      

2 2 2V V V Vp 1 1r r r r= - +μ + + + -
2 2 2 2r r rr r θ z

    

   

 
VV 2 1 '2θr- - + -rρV +r2 2 θ r rr r

 

 
 

 1 1' ' ' ' '2-rρV V + -ρV V - -ρV ;r r zθ θr θ z r

    
    

            
(35) 

 

V V V V V V Vrθ θ θ θ θ θρ +V + +V - =r z 2t r r θ z r

    
      

V V2 1 ' 'θ r- + + -ρV Vr θ2 2 θ r rr r

   
      

1 2'2 ' ' ' '+ -rρV + -ρV V + -ρV V ;  
z rr θ z rθ θ θ

      
     

         

(36) 

 

 
VV V V V pθz z z zρ +V + +V =-r z

t r r θ z z

     
       

            (37) 

 

     
1

rV + rV + rV =0.r zθr r θ z

  

             
(38) 

 

Substitution of   

 

V =-α r,r

V =2 α z,z

V =V (r)θ θ

 


 



 

 
for equations (35) – (37) results in 

 

V2 θρ α r- =
2r

 
  
 

p
-

r




+  1 '2rρVr

r r




,         (39) 

 

V αVθ θρ -αr - =
r r

 
   

1 ' '-ρV Vr θr r

  
 

  
+ 

2 ' '+ -ρV V ;r θr

 
 
 

                          (40) 

 

p2ρ4α z=-
z




+ 

 1 ' ' '2+ -ρV V + -ρV .r z z
r r z

  
 

                 
(41) 

 

We use the standard Boussinesq hypothesis for such 

flows [51] for the description of Reynolds turbulent 

stresses 
 

Viτ =-A .ij ij
x j




                           

(42)

 

 

In formular (42) Aij are coefficients of turbulent 

diffusion. 

 

V αVθ θρ -αr - =
r r

 
   

1 dVθA
drθr r

  
 

  
+ 

2 dVθ+ Aθ drr

 
 
 

.                       (43) 

 

Since in the work density is considered constant, the 

physical quantity has the following dimensions: 

 

2A мθ  = 
ρ с

 
 
 

2A rθ  = Const .
ρ t

 
  

 
          

(44) 

 

We use (44) for the stationary problem and put: 

 

2A =A rθ 0 .                             (45) 

 

According to (45), as the scale increases, the 

coefficient of turbulent viscosity increases in proportion 

to the square of the distance to the axis of rotation of the 

vortex. Despite the hypothetical character of relation 

(45), it should be noted that Burgers' vortex, which he 

himself considered a turbulent flow, was obtained under 

the assumption of constancy of the viscosity coefficient 

(see [35]). Substituting (45) into (43), we obtain  

 

 
2d V dV1 1θ θ+ 4+Λ +Λ V =0.T T θ2 2r drdr r      

(46) 

αρ
Λ =T

A0
. 

 
The general solution of equation (46) has the 

following is: 
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3 1 1 2- + Λ + 9+2Λ +ΛT T T2 2 2
V =C r +θ 1

3 1 1 2- + Λ - 9+2Λ +ΛT T T2 2 2
+C r .2

 
 
 

 
 
 

      (47) 

 
By varying the parameter ΛT , it is possible to obtain 

different velocity distributions. We will give the explicit 

form of the solution for the value 

 

Λ =1T .                                  (48) 

 
Combining (47) with (48), we get: 

 

-2+ 3 -2- 3V =C r +C r .θ 1 2              (49) 

 

We determine the constants in (47) under the con-

dition of "stitching" solutions (29) and (49) at  r=rk as 

well as the condition of compactness of the velocity field 

(which means compensability of the vorticity field): 

 

 V R =0Vθ .                            (50) 

 
According to what was said about the boundary condi-

tions, the following solution is obtained: 

 

1 21-exp - r-1- 3
k2Γ r

V =θ 2πr r 2 3k rk1-
RV

2 3
r

             1- .
RV

  
      

        
   
  

 

 
  

    
  

 

       (51) 

 
The vorticity, according to (51), has the following form 

 

   

1 21-exp - r
k2 Γ

ω =z
3 32 3 2πrrk1-

RV

2 3
r

    - 1+ 3 + 1- 3 .
RV

  
  
  


 

  
   
  

 

 
  

    
  

 

             (52) 

 
In Fig. 2 the resulting distributions are presented. It 

will be recalled that piecewise continuous solutions have 

been used in hydromechanics for a long time [37]. And 

there is nothing seditious about it. Moreover, by specify-

ing a vortex of finite dimensions at the initial moment, 

we can further monitor its evolution, and the system of 

equations will do its work by itself: all types of motions 

(modes) that are not characteristic of it will dissipate and 

leave only inherent ones (i.e. coherent) modes. It is im-

portant that the initial distribution of the vortex does not 

reach infinity, which grossly violates the law of conser-

vation of energy: for a finite period of time, finite power 

is unable to create (transfer into motion) infinite energy. 

This shortcoming is characteristic of almost all existing 

models of the vortex flows. 

 

 
 

(a) 

 

 
(b) 

 

Fig. 2. Distributions of velocity (a)  

and vorticity (b) in the automodel solution (56), (57) 
and (51), (52) 

 

Finally, let us note an interesting paper [52], where 

it is shown in particular that a Kármán vortex street 

cannot form in boundary layer, in its usual understanding. 
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The background shear flow of the boundary layer 

enhances the formation of a vortex sheet of the same sign 

and makes the development of a vortex sheet with an op-

posite rotation impossible. That is why in Prandtl's re-

port [8] observed formation vortex sheet of one sign in 

the boundary layers on the wings. 

 

6. Von Kármán vortex street simulation 

based on models of compact vortex flows 
 

Flow around a streamlined body due to instability 

generates the so-called Karman vortex street. An analyt-

ical expression for the complex potential can be found in 

textbooks on hydromechanics [2] 

 

iΓ πz π 1
W= ln sin -ln sin z- a-ih

2π a a 2

     
     

     
,     (53) 

 

where Γ  is a circulation; a,h  are spatial scales. 

The point vortex model used in (53), however, does 

not correspond to the physics of the phenomenon. Having 

detached from the body, vortices of the vortex street are 

formed only one by one, not in pairs. Moreover, as stated 

in [2] and shown above in this work, the kinetic energy 

of a point vortex is infinite. This statement is also true for 

the periphery of the Rankin vortex, the Burgers-Rott 

vortex, Ozeen, Sullivan and many others [53], since all 

the mentioned vortices have a hyperbolic distribution for 

velocity as an asymptote when they are far from the axis 

of rotation. Therefore, all the models just mentioned, in 

particular the point vortex and the Rankine vortex, do not 

correspond to the finite kinetic energy of each vortex in 

the vortex street, let alone  compact nature of the 

vortices [38]. 

As an alternative to the point vortex and the 

Rankine vortex, the authors [38] used an isolated 

Gaussian  to approximate  Kármán vortex street  [54] 

 

2V =V r exp(-r )θ 0   .                      (54) 

 

The vorticity field corresponding to (54) has do-

mains of vorticity of different signs, like (34), (52). In-

deed, 

 

 
 

d rV1 θ 2 2ω = =2(1-r )exp -rz
r dr

.        (55) 

 

Vorticity at the point r 1  (see (55)) changes the 

sign - from positive to negative. The authors of [38] 

consider model (54) to be significantly better than the 

point vortex model. Their argument is based on the fact 

that it is simply necessary to consider only two pairs of 

isolated Gaussian vortices instead of twenty or so pairs 

of point vortices. 

Model (54) has, however, shortcomings. The size of 

the vortex core and the size of the vortex itself (in which 

the velocity drops to 1 ... 2 % compared to the maximum 

value) are strictly correlated by the ratio (54). Such a cor-

relation also corresponds to the model based on Richard-

son's 4/3 law [55] turbulent vortex diffusion [28] 

 

2
θ 0V =V r exp(-0.75r ) .                 (56) 

 

The vorticity, according to (56), is 

 

 2 2
z 0ω =V 1-0.75r exp(-0.75r ) .         (57) 

 

The above mensioned drawback was overcome in 

the models of quasi-point laminar [29] and quasi-point 

turbulent [30] vortices. These models are based on 

solutions of the corresponding stationary Navier-Stokes 

equations in the form of Gromeka-Lamb. For a laminar 

flow, we have solution of equation (7) in the form of a 

quasi-point vortex [29] 

 

2
Γ r

V = 1-θ 2πr RV

 
  
     

 

.                  (58) 

 

For a turbulent flow, neglecting molecular 

diffusion, the Reynolds-averaged Navier-Stokes 

equations in the Griomeka-Lamb form lead to the 

following equation (partial case of  (43) when there is 

only azimuthal velocity) 

 

2d V dV2θ θ0=K +T 2 r drdr

 
 
 
 

.                 (59) 

 

The solution of equation (59), which is very close 

to a point vortex, has the form (details in [30]) 

 

Γ r
V = 1-θ 2πr RV

 
  
 

.

                          

(60) 

 

Both solutions, (58) and (60) can be used as initial 

distributions of the velocity field to simulate Karman 

vortex street. The analogue of formula (53) in the case of 

laminar flow has the form 

 

 

 
2 2x-ma +y-Γ

V = 1- +θ 21/2m=- R2 2 V2π x-ma +y

 
 
     

  

 



Аеродинаміка, динаміка, балістика та керування польотом літальних апаратів 
 

15 

    

    

-Γ
+

1/2m=- 2 2
2π x- m+1/2 a + y-h

2 2
x- m+1/2 a + y-h

1- .
2R
V




  
  

 
 
  
   

 

For the ultimate  turbulent flow (Reynolds number 

is equal to several million and higher), the velocity field 

of the vortex street can be constructed based on the quasi-

point model of the turbulent vortex [30] 
 

 

 
2 2x-ma +y-Γ

V = 1- +θ 21/2m=- R2 2 V2π x-ma +y

 
 
     

  

 

    

    

-Γ
+

1/2m=- 2 2
2π x- m+1/2 a + y-h

1/2
2 2

x- m+1/2 a + y-h

1- .
RV




  
  

 
  
   

 
  
 

       (61) 

 

To describe the non-stationary Kármán vortex 

street, one can use the solution of the problem of the 

generation of a turbulent vortex by a thin cylinder [31] in 

the approximation of the constancy of the turbulent 

diffusion coefficient. Obtained in [31] asymptotic 

solution for the following unsteady Navier-Stokes 

equation in Gromeka-Lamb form, averaged over 

Reynolds 
 

2V V V1 2θ θ θ= +
2t Re r rr

   
 
   

.               (62) 

 

Solution (62) has the form: 
 

 r-RΓ Re i
V (r,t)= 1-erfθ 2πr t 2

  
  

    

.         (63) 

 

Here iR  is a radius of the cylinder generating vor-

tex. 

Equation (62) and its solution (63) in dimensionless 

quantities correspond to the problem of the asymptotic 

(for sufficiently large moments of time) behavior of a 

turbulent vortex generated by a cylinder of small radius 

iR . This solution is graphically very close to (60) and to 

the distribution in a point vortex. At the same time, it is 

not stable and compact according to Saffman. Applying 

(63) to the description of the Karmán vortex street, we 

can obtain 

 

 

-Γ

1/2m=- 2 22π x-ma +y

1/2
2 2x-ma +y

Re
    1-erf +

t 2




  
  

  
   
    

  
  

  

  

    

    

-Γ
+

1/2m=- 2 2
2π x- m+1/2 a + y-h

1/2
2 2

x- m+1/2 a + y-h
Re

1-erf
t 2




  
  

  
   
    

  
    

  

. 

 

Among modern works, the work [56] deserves men-

tion, in which the author proposes a robust model of the 

Kármán vortex street. The model has no singularities on 

the axis of the vortex. There is also another model for 

persistent Kármán vortex steet. It uses a generalized 

model of a compact compensated turbulent vortex - solu-

tions of equation (61) [32]. The velocity field can be rep-

resented as 

 

  

  

2Ut 2V =- V x-ma +y +θ θ
m=-

2Ut 2     + V x- ma+1/2 +y ,
θ

m=-





  
  

 

 

 

where 
 

Γ
,    0 r ε;

2πr

RΓUt VV = -1 , ε r R ;Vθ r2π R -εV

0,     r>R .
V


 


 

   
 





 

 

Discussion 
 

Despite the long-standing (starting with the famous 

work of Helholtz in 1858) history of vortex dynamics, 

there are certain significant shortcomings in this field of 

science. They are related to the fact that a phenomenon 

with a more complex physical essence (nature) is 

replaced (unreasonably) by much simpler ones. In 

particular, we are talking about replacing a significantly 

viscous vortex motion with a non - viscous one. At the 

same time, the mathematical simplicity of the description 

of inviscid motion is implicitly understood. But, as 

shown in this work, this simplification is groundless and 

has negative consequences. Being based on the model of 

inviscid fluid flow, it is impossible to physically interpret 



ISSN 1814-4225 (print) 
АВІАЦІЙНО-КОСМІЧНА ТЕХНІКА І ТЕХНОЛОГІЯ, 2023, № 5(191)   ISSN 2663-2012 (online) 

16 

the formation of a vortex sheet in the boundary layer, as 

well as its further existence in the form of free compact 

vortices. The generation of the vortex sheet and the late 

stage of its existence (free vortex) are of great importance 

for numerical modeling [3]. They, in fact, play the role of 

the initial and conditionally final boundary conditions in 

time and make it possible to test various complex models 

of the formation and development of vortex flows that 

take place when a flow of a viscous liquid flows around  

wing and  body as a whole. 

A significant step in understanding the physics of 

the boundary layer was the discovery of the fact that 

molecular viscosity is a variable value for the motion of 

a body in a fluid. This fact certainly opens up new 

possibilities in the study of the boundary layer and the 

flows  formed in it. 
 

Conclusions 
 

When fluid flows around a wing or a body of finite 

thickness, typical vortex structures are formed: a vortex 

sheet (in the viscous boundary layer), vortices on the 

leading edge of the wing (or body [57]), as well as the 

Kármán vortex street. Confusion or simply 

misunderstanding in the field of vortex dynamics, when 

viscous vortex motion is considered non-viscous, led to 

the emergence of scientific approaches (method of 

discrete vortices, etc.), where the physical nature of 

vortex formation is not taken into account. The velocity 

field is approximated by artificially superimposing a pair 

of vortex flows (dipole), instead, as stated in this paper, 

the boundary layer strengthens vortices of one direction 

of rotation and disables (suppresses) the opposite one. In 

addition, it is also noted, with reference to the sources, 

that during the formation of vortices in the boundary 

layer at the stage of their detachment from the surface of 

the body, the process of formation of a domain of 

vorticity of reversed sign occurs, which enables the 

existence of compact (isolated) vortex flows. The process 

of vortex sheet formation is associated with the Kelvin-

Helmholtz instability and the inhomogeneity of the 

velocity field along the surface of the body (the region of 

the flow development). None of the known models used 

to simulate leading edge vortices or the vortex street, as 

well as free vortices that have left the body, including the 

Kármán vortex street, are currently not modeled by 

compact vortices - those in which the velocity field is 

concentrated in a finite domain. Often they are also called 

isolated vortices. The nature of the formation of 

geophysical vortices (atmosphere and ocean) has led to 

the understanding that real vortices cannot have infinite 

kinetic energy, and therefore the existing models of 

vortices should be improved, making them such that they 

do not contradict the fundamental law of nature - the 

conservation and transformation of energy. The first 

attempt to use a compact analogue of the Renkin vortex 

was made, without any resoning, by Stern [58]. But his 

work remained without due attention from experts in 

vortex dynamics. Independently of Stern, fully 

substantiated, from a mathematical and physical point of 

view, the cited models of compact vortices were 

developed by one of the authors of the paper during 

approximately 15 previous years. This experience helped 

to understand the well-known model of the Burgers-Rott 

vortex, which is widely used in aviation problems. Since 

the Burgers-Rott vortex, as well as the Rankine vortex, is 

not compact, it was proposed solely on the basis of the 

general solution obtained by Burgers to make the flow 

compact, i.e., one that exists within a finite domain. 

Although such a vortex is composed, nevertheless 

momentum conservation equation (Navier-Stokes in the 

Gromeka-Lamb form) is valid at every point in flow do-

main. It is ponted out, with reference to reputable 

scientific sources, that such an approach has long been 

used in fluid and gas mechanics - a class of functions in 

which not only the velocity field, but also its derivatives 

are continuous does not allow simulating flows quite 

simply and solving problems accordingly. 

Another essential point is that the peripheries of 

vortex flows, such as the Burgers-Rott vortex and others, 

are unstable. Even the title of Burgers' paper [35] refers 

to a turbulent flow. Therefore, instead of the periphery of 

the Burgers-Rott vortex, which corresponds to a laminar 

flow, it was  proposed a more realistic model – a vortex 

with a laminar core and a turbulent periphery. At the 

same time, the dimensionality of the coefficient of 

turbulent diffusion was used and the assumption was 

made that in a stationary turbulent flow turbulent 

diffusion is proportional to the square of the distance to 

the axis of rotation - as in the self-similar variable used 

in the theory of vortex diffusion. This assumption made 

it possible to build a model in which the velocity and 

vorticity fields are quite close to those obtained by the 

model in which Richardson's law is used for turbulent 

diffusion in a stratified medium (atmosphere, ocean). 

As for the vortex sheet itself, the possibility of a 

turbulent type of motion in the form of vortices rolling 

along the outer (almost stationary) boundary of the 

boundary layer was shown, which correlates with the 

phenomenon of Kelvin-Helmholtz instability and, most 

importantly, enables the existence of a system of vortices 

with one direction of rotation - without adding fictitious 

one as in the method of discrete vortices. 

Finally, with regard to the Kármán vortex street, 

different models of compact vortex flows - both laminar 

and turbulent - have also been proposed to describe it. 

As further research, it is possible to consider the 

application of the proposed models of compact vortex 

flows in numerical simulations and compare them with 

the results of other studies. 
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КОМПАКТНІ АНАЛОГИ МОДЕЛЕЙ ВИХРОВИХ ТЕЧІЙ,  

ЩО ВИНИКАЮТЬ ПІД ЧАС ПОЛЬОТУ ЛІТАКА 

Павло Лук’янов, Лінь Сун  

Предметом даної роботи є розробка компактних аналогів моделей вихрових течій, які використовуються 

при моделюванні вихрових утворень, що спостерігаються під час польоту літального апарату та руху тіла в 

рідині. Зокрема, виділено два істотних непорозуміння, що панують у цій галузі науки. Перше непорозуміння 

полягає в тому, що стаціонарний рух частинок рідини по колу розглядається як нев’язкий вихор. Таким чином, 

будь-яка модель вихрової течії, яка явно не містить в’язкість, вважається такою, що описує нев’язкий вихро-

вий рух. Доведено, що це не так: стаціонарному в'язкому руху частинок рідини по кругових орбітах відповідає 

самоврівноваження однієї сили - сили в'язкості. Такий висновок у явній формі зроблено вперше. І це дуже 

важливо, оскільки змінює наші уявлення про баланс сил, де неодмінно повинні бути присутні дві або більше 
сили різної природи. Саме подолання цього непорозуміння відкриває шлях до створення компактних аналогів 

існуючих моделей вихрових рухів. Попутно було усунено ще одне - друге загальне непорозуміння в області 

динаміки вихорів. Де б ми не читали, ми побачимо, що компактність вихрового потоку ототожнюється з ком-

пактністю поля завихреності. Цьому сприяє те, що розглядаються рівняння для завихреності, а не для швид-

кості. В результаті, за винятком однієї або двох, всі моделі вихорів відповідають обертанню всього простору, 

аж до нескінченності, порушуючи фундаментальний закон фізики - закон збереження і перетворення енергії. 

Йдеться про те, що в якості другого непорозуміння допускається помилка при розрахунку кінетичної енергії 

вихрового струму: не враховується якобіан у циліндричних (полярних) координатах. В результаті всі згадані 

моделі вихрових течій, що відповідають гіперболічному закону як їх асимптотика на периферії, мають нескін-

ченну кінетичну енергію. Звичайно, це не відповідає утворенню та еволюції компактних вихрових структур. 

Тому в роботі, на основі подолання зазначених непорозумінь, представлено низку як раніше отриманих мо-
делей компактних вихрових струмів, так і вперше отриманих. Зокрема, це стосується турбулентної вихрової 

течії при формуванні вихрового шару, компактних аналогів вихору Бюргерса-Ротта - як класичного, що 

відповідає ламінарному руху, так і такого, що складається з ламінарного потоку в ядрі та турбулентного по-

току. на периферії вихору. Методи дослідження суто теоретичні. Використовуються відомі теореми теоре-

тичної механіки, математичної теорії поля, варіаційного числення тощо. Отримані розв’язки порівнюються з 

існуючими відповідними аналогами некомпактних течій. Висновки. Використовуючи методи варіаційного 

числення, вдалося показати можливість формування обертального руху квазітвердого тіла в прикордонному 

шарі нестисливої рідини. Сама наявність в'язкості, а точніше її врахування (примежовий шар), свідчить про 

можливий перехід течії від плоскопаралельного руху до щойно згаданого обертального через нестійкість 

Кельвіна-Гельмгольца. Крім того, в роботі отримано дві нові моделі вихрової течії Бюргерса-Ротта. У першій 

моделі використовується загальний розв’язок, отриманий Бюргерсом, але ця модель відповідає комбінова-

ному вихору: хоча поле швидкостей в ній безперервне, поле завихреності має розрив - в точці максимуму поля 
швидкостей. Доведено, що такий підхід цілком можливий: рівняння руху виконується всюди, тобто в кожній 

точці простору дотичні напруження є неперервними функціями. Оскільки периферія вихору Бюргерса-Ротта 

є нестійкою течією, пропонується інша модель – з ламінарним ядром і турбулентною периферією. Звичайно, 

рух частинок рідини в периферійній області описується розподілом швидкостей, відмінним від розподілу 

швидкості Бюргерса. Нарешті, розглянуто можливе використання відомих моделей компактних вихрових 

течій при моделюванні вихрової доріжки фон Кармана. Із зазначенням переваг цих моделей.  

Ключові слова: літак; вихрові течії; вихор Бюргерса-Ротта; вихрова пелена; вихрова доріжка Кармана; 

два нерозуміння в вихровій динаміці. 
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