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COMPACT ANALOGS OF THE MODELS
OF VORTEX FLOWS GENERATED BY AIRCRAFT FLIGHT

The subject of this work is the development of compact analogs of vortex flows models, which are used in the
modeling of vortex structures observed during the flight of an aircraft and the motion of a body in a fluid. In
particular, two significant misunderstandings prevailing in this area of science are highlighted. The first misun-
derstanding is that the stationary motion of fluid parcels in a circle is treated as an inviscid vortex. Therefore,
any vortex flow model that does not explicitly contain viscosity is considered to describe inviscid vortex motion.
It has been proven that this is not so: the stationary viscous motion of fluid parcels in circular orbits corresponds
to the self-balance of one force - the force of viscosity. This conclusion, in an explicit form, was made for the
first time. This is very important because it changes our ideas about force balance, where two or more forces of
different natures must necessarily be present. Overcoming this misunderstanding opens the way for creating
compact analogs of existing models of vortex motions. Along the way, one more - the second general misunder-
standing in the field of vortex dynamics was eliminated. Wherever we read it, we can see that the compactness
of the vortex flow is associated with the compactness of the vorticity field. This is facilitated by the fact that the
equations for vorticity and not for velocity are considered. As a result, except for one or two models of vortices,
which correspond to the rotation of the entire space, up to infinity, this violates the fundamental law of physics
- the law of conservation and transformation of energy. It is about the fact that, as a second misunderstanding,
an error is assumed when calculating the kinetic energy of the vortex flows: the Jacobian in cylindrical (polar)
coordinates is not considered. As a result, all the mentioned models of vortex flows, which correspond to the
hyperbolic law as their asymptotics in the periphery, have infinite kinetic energy. Certainly, this does not corre-
spond to the formation and evolution of compact vortex structures. Therefore, in this work, based on overcoming
the aforementioned misunderstandings, many previously obtained models of compact vortex flows, as well as
those obtained for the first time, are presented. In particular, this applies to the turbulent vortex flow during the
formation of a vortex sheet, which is a compact analog of the Burgers-Rott vortex - both the classical one cor-
responding to laminar motion and the one consisting of a laminar flow in the core and a turbulent flow on the
periphery of the vortex. Research methods are entirely theoretical. Well-known theorems of theoretical mechan-
ics, mathematical theory of field, and calculus of variations, etc. are used. The obtained solutions are compared
with the existing corresponding analogs of non-compact flows. Conclusions. Using the methods of calculus of
variation, it was possible to show the possibility of the formation of quasi-solid-like rotational motion in a bound-
ary layer of an incompressible fluid. The very presence of viscosity, or rather its taking into account (boundary
layer), indicates a possible transition of the flow from plane-parallel motion to the just-mentioned rotational one
due to the Kelvin-Helmholtz instability. In addition, two new models of the Burgers-Rott vortex flow were ob-
tained in this study. The first model uses the general solution obtained by Burgers, but this model corresponds
to a combined vortex: although the velocity field is continuous, the vorticity field has a discontinuity - at the
point of maximum velocity. It is proved that such an approach is quite possible: the equation of motion is satisfied
everywhere, i.e., at every point in space, and the tangential stresses are continuous functions. Since the periphery
of the Burgers-Rott vortex is an unstable flow, another model is proposed - with a laminar core and a turbulent
periphery. Certainly, the motion of fluid parcels in the peripheral region is described by a velocity distribution
other than that of Burgers. Finally, the possible use of known models of compact vortex flows to simulate the
von Karman vortex street is considered, with an indication of the advantages of these models.

Keywords: aircraft; vortex flows; Burgers-Rott vortex; vortex sheet; Karman vortex street; two misuderstand-
ings in vortex dynamics.

(both discrete and distributed) system of bodies. In con-
nection with what has just been said, it is not by chance

Introduction

Of all the physical fundamental laws of
conservation in mechanics, conservation of momentum
occupies a special place. Regardless of the nature of the
interaction (elastic or inelastic collision), this law is
always valid for the total momentum of the interacting

that the inertial component of motion is the main one in
the creation of lifting force. Pushing air down from them-
selves, birds and insects are able to hover in the air thanks
to the law of conservation of momentum. The aircraft, as
you know, is not capable of flapping its wings. To create
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lifting force, aircraft needs to have a component of the
velocity of rectilinear motion. Being tilted at some angle
(attack) in relation to the movement of the aircraft, the
wing, like birds and insects, repels the oncoming air flow
from itself down and, thus, creates the main (inertial)
component lifting force [1].

When a body moves in the fluid, in the immediate
vicinity of its surface a boundary layer is formed - a flow
region in which the velocity changes from the maximum,
equal velocity of the body's motion at this point in space,
to an almost zero value, 100-1000 times less than the
maximum. In the early period of its development, when
the theory of viscous fluid was not yet developed or ac-
cepted, in hydromechanics the boundary layer was inter-
preted as a mass attached to the body [2]. So, in order to
get closer to a real description of the phenomenon, it was
proposed to consider, on the basis of the model of invis-
cid fluid flow, the motion of a body together with some
volume of fluid around it. It is quite obvious that this ap-
proach to describing the motion of an airplane is not suit-
able - at each subsequent moment of time, the aircraft,
during its motion, interacts with new and new air masses.

As you know, the flight and the interaction of the
wing with the wind causes the generation of vortex mo-
tions. In particular, this applies to the detachment of the
vortex from the surface of the wings and other parts of
the aircraft [3], as well as the formation of a vortex flow
in the wake behind the aircraft [4]. One of the first sys-
tematizations of the physics of vortex formation was
made in [5]. Works [6, 7] are devoted to the study of the
vortex sheet. For a comprehensive understanding of vor-
tex flow models, one should refer to the monograph [8].
The nature of the creation of any vortex flow is the pres-
ence of a velocity shift. This conclusion follows directly
from the general formula (definition) of vorticity as a
mathematical operator of the rotor of the velocity vector:
the absence of gradients (shift) of velocity along spatial
coordinates cannot create a vortex. But that's not all: even
a potential flow in circular orbits (a point vortex) is a vis-
cous motion, and those other vortex flows, which are
considered inviscid due to the obvious lack of viscosity
in the solution, are nothing another, as a viscous station-
ary motion, in which the forces of viscous tangential
stresses balance themselves [9].

In his speech to the Royal Society of Great Britain
on the occasion of his awarding of the gold medal, Lud-
wig Prandtl described in detail all the knowledge known
to him at that time about the vortical nature of a body
being flown around a by stream of fluid impinging on it
(reverse problem) [5]. According to Prandtl, vorticity is
not generated anywhere, but in the boundary layer, the
nature of which is the presence of viscosity in shear
flows. In his report, Prandtl presented methods of pre-
vanting the separation of vortices in the boundary layer,
which are used in modern research [10]. However, like

everyone else, Prandtl mistakenly considered the rever-
seability of the direct and inverse problems - the motion
of a body in a fluid and the flow of a fluid past a immo-
bile body. This, as it became known recently [11, 12], is
incorrect.

In shear flows, at the interface of two media, the
Kelvin-Helmholtz instability may appear. One of the
early works is the article by Meyron et al. [13], which is
devoted to the analytical structure of the vortex sheet.
The study of the formation of features (singularities) at
the early stage of the nucleation of the vortex sheet is
given attention in the paper [14]. The works [15, 16] are
devoted to the testing and modeling of the Kelvin-Helm-
holtz instability, and [17, 18] to the study of the nonlinear
properties of this instability.

A study of the stability of the unsteady Kelvin-
Helmholtz flow can be found in [19]. In vortex dynamics,
there is such a concept as self-organization - the for-
mation of certain vortex structures from chaotic motion,
which are called coherent or long-lived. From this point
of view, the two-dimensional Kelvin-Helmholtz instabil-
ity is considered in [20]. Various initial conditions can be
used to control the boundary layer and the Kelvin-Helm-
holtz instability. The work [21] is devoted to the influ-
ence of the initial conditions on the further development
of the Kelvin-Helmholtz instability. This instability leads
to the formation of a vortex sheet, which makes a signif-
icant contribution to the formation of the lifting force of
the wing [5].

Despite the specified nature of vortex formation due
to the presence of viscosity, methods based on the use of
Euler's equations, i.e., those in which viscosity is not
taken into account, have been widely used for calculating
the lift force (and resistance). One of them is the so-called
Method of discrete vortices, which is described in mono-
graphs [22, 23] and article [24]. Further development of
this method and its application to applied problems is
contained in [25, 26]. This method ignores the presence
of a fluid boundary layer on the surface of the body and
considers that the fluid flows around the body, the mag-
nitude and direction of the velocity of which is modeled
by a pair of oppositely directed vortices - a dipole (see
also work [27]). In order to take into acount the structure
of the boundary layer, one should consider (model) a vis-
cous vortex flow a priori. Fortunately, over the previous
10-15 years, there has been a clear awareness of the short-
comings of existing vortex flow models and, as a result,
a more accurate description of them. The starting point
was the reluctance to put up with the fact that natural vor-
tices have a compact structure and, instead, they are put
in line with current models where the entire space rotates
- up to infinity. This is how the first work [28] appeared.
But the point vortex model, on the basis of which the
above-mentioned method of discrete vortices was cre-
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ated, still reigned supreme. But it was replaced by a com-
pact analogue — the model of a quasi-point vortex [29],
the main advantage of which is the ability to specify any
finite size of the vortex, which is close to the classic —
point vortex.

Since the vast majority of fluid flows are turbulent,
the model of a quasi-point (laminar) vortex was general-
ized to the case of a turbulent flow - under certain re-
strictions [30, 31]. A little later, it became clear how on
the basis of one model it is possible to obtain, through
limit transitions, all existing basic models - point vortex,
quasi-point vortex and Rankin vortex. Therefore, this
model was called the universal compact vortex
model [32]. The theoretical justification, based on classi-
cal theorems, of the possibility of the existence of com-
pact vortex flows came a little later - after numerous dis-
cussions and speeches at seminars of leading institutes of
the National Academy of Sciences of Ukraine [33].

Finally, since the notion of inertial stability in vor-
tex motion is extremely important, because it indicates
whether the flow is laminar or turbulent, a study was con-
ducted, the results of which are contained in [34]. Aware-
ness of the need to take into account the variability of
viscosity in the boundary layer [11, 12] made it possible
to look at the analyzed motion in a new way: since the
vortex sheet is formed in the boundary layer, in the vortex
model, viscosity has the right to be a variable value - in-
side the boundary layer, of course. The just mentioned
ideas served as the generator of this work. Later, during
a comprehensive study of the problem of vortex for-
mation during the motion of a body in a fluid, and an air-
plane in particular [4], it became clear that one should not
limit oneself to a single vortex sheet - one should also pay
attention to free vortex flows, such as the Burgers-Rott
vortex [35, 36] and the von Karman vortex street.

Further presentation is structured as follows: the
problems and purposes of this work are formulated,
general misunderstandings in the theory of vortex
motions are clarified, in particular, the identification of
viscous coherent (long-lived) vortices with inviscid ones
and modeling of compact free vortex flows using velocity
distributions, Kinetic energy in which is equal to infinity,
which is obviously impossible due to the law of
conservation of energy. Next, the models of the vortex
sheet, the descending free vortex, and Karman vortex
street are considered. It should be noted that the concept
of a mathematical model is also being expanded [37]:
while remaining in the class of continuous functions for
the velocity field, which is important for the continuity of
the pressure field, it is possible to use piecewise
continuous distributions for the vorticity field while
maintaining generality. At the same time, the equation
describing the motion remains valid (is fulfilled) at all
points of the vortex flow domain.

1. Problem formulation

The purpose of the work to describe, with the help
of models of compact vortices corresponding to a viscous
fluid flow:

— motion in a vortex sheet;

— free descended vortex flow, described by a
Burgers-Rott vortex, as well as a von Karman vortex
street, which is also described by models of inviscid
vortices (by with the exception of [38]);

— in the course of solving the problem, in addition
to using already known models, obtain new models of
compact vortex flows generated during aicraft flight.

2. Two serious misunderstandings
as for models of vortex flows

Misunderstanding 1. It is treated that if the vortex
flow is described by an equation or a system of equations
where molecular viscosity is absent in an explicit form,
then the flow is inviscid. At the same time, intuitively, vis-
cosity is considered unambiguously as a source of non-
stationarity of the flow, which leads to the diffusion of
vorticity.

This misunderstanding is very serious — not trivial.
From a formally mathematical point of view, when there
is no viscosity in the solution, we claim that there is no
vortex diffusion mechanism and thus the vortex flow is
inviscid. But few could guess that such a state corre-
sponds to the stationary flow of a viscous fluid along cir-
cular trajectories. Batchelor [9] showed that the force of
viscosity in a fluid can be in self-equilibrium. How! - eve-
ryone will exclaim. After all, balance means the presence
of two or more forces. That is why it is a balance - to
equate one force with another. However, a balance of one
force is possible. Given its exceptional importance for
understanding the physics of the phenomenon, we will
show, following Batchelor, how this balance occurs.

One of the main theorems of theoretical mechanics
is the theorem on the change in the angular momentum

of a body during its rotation. Let L be the angular mo-
mentum and the momentum of external forces m,ap-

plied to the body be:
L=m-TxV, MO:MO(ﬁe) .

Then the theorem on the change of the angular mo-
mentum is described by the following equality [39]:

@:Mo(ﬁe). 1)
dt



Aepoounamika, ounamika, oanicmuxka ma KepysaHHs noJabOMOM JiMAJIbHUX ANAPAMIE 7

If we now imagine the motion of fluid parcels along
circular trajectories (the domain along the axis of
rotation is infinite), then the internal friction in the fluid
is described by a single component of the viscous stress
tensor

Ny Vp
Orp~H (_ar - TJ : 2

The momentum of external forces applied to an in-
finitely thin ring cross-section domain is equal to [9]

Ny V
M, =22 [_6_6j _ @)
or r

At the same time, the angular momentum is
determined by the formula [9]

Lz :27trp-r-V9. (4)

Substituting (3) and (4) into (1), we obtain

2
6(27'5[)1‘ Ve) 0 Na V
N = 275“1'2 _e__e , (5)
ot or o r

or, after calculating the derivatives in the right and left
parts of (5), we obtain the well-known Navier-Stokes
equation in the Gromeka-Lamb form [9, 40]

oV :V(azve L1V _ﬁ}' ©)
ot a2 rar 2

The long-awaited conclusion follows from (1) and
(6): during steady-state viscous motion of fluid parcels in
circular orbits, the main vector of external forces applied
to fluid cylindrical surfaces is zero. This becomes possi-
ble thanks to the self-balance of viscous friction in the
fluid. And by no means refers to the lack of viscosity. The
mistake of all those who believe this inviscid flow is ex-
plained by the stationary analog (6), which has the form

O:[azﬂﬁ%_ﬁ}. @)
a2 roor 2

Yes, indeed, there is no viscosity in (7) —in an ex-
plicit form. But it corresponds to nothing else but viscous
the self-balance. That is why the fundamental solution of
(7) has the form

Ve :C1 I'+C2I'_1 (8)

that is widely used in vortex dynamics. To close the issue
of viscosity, we will show that the point vortex and Ran-
kine vortex models correspond to viscous flows. Indeed,
the distribution of the velocity field in a point vortex is
described by the expression [8]

V9:_ . (9)

Let's substitute (9) in (2). We then obtain that

LN B I N B
Orp Hzn 'r2'r2 '“mz . (10)

Thus, in its entire flow domain, a point vortex has
non -zero viscosity stresses. Since a Rankine vortex con-

sisting of a core 0<r<aand a periphery I >a has a ve-
locity distribution of the form

Vy= 11
0 Voa (11)
— e

then the entire peripheral region, according to (10), is a
viscous flow.

Misunderstanding 2. Second misunderstanding is
also present everywhere. This is the identification of the
compactness of the vorticity field with the compactness
of the velocity field, that is, of the vortex flowt itself. As a
result, practically all models of vortex flows, having a
compact vorticity field, have the same unnatural prop-
erty: they cover an infinite domain of space with their ro-
tation and have infinite kinetic energy. It is obvious that
the generation of the vortex in a finite time is due to the
finite power (instability) is by no means capable of cre-
ating an object with infinite kinetic energy.

We will show that the Kinetic energy in a point vor-
tex, and at the same time in any other in which the veloc-
ity field tends asymptotically to such a distribution, is
equal to infinity. Indeed, according to the definition of
kinetic energy and expression (9), we have:

2
r
Ex :p27t1 ) (L) rdr,
2a 2nr
2

r r
E=p—Inrjg >, r—>0. 12
k P47r ‘a (12)

What does almost everyone do? They forget to
multiply by the Jacobian r when transition to a cylindrical
(or polar) coordinate system. And instead of (12) they ob-
tain
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It turns out "just fine": according to (13), the kinetic
energy of the periphery of any vortex, which has the
asymptote of a point vortex, has a negative value (the
initial one at the boundary of the vortex core has a minus
sign). So, complete nonsense. How can the kinetic energy
of any part of a vortex, as well as any body of a system
of bodies, have a negative value? This issue is not
covered in the literature. Unfortunately, and why it was
necessary to dwell on this issue in such detail, at present,
the Rankine vortex and the point vortex are considered
inviscid flows [41] with finite kinetic energy.

3. Vortex sheet and its simulation

When modeling the vortex sheet as a system of di-
poles, it is assumed that the flow is inviscid. Indeed, each
of the point vortices (9) satisfies the stationary Navier-
Stokes equation in the form of Gromecka-Lamb (7).
Since within the framework of the constant molecular
viscosity model equation (7) is linear, it is assumed that
the superposition of these solutions is also a solution
of (7).

The correct understanding of the physics of the
studied phenomenon is constantly hindered by the error
that the direct and inverse problems are completely
reversible. If a viscous fluid (air) flows past immobile
body then near each point of the body's surface, the ve-
locity of the fluid, generally speaking, is different due to
the presence of flow development region. The value of
this velocity, along with the direction of the flow, is mod-
eled by a pair of elementary vortices [22]. And the vortex
sheetis considered (modeled) as a singular field of vorti-
city capable of generating a saltus of the velocity vector
of finite magnitude. Recall that the velocity fields inside
the gradient and gradient-free boundary layers are de-
scribed by different functions, that is, they are differ-
ent [11]. And the main thing - when a body moves in a
fluid (flight), the molecular viscosity inside the gradient-
free boundary layer is variable. Since it is important to
define the "initial conditions™ as accurately as possible
for the use of modern design and calculation systems, the
structure of the vortex sheet at the stage of its formation
is of great importance. In this regard, it should be noted
the works [42, 43], which in particular indicate three
types of vortex structures formed in turbulent flows: the
core of the Burgers vortex (the periphery is not described
by this vortex), structures similar to a curved vortex layer
and a flat vortex sheet.

We will try to answer, based on the available infor-
mation, the main question: how, in what way is the vortex
sheet formed? We will assume that the formation (gener-
ation) of the vortex sheet occurs in the boundary layer.
Since, as noted, any vortex flow is shear, the presence of
a boundary layer contributes to the formation of vortices.
The physical nature of the formation of vortices is the
Kelvin-Helmholtz instability. You can give the simplest
analogy with theoretical mechanics. If the outer boundary
of the gradient-free boundary layer (direct problem) is
identified with the ground, and the speed of the surface
of the moving body is identified with the speed of the
wheel at the top point (double the speed of motion of the
wheeled vehicle), then we obtain that a vortex, like a
wheel, rolls along the outer still (approximately) bound-
ary at the boundary layer. It should be noted that this rep-
resentation is, in fact, similar to Milyonshchikov 's hy-
pothesis [44], which for the inverse problem (flow along
a still surface) suggest that turbulent vortices seem to roll
along the surface of the body. Such a hypothesis allowed
Milyonshchikov to obtain the well-known logarithmic
law of wall for a turbulent flow. Since the translational
speed of the wheel is half the maximum (relative to the
instantaneous center of rotation - the point of contact of
the wheel with the ground), then, by analogy, the vortices
formed in the vortex sheet will rolling downstream from
the body (wing) with a finite speed (perhaps equal to half
the speed of moving body).

Since the discovery of different structures of gradi-
ent and gradient-free boundary layers of incompressible
fluid flows [11] is based on the variational principles of
mechanics, it is logical to use them here as well - to de-
scribe the nature of the vortex sheet formation. In order
to correctly choose the appropriate functional, we recall
that Prandtl also indicated the turbulent nature of the vor-
tex sheet [5]. We now substantiate his statement on the
basis of the calculus of variations. Omitting the details,
we note that the vortex nature of the flow in the boundary
layer requires us to consider not the extreme of the fluid
flow rate through the cross-section of the boundary
layer [11], but the extreme (maximum) of the rotor ve-
locity vector

J= [ rotVdQ — extr .
Q

(14)

This extreme, generally speaking, is conditional,
because we must add to (14) the corresponding Navier-
Stokes equation for Vv, and take into account the variable

nature of p(r) . As we consider

V=(V; =0,V (1), V2 =0), (15)
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then, according to (15), the only component of the veloc-
ity rotor is

- 10
rot, V= . g(rve ). (16)

Condition (14), according to (16), acquires the ex-
plicit form

21821 5
=1 [ ==(rvg)rdr — extr.
0 -g/2ror

a7

If we consider the usual extreme (17), then the
corresponding Euler equation turns into the identity. So
let's consider a conditional extreme. The corresponding
Lagrange function has the form:

dv dvy V
O=Vy +r—9+x{[d—”+2—“j(—e-—eﬂ+

dr dar r dr r
18)
2 (
o d Ve _1 dVe +E
: a2 rdror |

Since o contains two unknown functions, we
have two additional Euler-Lagrange (calculus of
variations) equations at our disposal. They are

143 &[d_hz_uj d M[d_uﬂ_uj .
ridr r dr dar r
2
d
+— Ap=0,
dr2

)20
dr r rodr)

From the second equation of system (19), it follows
that the Lagrange multiplier has the form:

(19)

A=C-r2 .

(20)

It is easy to check that substituting (20) into the first
equation of system (19) turns it into an identity. The fol-
lowing conclusion can be drawn from the above: within
the framework of the variable molecular viscosity model
within the boundary layer, the vortex motion (15) auto-
matically delivers the conditional extreme of the vorticity
functional (17). Therefore, whatever velocity distribution
in the framework of (15) we set in advance, it will meet
the necessary conditions of the conditional extreme for
the vorticity functional. This conclusion gives us the op-
portunity to use different models of viscous stationary
vortex flows that are the solutions of equation (19). On

the other hand, we have not been able to determine ex-
actly which velocity distribution is natural for the vortex
sheet formed in the boundary layer. The standard trick is
to complicate the model. Let's change from the Navier-
Stokes equations with variable molecular viscosity for
the corresponding Reynolds equations (turbulent fluid
motion)

— — 2_ — —
oz[d_u&)(m_ﬁ}p[m_zmﬂ_e}

ar r ar r ar2 rdrr
dv, dv,
+ 9 a0 |2 @1)
dr dr rodr

Having carried out similar procedures for finding
the conditional extreme, we will also obtain the expres-
sion (20) and additionally the equation

2_
d<V,
crf —2=0, 22)
dr
the solution of which is
\7e =Cir+C, . (23)

So, after considering the general case of turbulent
motion , we obtained as a result that a moving plane can
generate a quasi-solid rotational motion (see formula
(23)). This means that when the transition to unstable
(turbulent) type of motion, boundary layer can turn into
a system of vortices, the centers of which move (down-
stream) with a speed equal to half the maximum speed
relative to the solid surface. At the same time, we do not
forget that molecular viscosity and turbulent viscosity are
functions of the distance to the surface of the body. Next,
the vortex sheet detaches from the surface and the vortex
flow becomes compensated - the integral of the vorticity
over the entire domain of the vortex is equal to zero. This
is a necessary and sufficient condition that the vortex is
isolated - it occupies a finite domain of space. This
process is called shedding [45, 46]: a peripheral domain
of vorticity of the opposite sign is formed around the
main (core) domain of vorticity of one sign. It is this, the
peripheral domain, that allows the vortex to have a finite
size - at any time moment after detaching. The effect of
distance to boundary on Kelvin-Helmholz instability
studied in [47].

4. Descending vortex: the Burgers-Rott
model and its compact counterpart

After the separation of the vortex sheet, a so-called
desending vortex is formed. This vortex is approximated
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by the Burgers-Rott vortex model [35, 36]. The Burgers-
Rott vortex is an exact solution of the stationary Navier-
Stokes equations. The following velocity field is under-
stood under this model

(24)

If, instead of the third equation (24), that is, the ex-
pression for the azimuthal velocity, we just write
Vo=V (N (25)

and substitute (25) and the first two equations (24) into

the following system of Navier-Stokes equations (in cy-
lindrical coordinates)

2
_ \Y/ _ V,
p %4{/ %4__9%4_\/ %__9

ot "o r 0 ‘oz r

=P, [anr AV, 102V PV

o a2 rar 2 52 52
M. 2M
2 2 20
N N Vo Ny g V)
a o r 0 fa 2
C1op [0%Vy 10Vy 1 0%V 0%V
T M T2 Ta 2 2 2
r oo or r oo s o9 z
M2
2 200

V
or r oo oz 0z

2 2 2
+u 0 \2/2 +}8V2+i26 \£Z+a \éz , (26)
or ror 4 o0 oz
0 10 0
— (Ve )+=—(rVp ) +—(rV, ) =0, 27
5 (V) o (Vo) + 2, (MV2) @7)

then we obtain:

2
deV, dv
L +(1+Erj—6 +[%+—r12jVe=0, (28)

4a22=— 1op .
p Oz

The general solution of the equation (28) will be
precisely the Burgers vortex

VG:%[Cl +C2exp(-%Ar2 D (29)
In (29)

A=2
A%

(30)

The parameter A indicates the physics of the process
- the balance between viscosity and advection in the ra-
dial direction. Vorticity field in such a vortex is compact
according to Saffman [7]

0z=-A-Cy -exp(—%Arzj. 31)

However, the velocity field is not compact. According to
(12), the Kkinetic energy in the Burgers-Rott vortex is
equal to infinity, which contradicts the law of conserva-
tion of energy. To overcome this problem (inconsistency
with the energy conservation law), let's transform (29)
into a compact vortex. We made an attempt to use the
representation based on a quasi-point (compact) vortex
instead of the third relation (24) [28]

2
r r
Vy=—I|1-| — r
27‘[1‘ (Rvj g(),

where Ry, is a vortex radius that is valid further for

other formulars as well.

As aresult, the solution (29) is obtained. So what to
do to solve this problem? The answer is that for this we
need to depart from the usual notions that not only veloc-
ity but also its derivative must be continuous functions.
Fortunately for us, that was exactly what it was about dur-
ing the discussion of the modeling of the vortex sheet :
there the vortex field has a saltus. The fact is that from a
physical point of view, equation (7) holds not only for
velocity distributions given by one function, but also for
any finite number of piecewise continuous distributions
constructed on the basis of (29). In other words, like the
composed Rankine vortex (11), we can consider the
Burgers-Rott vortex also as a composed, the field of the
azimuthal component of the velocity in which is given by
the relations:
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L[l—exp(—%mzj], 0<r<n;

2nr

o= (32)

r 1 2
—| Cq+Cyexp| -—Ar“ ||, <r <Ry,
2nr( 374 p( 2 D k v

where T, is a vortex core radius.

Constants C3,C, are determined under the

following conditions: continuity of the velocity field

1 r 1
C3+C4exp('EAIEJ_%[l—eXp[—EAI'IE )j

and the condition for the compactness of thevelocity field
(the vortex is isolated)

1 1 2
== | Ca+Cyexp| -=ARE, | |.
Rv( 374 Xp( 2 D

After solving the system of equations with respect
to C3,C4 We obtain a desired model that is compact an-

alog for Burgers-Rott vortex

T (1exp(-LAr2]] 0<r<r,:
2nr[l exp[ 2Ar D,O_r_rk,
1--exp —;Ar2

2k

X
r 1,52 1,2
o exp( EARV]'CXP('QMKJ ,rk<rsRV.

nr
1,r2 1,2
{EXp[_zARVJ_eXp[_ZM H

(33)

The vorticity field, according to (33), has the
following distribution

L o[ -LAr2) 0<r<r, -
Aznexp[ 2Ar j,O_r_rk,

- 1,2 1,2
®,= r [1--exp[-§Ark]jexp(-§Ar j

Aox 1,,2 1,2
eXp(_iARV]'eXp['EArk j

on ,I'k<I'SRv.

(34)

One can see at Fig. 1 velocity and vortixity distri-
butions of Burgers-Rott vortex and just obtained it’s
compact counterpart. According to velocity distribution
(33) all the space is rotating. In return, the solution (29)
shows that the rotation is finite space domain (approxi-
mately 3 non-dimensional units in radial direction). Vor-
ticity distribution has two domains of opposite sign that
make it possible the existance of vortex flow in compact
domain.

2V /T

0.6 }

04}

02}

r(a/ 2v)Y?

0 1 2 3 4 5

(a)
1
2mow, [ al’
05}
\ r(o/ 20)Y?
O M " s )
1 3 4 5
-0.5
1L
(b)

Fig. 1. Distributions of azimuthal velocity (a)
and vorticity (b) in the Burgers-Rott vortex
and its compact counterpart

The value . corresponds to the point of maximum
for the function

I 1. 2
Vo=——-1I| 1-exp| -— Ar .
0 2nr[ p( 2 D

5. A compact Burgers vortex with a laminar
core and a turbulent periphery

According to solution (29), the velocity field at the
periphery of the Burgers-Rott vortex decreases faster
than that of the point vortex (hyperbolic law). This, in
turn, means the inertial instability of the incompressible
fluid flow [48, 49]. It may not be by chance that Burgers
considered the flow to be turbulent, although he actually
used the Navier-Stokes equation of laminar motion (see
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equation in [35]). At that time (1948) direct numerical
simulation of turbulence based on the Navier-Stokes
equations was out of the question - computers simply did
not exist yet. In order for the Burgers vortex model to
correspond as closely as possible to reality, consider a
combined vortex. The core of the vortex is a Burgers vor-
tex (29), and the periphery is a turbulent flow based on
relations (24) and (25), which now are understood as av-
eraged velocity fields. The same as for the case of lami-
nar flow, let's consider the general equations describing
the turbulent type of flow. These are the Reynolds equa-
tions [50] in the cylindrical coordinate frame [40]:

Vi — oV, Vgove — oV V,
o Vg e Vo o Ve Vo)
ot o r o0 oz 2

or

_@, [aZ\‘/r AN 107 0%

o rar (2 592 52

T a T
- — - Sy 35
+ e(rPVrVe)+ Z(Pvrvz) (PVG ), (35)
Ny — Ny VgV — Ny VLV
ot o r 08 oz 2
Vg 2 oV 10( o j
=2+ L2 vy, |+
2 rZaeJ ror D18
10( <2\, o o). 2( o
+=—|pV~ |+—| pV V_ [+Z[-pV V |; (36
rae( pej az[p 0 Zj r[p r 6) %)
N, — N, VooV, — oV D
p| D21, Ny 8% 15 Ne | B ()
ot or r oo 0z 0z
0,5\.10 /S 0/ o
—(rVp ) +=—(rVy ) +—(rVy )=0. 38
or M)+ 56 (Vo)+ 5 (M) (38)
Substitution of
\_/r:'(l'r,
\_/222‘(1'2,
\_/e:\_/e(r)
for equations (35) — (37) results in
> Vo). op 1@( _-2)
o r-—- |= -— +=—(rpV{° |, 39
p[ rZJ or rar\PT (39)

+2(-pv;Vé); (40)
r
p4a22=—@+
oz
10 Tt o( &2
+= 2 vV +_(- V. ) 41
rar(Przj azpz (1)

We use the standard Boussinesq hypothesis for such
flows [51] for the description of Reynolds turbulent
stresses

avi
Tij=Ajj—
6Xj

(42)

In formular (42) A; are coefficients of turbulent
diffusion.

- —-— |= 2
p[ o r ] ror (A
2 dVp
Since in the work density is considered constant, the
physical quantity has the following dimensions:

dVi )
o dr

(43)

A 2 A 2
{—9} =M = {—9} = Constr—. (44)
p ¢ p t
We use (44) for the stationary problem and put:
Ag=Agr
0= OI’ . (45)

According to (45), as the scale increases, the
coefficient of turbulent viscosity increases in proportion
to the square of the distance to the axis of rotation of the
vortex. Despite the hypothetical character of relation
(45), it should be noted that Burgers' vortex, which he
himself considered a turbulent flow, was obtained under
the assumption of constancy of the viscosity coefficient
(see [35]). Substituting (45) into (43), we obtain

42y

Ve 1d\_/6 1 =
+(4+AT)-—+AT 5 Vp=0. (46
2 AAT) L AT Vo0 o)
AP
Ao
The general solution of equation (46) has the

following is:
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_§+1AT 1
a=Cyp \2 2 2
p=C1r

3,1,.)1 2
] 7+7A-|-]-7, f9+2AT+A
+C2r[2 2T )2 T

By varying the parameter A, it is possible to obtain

9H2AT+AZ
+

(47)

different velocity distributions. We will give the explicit
form of the solution for the value

AT=1. (48)
Combining (47) with (48), we get:
\_/e :Cll’_2+\/§ +C2r_2-\/§. (49)

We determine the constants in (47) under the con-
dition of "stitching” solutions (29) and (49) at r=r, as

well as the condition of compactness of the velocity field
(which means compensability of the vorticity field):

Vg (Ry)=0. (50)

According to what was said about the boundary condi-
tions, the following solution is obtained:

e mt]
Dl

Ry

B
x| 1-| — .

Ry

(51)

The vorticity, according to (51), has the following form

o]

= X
’ I 2\/§ 2nr3+\ﬁ
1-[ k j
V

(52)

. -(1+ﬁ)+(1-ﬁ)($]2ﬁ

In Fig. 2 the resulting distributions are presented. It
will be recalled that piecewise continuous solutions have
been used in hydromechanics for a long time [37]. And

there is nothing seditious about it. Moreover, by specify-
ing a vortex of finite dimensions at the initial moment,
we can further monitor its evolution, and the system of
equations will do its work by itself: all types of motions
(modes) that are not characteristic of it will dissipate and
leave only inherent ones (i.e. coherent) modes. It is im-
portant that the initial distribution of the vortex does not
reach infinity, which grossly violates the law of conser-
vation of energy: for a finite period of time, finite power
is unable to create (transfer into motion) infinite energy.
This shortcoming is characteristic of almost all existing
models of the vortex flows.

Vo

Ul
4 5
1 N2
0.5 |
n
. .
1 2 3 4 5
0.5
1t

(b)

Fig. 2. Distributions of velocity (a)
and vorticity (b) in the automodel solution (56), (57)
and (51), (52)

Finally, let us note an interesting paper [52], where
it is shown in particular that a Karméan vortex street
cannot form in boundary layer, in its usual understanding.
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The background shear flow of the boundary layer
enhances the formation of a vortex sheet of the same sign
and makes the development of a vortex sheet with an op-
posite rotation impossible. That is why in Prandtl's re-
port [8] observed formation vortex sheet of one sign in
the boundary layers on the wings.

6. Von Karman vortex street simulation
based on models of compact vortex flows

Flow around a streamlined body due to instability
generates the so-called Karman vortex street. An analyt-
ical expression for the complex potential can be found in
textbooks on hydromechanics [2]

= sin ™ Lanl sin®( 2-Lasi
W= 27r[In[sm aj In(sma[z 2a|hj]], (53)

where r is a circulation; a,h are spatial scales.

The point vortex model used in (53), however, does
not correspond to the physics of the phenomenon. Having
detached from the body, vortices of the vortex street are
formed only one by one, not in pairs. Moreover, as stated
in [2] and shown above in this work, the kinetic energy
of a point vortex is infinite. This statement is also true for
the periphery of the Rankin vortex, the Burgers-Rott
vortex, Ozeen, Sullivan and many others [53], since all
the mentioned vortices have a hyperbolic distribution for
velocity as an asymptote when they are far from the axis
of rotation. Therefore, all the models just mentioned, in
particular the point vortex and the Rankine vortex, do not
correspond to the finite kinetic energy of each vortex in
the vortex street, let alone compact nature of the
vortices [38].

As an alternative to the point vortex and the
Rankine vortex, the authors [38] used an isolated
Gaussian to approximate Karman vortex street [54]

Vo=V I exp(-rz) . (54)

The vorticity field corresponding to (54) has do-
mains of vorticity of different signs, like (34), (52). In-
deed,

a)z:%M:Z(l—rz)exp(—rz). (55)

dr

Vorticity at the point r = 1 (see (55)) changes the
sign - from positive to negative. The authors of [38]
consider model (54) to be significantly better than the
point vortex model. Their argument is based on the fact
that it is simply necessary to consider only two pairs of

isolated Gaussian vortices instead of twenty or so pairs
of point vortices.

Model (54) has, however, shortcomings. The size of
the vortex core and the size of the vortex itself (in which
the velocity dropsto 1 ... 2 % compared to the maximum
value) are strictly correlated by the ratio (54). Such a cor-
relation also corresponds to the model based on Richard-
son's 4/3 law [55] turbulent vortex diffusion [28]

Vo=Vyr- exp(-0.75r2) . (56)
The vorticity, according to (56), is
©,=Vy (1—0.75r2 ) exp(-075t%) . (57)

The above mensioned drawback was overcome in
the models of quasi-point laminar [29] and quasi-point
turbulent [30] vortices. These models are based on
solutions of the corresponding stationary Navier-Stokes
equations in the form of Gromeka-Lamb. For a laminar
flow, we have solution of equation (7) in the form of a
quasi-point vortex [29]

r 2
vl oy
nr \Y%

For a turbulent flow, neglecting molecular
diffusion, the Reynolds-averaged Navier-Stokes
equations in the Griomeka-Lamb form lead to the
following equation (partial case of (43) when there is
only azimuthal velocity)

2_ —

d“V, dV,
0=KT G"Vp .29V |

dr2 r ar

(58)

(59)

The solution of equation (59), which is very close
to a point vortex, has the form (details in [30])

- T
Vog=—|1-— |. (60)
2nr{ Ry
Both solutions, (58) and (60) can be used as initial
distributions of the velocity field to simulate Karman

vortex street. The analogue of formula (53) in the case of
laminar flow has the form

2,2
0 - -ma) +
Vo= 3 L . X )2 LA
m=-c0 RV

2n [( X-ma) +y2 J



Aepoounamika, ounamika, oanicmuxka ma KepysaHHs noJabOMOM JiMAJIbHUX ANAPAMIE 15

0 -
+ > T X

m=-e 2n[(x—(m+l/2)a)2 +(y-h)2 ]1/2
_(x-(m+1/2)a)2 +(y—h)2
R, '

X

For the ultimate turbulent flow (Reynolds number
is equal to several million and higher), the velocity field
of the vortex street can be constructed based on the quasi-
point model of the turbulent vortex [30]

2.2
. ® T (x-ma)~ +y
Vo=, 2 12| R2 *
ZR[(x-ma) +y J \%
o T
+

X
m=- 1/2

” 2n[(x—(m+l/2)a)2 +(y-h)2}

{(x—(m+1/2)a)2 + (y-h)2 }1/2 ey

Ry

x| 1-

To describe the non-stationary Karman vortex
street, one can use the solution of the problem of the
generation of a turbulent vortex by a thin cylinder [31] in
the approximation of the constancy of the turbulent
diffusion coefficient. Obtained in [31] asymptotic
solution for the following unsteady Navier-Stokes
equation in Gromeka-Lamb form, averaged over
Reynolds

(62)

p— 2_ —
Vo _ 1 (P 20% |
ot Re|l g2 r or

Solution (62) has the form:

Vg (rH)= % ll—erf E\/g @ﬂ . (63)

Here R; is a radius of the cylinder generating vor-

tex.

Equation (62) and its solution (63) in dimensionless
quantities correspond to the problem of the asymptotic
(for sufficiently large moments of time) behavior of a
turbulent vortex generated by a cylinder of small radius
R; . This solution is graphically very close to (60) and to

the distribution in a point vortex. At the same time, it is
not stable and compact according to Saffman. Applying
(63) to the description of the Karman vortex street, we
can obtain

® T
> 72"
M= o [(x—ma)2 +y2}
1/2
2
[Re [(X'ma) +y2}
x| 1-erf| ,|— +
t 2
© T
v 177

” 2n[(x—(m+l/2)a)2 +(y-h)2}

x| 1-erf \/E [(X-(m+1/2)a)2 N (y_h)z}llz

2

Among modern works, the work [56] deserves men-
tion, in which the author proposes a robust model of the
Karman vortex street. The model has no singularities on
the axis of the vortex. There is also another model for
persistent Karman vortex steet. It uses a generalized
model of a compact compensated turbulent vortex - solu-
tions of equation (61) [32]. The velocity field can be rep-
resented as

x 2
Vo= % VeUt((x—ma) +y2)+
m=-co

T i)

m=-co
L, 0<r<g
2ar
R
where VeUt: _ I [Rv. ,€<r<Ry/;
Zn(Rv-S) r
0, r>RV.
Discussion

Despite the long-standing (starting with the famous
work of Helholtz in 1858) history of vortex dynamics,
there are certain significant shortcomings in this field of
science. They are related to the fact that a phenomenon
with a more complex physical essence (nature) is
replaced (unreasonably) by much simpler ones. In
particular, we are talking about replacing a significantly
viscous vortex motion with a non - viscous one. At the
same time, the mathematical simplicity of the description
of inviscid motion is implicitly understood. But, as
shown in this work, this simplification is groundless and
has negative consequences. Being based on the model of
inviscid fluid flow, it is impossible to physically interpret
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the formation of a vortex sheet in the boundary layer, as
well as its further existence in the form of free compact
vortices. The generation of the vortex sheet and the late
stage of its existence (free vortex) are of great importance
for numerical modeling [3]. They, in fact, play the role of
the initial and conditionally final boundary conditions in
time and make it possible to test various complex models
of the formation and development of vortex flows that
take place when a flow of a viscous liquid flows around
wing and body as a whole.

A significant step in understanding the physics of
the boundary layer was the discovery of the fact that
molecular viscosity is a variable value for the motion of
a body in a fluid. This fact certainly opens up new
possibilities in the study of the boundary layer and the
flows formed in it.

Conclusions

When fluid flows around a wing or a body of finite
thickness, typical vortex structures are formed: a vortex
sheet (in the viscous boundary layer), vortices on the
leading edge of the wing (or body [57]), as well as the
Karman vortex street. Confusion or simply
misunderstanding in the field of vortex dynamics, when
viscous vortex motion is considered non-viscous, led to
the emergence of scientific approaches (method of
discrete vortices, etc.), where the physical nature of
vortex formation is not taken into account. The velocity
field is approximated by artificially superimposing a pair
of vortex flows (dipole), instead, as stated in this paper,
the boundary layer strengthens vortices of one direction
of rotation and disables (suppresses) the opposite one. In
addition, it is also noted, with reference to the sources,
that during the formation of vortices in the boundary
layer at the stage of their detachment from the surface of
the body, the process of formation of a domain of
vorticity of reversed sign occurs, which enables the
existence of compact (isolated) vortex flows. The process
of vortex sheet formation is associated with the Kelvin-
Helmholtz instability and the inhomogeneity of the
velocity field along the surface of the body (the region of
the flow development). None of the known models used
to simulate leading edge vortices or the vortex street, as
well as free vortices that have left the body, including the
Karman vortex street, are currently not modeled by
compact vortices - those in which the velocity field is
concentrated in a finite domain. Often they are also called
isolated vortices. The nature of the formation of
geophysical vortices (atmosphere and ocean) has led to
the understanding that real vortices cannot have infinite
kinetic energy, and therefore the existing models of
vortices should be improved, making them such that they
do not contradict the fundamental law of nature - the
conservation and transformation of energy. The first

attempt to use a compact analogue of the Renkin vortex
was made, without any resoning, by Stern [58]. But his
work remained without due attention from experts in
vortex dynamics. Independently of Stern, fully
substantiated, from a mathematical and physical point of
view, the cited models of compact vortices were
developed by one of the authors of the paper during
approximately 15 previous years. This experience helped
to understand the well-known model of the Burgers-Rott
vortex, which is widely used in aviation problems. Since
the Burgers-Rott vortex, as well as the Rankine vortex, is
not compact, it was proposed solely on the basis of the
general solution obtained by Burgers to make the flow
compact, i.e., one that exists within a finite domain.
Although such a vortex is composed, nevertheless
momentum conservation equation (Navier-Stokes in the
Gromeka-Lamb form) is valid at every point in flow do-
main. It is ponted out, with reference to reputable
scientific sources, that such an approach has long been
used in fluid and gas mechanics - a class of functions in
which not only the velocity field, but also its derivatives
are continuous does not allow simulating flows quite
simply and solving problems accordingly.

Another essential point is that the peripheries of
vortex flows, such as the Burgers-Rott vortex and others,
are unstable. Even the title of Burgers' paper [35] refers
to a turbulent flow. Therefore, instead of the periphery of
the Burgers-Rott vortex, which corresponds to a laminar
flow, it was proposed a more realistic model — a vortex
with a laminar core and a turbulent periphery. At the
same time, the dimensionality of the coefficient of
turbulent diffusion was used and the assumption was
made that in a stationary turbulent flow turbulent
diffusion is proportional to the square of the distance to
the axis of rotation - as in the self-similar variable used
in the theory of vortex diffusion. This assumption made
it possible to build a model in which the velocity and
vorticity fields are quite close to those obtained by the
model in which Richardson's law is used for turbulent
diffusion in a stratified medium (atmosphere, ocean).

As for the vortex sheet itself, the possibility of a
turbulent type of motion in the form of vortices rolling
along the outer (almost stationary) boundary of the
boundary layer was shown, which correlates with the
phenomenon of Kelvin-Helmholtz instability and, most
importantly, enables the existence of a system of vortices
with one direction of rotation - without adding fictitious
one as in the method of discrete vortices.

Finally, with regard to the Karmén vortex street,
different models of compact vortex flows - both laminar
and turbulent - have also been proposed to describe it.

As further research, it is possible to consider the
application of the proposed models of compact vortex
flows in numerical simulations and compare them with
the results of other studies.
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KOMITAKTHI AHAJIOTW MOJEJIEI BUXPOBHUX TEYIH,
IO BUHUKAIOTD IIIJI YAC ITOJIBOTY JITAKA

Ilagno JIyx’anos, JIine Cyn

IIpeameTom naHoi poOOTH € pO3p0oOKa KOMITAKTHUX aHAJIOTiB MOJIENIEH BUXPOBUX TeUiH, sSIKi BUKOPUCTOBYIOTHCS
TIPY MOJIETIOBaHHI BUXPOBHUX YTBOPEHb, IO CIIOCTEPIraloThCA MiJ] 9ac MOJILOTY JITAIBHOTO anapary Ta pyxy Tiia B
piauHi. 30Kpema, BUIIIEHO JIBa ICTOTHUX HEMTOPO3YMiHHS, 110 MAHYIOTh Yy IiH rainy3i Hayku. [lepiie Hemopo3yMiHHS
TIOJIATAE B TOMY, IO CTAIllOHAPHUH PyX YaCTUHOK PiJHHU 0 KOJITY PO3TIIIA€ThCS K HEB I3KUH BUXOp. TakuM YuHOM,
OyIb-sKa MOJIENb BUXPOBOI Tedii, IKa IBHO HE MICTHTh B’SI3KiCTh, BBAKAETHCSI TAKOIO, 10 OIHCYE HEB’ SI3KUIA BUXPO-
BUi pyX. JloBeeHo, 110 e He TaK: CTaliOHApHOMY B'SI3KOMY PyXY YaCTHHOK PiJIMHH 10 KPYTOBHX OpOiTax BiAMOBizae
CaMOBPIBHOBa)KCHHS OJTHIET CHJIM - CHJIM B'I3KOCTi. Takuii BUCHOBOK y sABHiH (opmi 3pobiieHo Brepine. | me ayxe
Ba)KJIMBO, OCKUTBKU 3MIiHIOE HaIIll YSIBICHHS PO OajaHC CHJI, e HEOMMIHHO MTOBHHHI OyTH IPUCYTHI J1Bi a00 OibIe
cuitH pi3Hoi nprpoan. Came IMOI0IaHHs [IHOr0 HENOPO3yMIiHHS BiIKPHBAE IIUIAX 10 CTBOPEHHS KOMIIAKTHUX aHAJIOTiB
ICHYIOUHX MOJIeNiel BUXpOoBUX pyxiB. [TomyTHO OyJ10 YCYHEHO IiIe OJIHE - APYTe 3arajibHe HEMOPO3YMiHHS B 00JacTi
JMHAMIKK BUXOPiB. J{e 6 MU He UnTaiH, MU MO0aYMMO, 1110 KOMITAKTHICTh BUXPOBOT'O OTOKY OTOTOXKHIOETHCS 3 KOM-
MIAKTHICTIO TONIS 3aBUXpeHOCTI. [[poMy cripuse Te, 1110 po3TiIsIatoThCsl PIBHSIHHS /ISl 3aBUXPEHOCTI, a He YISl IIBU/I-
KocCTi. B pe3ynbrati, 32 BUHATKOM OJIHi€T 200 JBOX, BCI MOJIENI BUXOPIB BiIMOBIAI0Th 00CPTAHHIO BCHOI'O TIPOCTOPY,
@)X 710 HECKIHYEHHOCTI, TTOpYIIyIoUYH (hyHJaMEHTAIbHII 3aK0H (Pi3UKHM - 3aKOH 30epeKeHHs 1 IepeTBOPEHHs eHeprii.
MneThest mpo Te, 110 B SKOCTI APYTOro HEOPO3yMiHHS I0MYCKAETHCS MOMINIKA TIPH PO3PAXYHKY KIHETHUHOT eHeprii
BHXPOBOT'O CTPYMY: HE BPaXOBYEThCs SIKOOIaH y MITHAPUYHUX (TIONISIPHUX) KoopAnHaTax. B pe3ynbrari Bei 3ragaHi
MOJIEeJTi BUXPOBHX TEUii, 10 BiAMOBIJAIOTH TiNepOoIiYHOMY 3aKOHY SIK X aCHMIITOTHKA Ha niepudepii, MaroTh HECKiH-
YEeHHY KIHETHYHY €HEepriro. 3BUYAiHO, 1€ He BiJIIOBI/Ia€ YTBOPEHHIO Ta €BONIOLIT KOMIIAKTHUX BUXPOBUX CTPYKTYP.
Tomy B poboTi, Ha OCHOBI MO/IOJAHHS 3a3HAUYEHUX HENOPO3YMiHb, PEJCTABICHO HU3KY SK paHillle OTPUMaHHX MO-
Jie7ied KOMITAaKTHUX BUXPOBHX CTPYMIB, Tak 1 BIIEpIIIe OTPUMAHUX. 30KpeMa, IIe CTOCYEThCS TypOYIEHTHOI BUXPOBOL
Tedii npu GopMyBaHHI BHXpPOBOrO MIapy, KOMIIAKTHHX aHAJOTiB BHXOpy broprepca-Porra - sik Kiacu4HOro, 1o
BIJINOBIa€ JaMiHAPHOMY PYXY, TaK 1 TaKOro, IO CKJIAJA€ThCs 3 JAMiHAPHOTO MOTOKY B sIIPi Ta TYpOYJIEHTHOrO 1M0-
TOKY. Ha nepudepii Buxopy. MeToam T0ocHiIKeHHsI CYTO TEOPETUYHI. BUKOPHUCTOBYIOTHCS BiJIOMI TEOpEMH Teope-
TUYHOI MEXaHIKH, MATEMAaTHYHOI TEOPIi MMOJIsi, BapialliifHoro ykciaeHHs Tomo. OTprMaHi po3B’sI3KK OPiBHIOIOTHCS 3
ICHYIOUMMH BiANOBIJTHUMH aHaJOraMi HEKOMIIAKTHUX Tediil. BHCHOBKH. BHKOpHCTOBYIOUM METOAM BapialliiiHOro
YHCIIEHHS, BAAJIOCS MOKa3aTH MOXKIIMBICTD (DOPMYBaHHS 00EPTANBHOrO PyXy KBa3iTBEPIOro Tijia B IPUKOPAOHHOM Y
miapi HectuciuBol piguau. Cama HasIBHICTH B'SI3KOCTI, & TO4HIIeE 11 BpaxyBaHHs (IPUMEXOBHUI 11ap), CBITYUTD MPO
MOXIIUBHI Tepexij Tedii BiJl IIOCKONapajeabHOro PyXy 10 IIOWHO 3raJlaHoro o0epTabHOrO Yepe3 HeCTIHKICTh
Kenbgina-I'enpmromnsia. Kpim toro, B podoTi oTprMaHo J1Bi HOBI MoJieni BUXpoBoi Tedii broprepca-Porra. ¥ nepruiid
MOJIeJi BUKOPHCTOBYEThCSI 3arajbHUil PO3B’sI30K, OTpUMaHuii broprepcom, ane 11 Mozienb BiJIoBila€ KOMOIHOBa-
HOMY BHXOpY: X04a I10JIe LIBUAKOCTEH B Hili Oe3nepepBHe, 10J1e 3aBUXPEHOCTI Ma€ PO3PUB - B TOYLI MAKCHMYMY ITOJI
mBHAKoCTel. JloBeIeHo, 110 TaKUi MigXij IIKOM MOXKJIMBUI: PIBHSAHHS PYXy BUKOHYETHCS BCIOAM, TOOTO B KOXKHIMH
TOYIII ITPOCTOPY JAOTUYHI HANPYXXEeHHs € HerepepBHUMHU GyHKIisiMU. Ockinbku nepudepis Buxopy broprepca-Porra
€ HEeCTIMKOIO TeUi€l0, MPOIOHYETHCS 1HIIIA MOJEND — 3 JIAMIHAPHKUM SIIPOM 1 TypOyJieHTHOI niepudepiero. 3BHUYaiiHo,
PyX YaCTHHOK PiIUHHU B mepHdepiliHiii 001acTi OMMCYETHCS PO3MOAIIOM MIBUAKOCTEH, BIIMIHHUM BiJl PO3MOMILITY
mBuakocti broprepca. Hapermri, po3ristHyTo MOXKJIMBE BHKOPHUCTaHHS BIIOMHX Mojeiell KOMIAKTHUX BHXPOBHX
Tediil Mpyu MOJENIOBaHHI BUXPOBOI A0opikkH (oH KapMaHa. [3 3a3HaueHHsIM miepeBar ux MOJIEIeH.

Koarwouosi ciioBa: nitak; BUXpoBi Teuil; Buxop broprepca-Porra; BuxpoBa meneHa; BuxpoBa jnopixka Kapmana;
JIBa HEPO3YMIHHS B BUXPOBIH JMHAMILI.
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