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UNSTEADY INCOMPRESSIBLE LAMINAR BOUNDARY LAYER:
TIME AND SPACE VARIABLE MOLECULAR VISCOSITY

The subject of this work is two approaches to describe the laminar unsteady flow of an incompressible fluid in
the boundary layer. In the first approach, the viscosity of the fluid and the acceleration with which the plane is
set in motion are considered constant. In essence, this is Rayleigh's problem. The solution obtained on the basis
of these assumptions asymptotically converges to the well-known self-similar Stokes solution. It is important that
the solutions of Stokes and Rayleigh asymptotically at large values of time correspond to the disappearance of
shear stresses between the liquid and moving plane after acceleration. A paradox emerges the equations derived
by Stokes to describe internal friction indicate the absence of the same friction between a moving body and fluid.
Since research using the calculus of variation methods revealed that the molecular viscosity inside the stationary
boundary layer should depend on the distance to the moving surface, the corresponding non-steady problem was
considered. As a result, as before for the steady case, solutions describing both non-gradient and gradient flows
of incompressible fluid in the boundary layer are obtained. The asymptotic analysis of the transition to steady
flow testifies the consistency of these solutions. For the case of non-gradient flow, a comparison of the classical
solution with the solution corresponding to the extreme fluid flow rate carried by the moving surface is made. It
is shown that according to the solution obtained on the basis of the calculus of variation approach, the shear
stress on the surface does not disappear anywhere after the motion becomes steady but, as expected, acquires a
constant value. The research methods are purely theoretical and the results are analyzed by comparison with
available theoretical and experimental data and compliance with the fundamental laws of physics, in particular
the law of conservation of energy. These methods are based on the construction of analytical mathematical
models, which are differential equations in partial derivatives supplemented with appropriate physical initial
and boundary conditions. In addition, Euler's differential equations for the extreme of functional theory are used
(in this paper, this is the extreme of fluid flow rate across the cross-section of the boundary layer). When solving
these equations, the well-known Fourier method of variable separation is used. Arbitrary functions of time aris-
ing during partial integration (by one of the variables — the spatial coordinate) are determined from the condi-
tions of asymptotic convergence of the solutions of non-steady problems to the corresponding solutions of steady
problems. Conclusions. The presented results are of fundamental importance for understanding the physics of
the flow around aircraft parts, as they indicate the contradiction of the existing idea of the reversibility of direct
and inverse problems: the motion of a body in a still fluid and the flow of a fluid around an immobile body.

Keywords: aircraft; laminar boundary layer; unsteady incompressible flow; variable molecular viscosity.

In the middle of the 19th century, one of the new
problems at that time was the study of the influence of
the resistance of the environment on the motion of the

Introduction

Regardless of whether the motion of a body in a

fluid is steady or unsteady, it is always affected by the
force of friction. This, of course, also applies to the mo-
tion of aircraft. The frictional force of the fluid on the
surface of the aircraft is created in a rather thin boundary
layer - in the immediate vicinity of the streamlined sur-
face [1].

The boundary layer is an important component of
optimizing the aerodynamic characteristics of the wing
profile [2], improving the flow around the blade and in-
creasing its non-skid properties [3]. The flow in the
boundary layer is also related to the formation of vortex
tracks, which is very important for flight safety, espe-
cially in non-stationary regimes - during take-off and
landing [4].

pendulum. Scientists did not abandon the idea of creating
a so-called "eternal engine". Ideas, as you know, do not
arise from nothing. They (these ideas) are the result of
certain theories. One of these theories is the Stokes model
of viscous fluid motion [5]. According to this model, in
case of non-steady flow, under the assumption of con-
stant molecular viscosity, a false conclusion is reached
about the possibility of the existence of a perpetual mo-
tion machine. To point out the shortcomings of Stokes'
theory, this paper considers two problems: the main prob-
lem deals with acceleration and subsequent steady mo-
tion, and the second, auxiliary problem, deals with un-
steady fluid flow along a fixed plane.
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Despite the fact that today almost all the efforts of
researchers are directed to the study of turbulent flows,
nevertheless, the theory of the non-steady laminar bound-
ary layer has not yet been completed. This becomes clear
after studying the works of Stokes [5, 6]. Only recently,
it was possible, from unified position, to obtain an ana-
Iytical description of steady gradient and non-gradient in-
compressible flows in the boundary layer [7].

As for the non-steady boundary layer, various prob-
lems were considered. First of all, we should mention the
general solution for an arbitrary law of acceleration of a
plane to a finite speed, obtained by Stokes (see [6], (185))
and its special case for instantaneous motion of a plane
with a constant speed (see [6], (186)). Apparently, aware
of the physical impossibility of instantaneous accelera-
tion of a plane, like any other body of finite mass, to a
finite speed, Rayleigh considered the case of uniformly
accelerating an infinite plane from a state of rest into mo-
tion at a constant speed [8]. The Stokes solution obtained
on the basis of the constancy of viscosity (the Navier-
Stokes equation) and its special case considered by Ray-
leigh (see [8], formulas (17), (18)) indicate a discrepancy
with physics. Thus, in the work of Rayleigh [8] it is indi-
cated (see the last formula of the third paragraph of the
cited work) that the velocity gradient, and with it, taking
into account the constancy of the molecular viscosity, the
shear stress T asymptotically decrease in time according
to the law

M
ay ‘y:O

-1/2
=7(t>>tp)t 50, t—>oo. (1)

In (1) ty, is the acceleration time,
V, is the speed of the plane,
u is a molecular viscosity,
t,y are time and coordinate normal to the plane in ac-

cordance.

It immediately follows from (1) that with steady
motion, the motion resistance is zero. In other words, we
accelerate the body, and it continues to move, without
supplying energy from the outside, at a constant speed.
Of course, this is completely wrong, as is trying to create
a perpetual motion machine.

The following considerations will help us, firstly, to
make sure that in the problem of the motion of a plane in
space, the velocity cannot be constant or increase any-
where, and, secondly, they will indicate the unphysical
correspondence of (1). It is clear that when a plane
moves, the product of the velocity and the viscous shear
stress on the surface of this plane is nothing but the power
that the plane transmits to the surrounding space. If the
motion is steady, then the mentioned power should dis-

appear somewhere every time moment. So it is: it disap-
pears due to viscous dissipation (heating of the liquid is
not taken into account):

Vi (y=0)- 1(y=0)=

_ AV dV, RV,

= -(y=0)(Vx (y=0)-Vx (y=0)).

dy= (2

When deriving (2), it was taken into account that
1 (dVy/dy)=t(y=0)=Const , which corresponds to a

non-gradient flow. Therefore, the balance of these capac-
ities is possible under the condition that V, (y=00)=0.

This is an important fact because it prevents the velocity
field from having a constant value at infinity and every-
where. On the other hand, the shear stress is constant in
time (and in the case of acceleration of the body, it as-
ymptotically approaches a constant value). Therefore, ex-
pression (1), being absolutely correct mathematically,
has nothing to do with the real physics of the problem,
since energy dissipation occurs at every moment of time.

These contradictions disappear when, in the gener-
alized Navier-Stokes equations, the viscosity in the
boundary layer is considered, in the general case, as a
variable: in steady motion, the viscosity is a function of
the distance to the boundary of the solid body (wall) (see
[7]), and for non-steady motion is a function of time and
distance (see below).

The development of this topic can be found in sub-
sequent works by Gohrtler [9], Howards [10], Sowersby
[11, 12], and Watson [13], in which the growth of the
boundary layer and the boundary layer in a semi-infinite
region of various shapes are considered. Flows in the
Stokes boundary layer in the form of harmonic oscilla-
tions are still used now when considering various non-
steady problems [14].

For a better understanding of the further presenta-
tion, let's briefly review the article [7], devoted to the
steady boundary layer. The starting point of the study is
Schlichting's monograph [15], where the reader can find
a summary of the problem (at the time of publication of
this book). An important role is assigned to experimental
work on measuring the boundary layer [16]. The theory
of the boundary layer, which is currently used, was de-
veloped by Prandtl [17] almost sixty years after the pub-
lication of the work of Stokes [5]. Isn't this a paradox?
The Stokes theory [5] of the motion of a viscous fluid
already exists, but its purpose, which is primarily related
to the description of internal friction in the boundary
layer, finds its implementation only in the work of
Prandtl [17]. The answer to this question can be found
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in [7]. The theory of the steady boundary layer of an in-
compressible flow was further developed in the works of
Blasius [18] (as well as a generalization of his prob-
lem [19]) and Boltze [20], as well as in the works of Kar-
man [21] and Pohlhausen [22]. Van Drist's work [23],
which is somewhat separated in time, although formally
dedicated to the turbulent boundary layer, uses an expo-
nential multiplier that is characteristic of the laminar
boundary layer [6]. Successes in the study of the bound-
ary layer before 1970 are described in Loitsianskyi's re-
view [24]. Modern works on the laminar boundary layer
include the formally mathematical works of Wyburn [25,
26], the work of Sohrab [27], based on a statistical de-
scription of the flow physics in both laminar and turbu-
lent boundary layers. And, perhapsy, the work of Abdul-
lah Grafor [28], in which the ideas of the Polhausen
method [22] are developed, also deserves attention.

1. Formulation of the problem

In this paper, we consider unsteady incompressible
flows in laminar boundary layers:

—a non-gradient non-steady boundary layer formed
during the acceleration motion of an infinite plane;

—a gradient non-steady boundary layer, which is
formed when a fluid flows around along fixed plane at a
constant speed.

The purpose of the work is to obtain, based on the
calculus of variation approach, analytical distributions
for the velocity field in gradient and non-gradient laminar
unsteady boundary layers of an incompressible fluid and
compare them with the classical ones, pointing out the
shortcomings of the latter.

2. Laminar unsteady incompressible
fluid flow due to uniform acceleration
of the plane

It is impossible to instantly accelerate the body to a
finite speed: an infinitely large power is required. There-
fore, no matter how small the acceleration time of a
rocket or projectile is, it is still finite. The plane acceler-
ates or decelerates within the time limit. This tells us that
the problem of a laminar boundary layer that is constantly
changing over a finite time is quite real. Apparently, that
is why Rayleigh, as stated in the introduction, solved the
problem of uniform acceleration of a plane to a constant
speed [8]. What follows in this section cannot be consid-
ered entirely original. It is rather a bridge between the
classical (old) presentation and the modern one, which is
becoming more and more difficult to understand every
day. Although the formal mathematical notation and rep-
resentation differ from the works of Stokes [6] and Ray-
leigh [8], it is essentially the same physical problem. In

this work, the problem of braking will not be considered:
only acceleration.
The speed of uniform acceleration of the aircraft for

finite time T,, and subsequent steady motion (y =0)is
described by law [29]

. —uo{ H()- “b (-rb)}. 3

In (3) H(t) is the Heaviside function. The second bound-
ary condition was already mentioned above:

V, (y=0)=0.
Solution of the Navier-Stokes equation

M, o2V,

ot oy?

with the listed boundary conditions and the initial condi-
tion (which is automatically fulfilled in (3)) has the form
(compare with the solutions of Stokes [6], (formulas 185,
186) and Rayleigh [8], formulas 17, 18):

Vi ()= } ik /24;2“ W),

[ H(1)- ”b H (-t )]dr ’
o) |dr.

The integral of the right-hand side of (4) can be con-
veniently expanded into the sum of the following two in-
tegrals:

Ugy T &XP[ Y2 /(@v(t-p)) | ¢ T

L (y,D)= >
1 y ) Zm .[ (t T)3/2 Ty
t exp|-y2/(4v(t-t
1, (y,t)= Yoy f [ ( b)} T.
2Wve, ()
These integrals are  respectively equal to

1 (Y,tp)-L1(y,0) and 15(y,t)-15(y,7,), where
1, (y, t)— on {Zﬁexp{-— y’ )}

{yf T+ Zt\/_]erf{ zﬁ]}
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I, (y.)=

1y
b\/_ f[ V(t-‘cb)}. ©)

It is easy to see that the solution (4) — (5) under the
condition of instantaneous (t, =0) setting of immobile

plane to motion coincides with the Stokes solu-
tion [6, 8] —the second integral (5). But, as is obvious, in
the absence of the second, immobile plane, which is at a
finite distance from the moving one, the solution (5) will
not have a linear distribution [16]. We also do not take
into account the constant due to relation (2) (the finite
power in the presence of dissipation cannot set the entire
infinite space in motion at a constant speed). Information
available on the Internet on laminar boundary layer re-
search [7] indicates that all theories, starting with Blasius'
work [18] on the flow around a flat plate, are nothing
more than a good approximation of the parabolic law that
corresponds to the motion of a fluid under the action of a
longitudinal pressure gradient and, of course, does not
correspond to the motion of a body in a fluid.

As mentioned above, the classical approach leads to
unphysical results: after acceleration of the plane, with
time (see (1)) the gradient of the velocity of the fluid in
contact with the surface of the plane inexorably asymp-
totically tends to zero. It turns out that having accelerated
the plane to a finite speed, we no longer need to make
further efforts to maintain the motion at a constant speed.
But, excuse us, where does viscous scattering go? Of
course, it does not disappear. The boldness of these state-
ments is confirmed by the results of work [7], where it is
proved that in the boundary layer of an incompressible
laminar fluid flow, the viscosity cannot remain constant
in the absence of a longitudinal pressure gradient: it must
be a function of the distance to the solid surface to ensure
the constancy of the shear stress in the flow (see [7] for
details). To avoid the physical inconsistency associated
with the violation of the basic law of physics on the con-
servation of energy, we apply the ideas of a new approach
initiated in [7].

3. Unsteady laminar non-gradient flow
in the boundary layer: calculus
of variation approach

Now it is appropriate to note that the approach used
in [3] corresponds to the first ever calculus of variation
principle of mechanics by Pierre's Maupertuis [30].

Unsteady non-gradient flow of incompressible fluid
in the boundary layer is described by the generalized Na-
vier-Stokes equation

Q)

taking into account the variable viscosity coefficient
p(y,t) and also the following initial and two boundary

conditions (hereafter all values have dimensionless
form [7])

V, (t —» ©)=1;

V, (y=0)=f(t); (7)
V, (y = x) = 0.

Therefore, the fluid flow functional can now be rep-
resented in the form

IVX[ By jdy ®)

The Euler equation of the extreme of the functional
(8) has the following form

2 Ve | ooV |
x|V, | oy V|
ot oy

Since this equation must hold for any instant of
time, from the asymptotic coincidence at large values of
time (see also the gradient flow case below) we obtain

As in [7], let's transform the previous equation into
the form

0 ov, 1 _0 oV, 1
ot| ot a2V, | oy| oy &%V,
atZ ayZ
If we solve the problem directly, that is, using
known approaches, something incomprehensible comes
out. Let's try to use the method of variables separation by
Fourier. According to this method,

Vi = Vi (ty) = T()- Y().

After substituting (10) into (9), (9) turns into

=0. (9)

(10)
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d{dT 1 |_ d{dy 1 |_
a deer | ay|ayaey | W
dt? dy?
It follows from (11)
dT _~d?T  dY_ ., d2Y
with solutions in the form
T(t)=A;+Bexp L ,
Clt
(13)

Y(y):Ay+Byexp[Cl].

ly

In (12), 13) C}, C{, A, B, A,, By are integration

constants. Some of them are found from the following
initial and boundary conditions

T(0)=0, T(:0)=1; Y(0)=1, Y(c0)=0. (14)

As a result, the sought solution takes the form:
t
Vi (t,y)=[1-exp(3)]exp(-y) . (19
1

In the solution (15), the constant CY=-1 is the

same as for the case of steady flow [7]. The constant C{
will be defined later. It follows from (15) that

V, (ty) > exp(-y), t— oo,

and this is consistent with the results (flows with small
Reynolds numbers) of modern works [31, 32] (see [3] for
more details).

4. Unsteady laminar gradient flow
in the boundary layer: calculus
of variation approach

The motion is described by the generalized Navier-
Stokes equation with variable viscosity inside the bound-
ary layer

OVx_.op, 0

%)

initial and boundary conditions (7). It also follows from
the conditions of the problem that

-@ =Const .
15)

Further, taking into account the physics of the
boundary layer (viscosity force of the same order as iner-
tial force and pressure gradient), in dimensionless quan-
tities Const =1. To use the calculus of variation ap-
proach, let us assume, as it was already done for the
steady flow [7], that now

e8]
_ oV, 0OV,
) —gvx(vx,ﬁ, ey s
The corresponding Euler equation for the extremum of
the functional now has the following form

0| OVy | 8| O0Vy |_
Lalov, [ v [0 @
ot oy

We use the method of separation of variables again
and obtain

ddT 1 dj{dy 1 |_
e Eﬁ _W W@ = Const. (18)
dt? dy?

So far, we do not know the value of the constant in equa-
tions (18). Therefore, we will find their general solution.
For this, as above, we find the first integrals (18). We
have

d2T
dt?’

d2yY

dy?’

%—I =( Const- t+C{)
% =((2-Const)-y+CY |

(19)

The general solution corresponding to (19) is

-2+Const
Cy ]-1+Const

V, (y,t) = A +B, {y_—-1+Const



Aepoounamika, ounamika, dbanicmuxa ma Kepy8anHHs noJabOMOM JimMal1bHUX anapamie 55

1+Const

Ct Const
A +B, | t+ 2 . 20
X t{ Const] (20)
The solution (20) asymptotically, when

Const — 0, turns into a solution of the steady prob-
lem:

limV/, (y,t):{Ay+By (y+Ci’)2:|x

Const—0 @1)

{AwBtexp(é)}.
1

So, let's set Const=0 . After meeting all the bound-
ary conditions (by spatial coordinate and by time), we get
the following solution

vx(y,t){l-exp(g)}y(z-y>. (22)
1

As one can see, at Clt <0

V() > y(2y), t—>0. (23
Expression (23) completely coincides with the solution
of the problem in the case of steady flow [7].

5. Functions of viscosity, shear stress
and power of friction force

Unlike steady motion, as follows from the solutions
obtained above, now the viscosity is a function of time
and spatial coordinate (in the case of a non-gradient
boundary layer):

p=(ty) (24)

For a non-gradient boundary layer, substituting so-
lution (15) into equation (5) leads to the relation:

1
-C—{-exp{éjexp(-y)ﬂp(t):

1

=u(t,Y)[1-exp{éﬂexp(-Y),

1

from which it follows that

exp[cttJexp(-y)ﬂp(t)

1

Ci {l-eXp(CttH exp(-y)

with @(t) to be some function of time arising from partial

(25)

n(ty)=

integration. Since the steady flow can be considered as
the limiting case of the non-steady one for t — oo, then,
comparing with the solution for steady problem, we ob-
tain that for any t>0

1 t
=~ ~exp[c]exp(-y)+1

Ci 1
t
{1—exp(qﬂ exp(-y)

For a gradient flow, according to solution (22) and
equation (5), we obtain

n(ty)= —>exp(y), t—>o.

1 t
- exp| — |y(2-y) =
c p[q]y( y)

= 1+%{u(2—2y){1 —exp[éj}].

Whence, after integration over Yy, we obtain:

3
w(b)- ét -eXp£Cttj-£y2-3;]-y
L L . (26)

u(ty)=
2(1-y) (1-exp [(;D

For t —> oo the flow becomes stationary. Then,
from the condition of agreement with the steady flow, we
obtain wy(t) =1. Finally, the viscosity function has the

following form

3
by ool ) [
ty)= 1 1 5

2(1-y) [1—exp[Ct
1

, t—o0.

The viscous stress functions are found by the formula

oV,
Txy=uWX . (27)
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For a non-gradient boundary layer, according to
(25) and (27), we obtain

1
t— oo,

(1 t
Txy = '[I-C—}- -CXp [EJ eXp(-y)J —-1 s (28)

For the case of a gradient boundary layer, it is ob-
tained similarly from (26) and (27),

_ 1 t 2 Y
=1-yv-— — -2 | 51-
Txy Y C}- exp[c}-j[y 3 J Y, (29)

t— 0.
It is important to note that when a fluid flows along
an immobile body (gradient boundary layer), the surface
shear stress acting from the side of the fluid on the plane

Ty=1, y=0, t>0

always constant and, of course, directed along the flow
of the fluid, since it is the motion of the fluid that causes
the appearance of stresses.

In practice, it is important to know at each moment
of time the power of the frictional force, which is deter-
mined by the formula

P=1,y - V. (30)
According to (30), for a gradient-free boundary

layer, taking into account the expressions for velocity
(15) and shear stress (28), we obtain

P(t,y>=[1—exp<é)]exp(—y)x
1
x{-1+éxexp{éJexp(-y)J. (31)

For the gradient boundary layer, after substituting expres-
sions (22), (29) into (30), we obtain

P(t,y)=(1-exp(é)j-y(2-y)x
1

d1ove L evn| L[ y2 Y
[1 = exp(cJ[y 3 U @)

If we compare expressions (28) — (30) with (1), the
meaning of the above considerations will become clear:
relation (24) is the cornerstone of this entire theory. Due
to the possibility of changing the molecular viscosity

through the boundary layer, physically appropriate solu-
tions of non-steady problems are obtained. These solu-
tions, on the one hand, do not contradict the law of con-
servation of energy (the tangential stresses on the surface
of the plane do not disappear during the transition from
non-steady to steady motion), and on the other hand, they
are completely asymptotically consistent with their ana-
logues for steady problems. Finally, these analogues,
most importantly, are consistent with the relevant results
of existing experiments and theories [7].

To obtain explicit graphical dependencies, it is also

necessary to determine the constant C{ in solutions (15),

(22). Here it is appropriate to use the recent work of
Schreas Mandre [33], where a calculus of variation prob-
lem on the method of acceleration of a flat plate of finite
length with a limitation on the available power is consid-
ered. For the acceleration function, the following relation
was obtained there ([33], formula (3.27a))

. . \1/4
fit )z[l-exp(-z.szt )) (33)

If we try to find C} in the solution (15) for y=0
from the condition of equality to (33), then we obtain

Cl~-0.25.

However, the analysis of graphic data, as well as the
absolute analysis of the tendency of the velocity to zero
(further decline does not exceed 1%), indicates in favor
of the fact that

Cl~-02. (34)

Figure 1 shows the time evolution of the velocity
distribution. It is clearly visible that the obtained solution
(15) reaches an asymptote (see Fig. 1, b), that is, a steady
solution, which is consistent with the exponential de-
crease of the amplitude (see [6, 7]). Moreover, immedi-
ately after acceleration (dimensionless time is equal to
one), the curves practically coincide at the following mo-
ments of time. What cannot be said about the self-similar
solution: over time, this solution approaches a constant
value in physical coordinates (see Fig. 1, a). And this
cannot be achieved due to the presence of viscous dissi-
pation. If we consider the uppermost curve in Fig. 1, a as
an asymptote for a steady flow, we will not find experi-
mental data on such a velocity distributions [16].

Figure 2 shows a comparison of shear stress func-
tions on the surface of the moving plane. These are the
solution (28) and the Rayleigh solution (see [8], (17),
(18)). Since the Navier-Stokes equations are equations of
stress dynamics, the focus is on the stress function, and
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especially on the surface. According to Rayleigh's solu-
tion, the shear stress only increases during acceleration
and then, for unknown reasons, decreases to zero, allow-
ing, as mentioned above, the existence of a perpetual mo-
tion without further external energy input. As for the time
dependence of the shear stress in the obtained solution,
this dependence indicates a constant value, which corre-
sponds to a steady (constant — in this problem) value,
which is consistent with the existing ideas about this type
of motion. The fact that the shear stress at the initial mo-
ment of time is maximum is fully consistent with such a
concept as friction of rest: this phenomenon occurs pre-
cisely during the imparting of momentum to the body, in
fact, accelerating it to a constant speed. From a technical,
as well as an energy point of view, the time dependence
of the power spent on acceleration, and then on maintain-
ing steady motion, is of interest.

V)(1

0.9
0.8
a7
0.6
0.5
0.4
0.3
0.2

0.1

a
0 1 2 3 4 5 6 7 ) 9 1Dy

Fig. 1. Time evolution of the Stokes solution (Fig. a))
and solution (15) (Fig. b). In fig. and moments
of dimensionless time 0.1.1 00.10000 are given;
in fig. b are equal to 0.1, 1 and 2, respectively

o 2 4 S =3 10

t

Fig. 2. Dependence of shear stress on time
on a flat surface (dimensionless values):
upper curve — solution (28), lower one is Rayleigh
solution, [4], formulas (17), (18)

Figure 3 shows the dependences for the power of
the friction force on the surface of the moving plane. Itis
clearly visible that the power required for acceleration of
the plane increases both during acceleration with con-
stant acceleration (Rayleigh [8]) and according to rela-
tions (15) and (28). However, if the specified growth for
the model presented in this article is replaced by a con-
stant value that is reached (asymptotes), then, according
to Rayleigh's solution, the power required to maintain
steady motion decreases in time to zero.

15

0.5

Fig. 3. Dependence of the power of the force
of friction against a flat surface
on time (dimensionless values):
the upper curve is the solution (31),
the lower one is the Rayleigh solution [4],
formulas (17), (18)
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Discussion

Of course, it is not entirely correct to use the results
of the problem of the motion of an infinite plane for bod-
ies with finite dimensions, at least in the direction of mo-
tion. But, you see, viscous dissipation does not disappear
anywhere even in the case of an infinite region (formula
(2)), and therefore, at each moment of time after reaching
a steady mode of motion, a finite power is needed to
maintain this motion. On the other hand, it is known that
when calculating friction, both for an external problem
and for an internal one, resistance exists on the entire sur-
face of a solid body. For example, when calculating the
resistance of the pipeline, the length is of significant im-
portance: the longer the pipe, the more powerful the
pump is needed to pump the liquid. There is no such phe-
nomenon when the resistance does not increase after a
certain region of the pipe. Such a conclusion, if it is as-
sumed as a consequence of the constancy of molecular
viscosity, contradicts reality.

In addition, if the plane is semi-infinite, then when
flowing along it, there is a region of establishment of the
current, beyond which the same motion as for an infinite
plane takes place. The existing modern theory has many
shortcomings, which are gaps in our knowledge. In order
to eliminate these gaps, as it turns out, it is necessary to
develop new approaches to setting and solving mathe-
matical problems — also new ones. As for the approach
presented in this work, it has proven itself well in the
problem of steady flow [7]. In particular, the results ob-
tained in [7] agree well with the experimental data.

Conclusions

As shown in this paper, at speeds not exceeding the
order of the Mach number Ma = 0.2 (that is, up to 70 m/s),
which is characteristic of the take-off mode and from a
mathematical point of view corresponds to an incom-
pressible flow, in the approximation of the laminar
boundary layer, the molecular viscosity is variable de-
pending on the distance to the body surface and time. The
currently used Stokes model, based on the constancy of
molecular viscosity for an incompressible flow, leads to
deliberately erroneous results: after the acceleration of a
body in a viscous fluid over time, the possibility of the
existence of a perpetual motion is revealed.

In steady flow around an immobile body with a
fluid flow uniform at infinity, the molecular viscosity can
be considered constant, and for the simplest geometry,
which is an infinite plane, the boundary layer is described
by a parabolic law for the distribution of velocity. What
cannot be said about the motion of a body in a still fluid.
Here, on the example of an infinite plane, the condition
of constancy of shear stress across the boundary layer

(due to the absence of a longitudinal pressure gradient)
inexorably leads to the requirement of variable character
of molecular viscosity. The approach outlined in this ar-
ticle made it possible to obtain a physically consistent de-
scription of the boundary layer of an incompressible lam-
inar flow, which is expressed in the presence at any time
of the frictional stress of a moving body against a still
fluid — or vice versa.

Finally, in order to answer the question of the prac-
tical use of the above results, we point out the need to
rethink the conduct of experiments in wind tunnels. Alt-
hough the main component of the lift force associated
with the redirection of the air flow by the wing remains
unchanged, in the conditions of the wind tunnel it is not
possible to obtain the structure of the non-gradient
boundary layer, the same as in the conditions of flight.
Therefore, as a recommendation, we suggest rethinking
the very technology of the experiment and think about
how to create the motion of the test sample in laboratory
conditions and thus bring the experiment as close as pos-
sible to a real flight.

As a further study, it is possible to consider the var-
iations of the change in acceleration during acceleration
of the aircraft and its effect on the characteristics of the
set motion.

Contribution of authors: conceptualization —
Pavlo Lukianov, Lin Song; formulation of task — Pavlo
Lukianov; analysis — Pavlo Lukianov, Lin Song; soft-
ware — Lin Song; development of mathematical model —
Pavlo Lukianov; analysis of results — Pavlo Lukianov,
Lin Song.

All the authors have read and agreed to the pub-
lished version of the manuscript.
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HECTALIIOHAPHUI HECTUCJIUBUM JIAMIHAPHUI IPUMEKOBUM LIIAP:
3MIHHA Y YACI TA ITIPOCTOPI MOJIEKYJISIPHA B’SI3KICTh

IHaeno Jlyk’anos, JIinoe Cyn

IIpenmeToM maHoi poOOTH € ABa MiAXOIM JO ONMUCY JIAMiHAPHOI HECTAI[IOHAPHOI Teuii HECTHCIMBOI PiJMHU B
MIPUMEKOBOTO Iapi. Y MepuioMy MiAXozi B'sI3KICTh PIAMHU 1 TPUCKOPEHHS, 3 SKUM NPUBOAUTHCS B PyX IUIOIIMHA,
BBaXkaroTh ctanumu. [lo cyTi, 11e 3aaada Penes. Po3B'si30k, oTprMaHuii Ha OCHOBI IIMX MPHUITYIIEHb, ACHMIITOTHYHO
30iraeThes 70 BiJOMOr0 aBTOMOJICIBHOTO po3B'sa3Ky Ctokca. Baknuso, mo po3s’s3ku Ctokca i Penes acuMnToTuaHO
MPHU BEJIMKUX 3HAYCHHSX 4Yacy BiAMOBINAIOTh 3HHUKHEHHIO HAMPYKEHb 3CYBY MIXK PiJJHHOIO i PyXOMOIO ILIOIIHHOO
micysl MpUCKOpeHHs. BuxoanTh napaiokce: BuBeneHi CTOKCOM PIBHSHHS ISl OMUCY BHYTPIIIHBOI'O TEPTS CBiqYaTh
PO BIJICYTHICTh TOTO CAMOr'0 TEPTS MK PyXOMHUM TLIOM 1 pinuHO0. OCKUIBKY TIPH JOCIIDKEHHI METO/IaMH Bapia-
LIHOT'O YMCIICHHS BUSBUIIOCS, 10 BCEPE/IMHI CTalliOHAPHOTO MPHUMEKOBOTO IIApy MOJIEKYJISIPHA B'SI3KICTh TOBUHHA
3aJIe)KaTy BiJl BIICTaHI IO pyxoMoi MMOBEpXHi, Oysia po3IJIsIHyTa BiNOBIIHA HECTAIliOHAPHA 3a/1a4a. Y pe3yJNbTaTi, sK
1 paHile Ui CTalliOHApHOTO BUMAJKY, OTPHUMaHI pO3B’s3KH, 1110 OMHUCYIOTh SIK 0€3rpajieHTHI, TaK 1 rpaieHTHI Tewil
HECTHCIIMBOI PIIUHU B IPUMEKOBOMY LIapi. ACHMIITOTUYHUI aHalli3 IEPEXOy J0 CTalliOHAPHOI Teuii CBIIYUTH PO
Y3TOJPKEHICTh IIMX PO3B’si3KiB. [1Jist BUMAAKY Oe3rpaiieHTHOI Tedil MPOBeeHO MOPIBHSIHHS KJIACHYHOTO PO3B’S3KY 3
PO3B’A3KOM, IO BiINIOBia€ €KCTPEMyMY BTPaTH PiAMHH, LIO MEPEHOCUTHCS PYXOMOIO IoBepxHero. [lokasano, mo
3TiIHO 3 PO3B’3KOM, OTPUMaHUM Ha OCHOBI BapialiiHOro MiIX0/y, HAPYXKEHHS 3CYBY Ha MOBEPXHI ITiCIIsi BCTAHOB-
JICHHS PyXY HIKyIM He 3HHKAE€, a, K 1 04iKyBaJocs, HabyBae CTanoro 3Ha4eHH:A. MeToau JOCTiIKeHHs € CyTO Teo-
PETHYHUMU, a Pe3yJIbTaTH aHATI3YIOThCS LUIIXOM MOPIBHAHHSA 3 HAsIBHUMH TEOPETHYHUMH Ta eKCIIEPUMEHTAIbHIMU
JAHUMH Ta BIANOBIAHICTIO 710 (GyHIAMEHTAIbHUX 3aKOHIB (i3MKH, 30KpeMa 3aKoHy 30epexenHst eneprii. L{i Mmeroau
0a3yloThCsl Ha MOOY/IOBI aHAJITUYHUX MAaTEMAaTHYHHX MOJENEH, 110 MPEACTaBISAIOTh co0010 AudepeHIiaibHi piB-
HSIHHSI B YaCTMHHUX TOXIJHUX, JONOBHEHHMX BIJIOBIIHMUMHU (I3MYHMMH MOYATKOBUMHU Ta TPAHUYHUMH YMOBAMH.
Kpim Toro, BUKOpHCTOBYIOTHCSI AndepeHiianbHi piBHsIHHs Eiinepa Teopii ekcrpemymy dyHKkmionana (B AaHii podoti
1LIe eKCTPEMYM BTPATH PIiJIHHH MONEPEK Nepepizy MpUMeKoBoro miapy). [Ipu po3s's3yBaHHI IUX PiBHSIHb BUKOPHUC-
TOBYETBCS BiIOMHUil MeTos po3finenHs: 3MiHHUX Dyp'e. JloBinbHI QyHKINT Yacy, 0 BUHUKAIOTh MPU YaCTUHHOMY
IHTErpyBaHHi (32 OJHI€IO0 31 3MIHHUX — MPOCTOPOBOI0 KOOPMHATOK), BU3HAYAIOTHCS 3 YMOB aCUMITOTHYHOI IPSIMY-
BaHHS PO3B’SI3KIB HECTAIIOHAPHUX 32124 JI0 BIAMOBIIHUX JI0 HUX PO3B’S3KiB CTallioHaApHHX 3a1a4. BucHoBku. [Ipen-
CTaBJICH] pe3y/bTaTH MaOTh IPUHIIMIIOBE 3HAUECHHS JUIsl pO3YMiHHS (Pi3MKK OOTIKaHHS YaCTHH JIiTaKa, OCKIJIbKU BKa-
3YIOTh Ha CYNEPEYIHBICTh ICHYIOUOr0 YSIBICHHS PO 00OPOTHICTH MPsIMOT Ta 00EPHEHOT 3a]1a4: pyXy Tija B HEPYXOMiii
piovHi Ta OOTIKAHHS PIAWHOIO HEPYXOMOTO Tia.

Kiro4oBi ciioBa: miTak; TaMiHapHUNA TPUMEKOBHUH IIap; HECTAI[IOHAPHA HECTUCIMBA TEUisl; 3MiHHA MOJIEKYJIs-
pHa B'SI3KICTb.
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