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TIME AND SPACE VARIABLE MOLECULAR VISCOSITY 
 

The subject of this work is two approaches to describe the laminar unsteady flow of an incompressible fluid in 
the boundary layer. In the first approach, the viscosity of the fluid and the acceleration with which the plane is 

set in motion are considered constant. In essence, this is Rayleigh's problem. The solution obtained on the basis 

of these assumptions asymptotically converges to the well-known self-similar Stokes solution. It is important that 

the solutions of Stokes and Rayleigh asymptotically at large values of time correspond to the disappearance of 

shear stresses between the liquid and moving plane after acceleration. A paradox emerges the equations derived 

by Stokes to describe internal friction indicate the absence of the same friction between a moving body and fluid. 

Since research using the calculus of variation methods revealed that the molecular viscosity inside the stationary 

boundary layer should depend on the distance to the moving surface, the corresponding non-steady problem was 

considered. As a result, as before for the steady case, solutions describing both non-gradient and gradient flows 

of incompressible fluid in the boundary layer are obtained. The asymptotic analysis of the transition to steady 

flow testifies the consistency of these solutions. For the case of non-gradient flow, a comparison of the classical 
solution with the solution corresponding to the extreme fluid flow rate carried by the moving surface is made. It 

is shown that according to the solution obtained on the basis of the calculus of variation approach, the shear 

stress on the surface does not disappear anywhere after the motion becomes steady but, as expected, acquires a 

constant value. The research methods are purely theoretical and the results are analyzed by comparison with 

available theoretical and experimental data and compliance with the fundamental laws of physics, in particular 

the law of conservation of energy. These methods are based on the construction of analytical mathematical 

models, which are differential equations in partial derivatives supplemented with appropriate physical initial 

and boundary conditions. In addition, Euler's differential equations for the extreme of functional theory are used 

(in this paper, this is the extreme of fluid flow rate across the cross-section of the boundary layer). When solving 

these equations, the well-known Fourier method of variable separation is used. Arbitrary functions of time aris-

ing during partial integration (by one of the variables – the spatial coordinate) are determined from the condi-

tions of asymptotic convergence of the solutions of non-steady problems to the corresponding solutions of steady 
problems. Conclusions. The presented results are of fundamental importance for understanding the physics of 

the flow around aircraft parts, as they indicate the contradiction of the existing idea of the reversibility of direct 

and inverse problems: the motion of a body in a still fluid and the flow of a fluid around an immobile body. 

 

Keywords: aircraft; laminar boundary layer; unsteady incompressible flow; variable molecular viscosity. 

 

Introduction 

 

Regardless of whether the motion of a body in a 

fluid is steady or unsteady, it is always affected by the 

force of friction. This, of course, also applies to the mo-

tion of aircraft. The frictional force of the fluid on the 

surface of the aircraft is created in a rather thin boundary 

layer - in the immediate vicinity of the streamlined sur-

face [1]. 

The boundary layer is an important component of 

optimizing the aerodynamic characteristics of the wing 

profile [2], improving the flow around the blade and in-

creasing its non-skid properties [3]. The flow in the 

boundary layer is also related to the formation of vortex 

tracks, which is very important for flight safety, espe-

cially in non-stationary regimes - during take-off and 

landing [4]. 

In the middle of the 19th century, one of the new 

problems at that time was the study of the influence of 

the resistance of the environment on the motion of the 

pendulum. Scientists did not abandon the idea of creating 

a so-called "eternal engine". Ideas, as you know, do not 

arise from nothing. They (these ideas) are the result of 

certain theories. One of these theories is the Stokes model 

of viscous fluid motion [5]. According to this model, in 

case of non-steady flow, under the assumption of con-

stant molecular viscosity, a false conclusion is reached 

about the possibility of the existence of a perpetual mo-

tion machine. To point out the shortcomings of Stokes' 

theory, this paper considers two problems: the main prob-

lem deals with acceleration and subsequent steady mo-

tion, and the second, auxiliary problem, deals with un-

steady fluid flow along a fixed plane. 
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Despite the fact that today almost all the efforts of 

researchers are directed to the study of turbulent flows, 

nevertheless, the theory of the non-steady laminar bound-

ary layer has not yet been completed. This becomes clear 

after studying the works of Stokes [5, 6]. Only recently, 

it was possible, from unified position, to obtain an ana-

lytical description of steady gradient and non-gradient in-

compressible flows in the boundary layer [7]. 

As for the non-steady boundary layer, various prob-

lems were considered. First of all, we should mention the 

general solution for an arbitrary law of acceleration of a 

plane to a finite speed, obtained by Stokes (see [6], (185)) 

and its special case for instantaneous motion of a plane 

with a constant speed (see [6], (186)). Apparently, aware 

of the physical impossibility of instantaneous accelera-

tion of a plane, like any other body of finite mass, to a 

finite speed, Rayleigh considered the case of uniformly 

accelerating an infinite plane from a state of rest into mo-

tion at a constant speed [8]. The Stokes solution obtained 

on the basis of the constancy of viscosity (the Navier-

Stokes equation) and its special case considered by Ray-

leigh (see [8], formulas (17), (18)) indicate a discrepancy 

with physics. Thus, in the work of Rayleigh [8] it is indi-

cated (see the last formula of the third paragraph of the 

cited work) that the velocity gradient, and with it, taking 

into account the constancy of the molecular viscosity, the 

shear stress τ  asymptotically decrease in time according 

to the law 

 

 
-1/2

x
bμ 0,  t .

V
= τ t>>t t

y y=0
 




     

 (1) 

 

In (1) bt  is the acceleration time,  

xV  is the speed of the plane, 

μ
 
is a molecular viscosity, 

t,y  are time and coordinate normal to the plane in ac-

cordance. 

It immediately follows from (1) that with steady 

motion, the motion resistance is zero. In other words, we 

accelerate the body, and it continues to move, without 

supplying energy from the outside, at a constant speed. 

Of course, this is completely wrong, as is trying to create 

a perpetual motion machine. 

The following considerations will help us, firstly, to 

make sure that in the problem of the motion of a plane in 

space, the velocity cannot be constant or increase any-

where, and, secondly, they will indicate the unphysical 

correspondence of (1). It is clear that when a plane 

moves, the product of the velocity and the viscous shear 

stress on the surface of this plane is nothing but the power 

that the plane transmits to the surrounding space. If the 

motion is steady, then the mentioned power should dis-

appear somewhere every time moment. So it is: it disap-

pears due to viscous dissipation (heating of the liquid is 

not taken into account): 

 

  

x

x x x

0 0

x x .

               V (y=0) τ(y=0)=

dV dV dV
  = - μ dy = -τ(0) dy=

dy dy dy

    = -τ(y=0) V y= -V (y=0)

 





        (2) 

 

When deriving (2), it was taken into account that 

 x /μ dV dy =τ(y=0)=Const , which corresponds to a 

non-gradient flow. Therefore, the balance of these capac-

ities is possible under the condition that  xV y= =0.  

This is an important fact because it prevents the velocity 

field from having a constant value at infinity and every-

where. On the other hand, the shear stress is constant in 

time (and in the case of acceleration of the body, it as-

ymptotically approaches a constant value). Therefore, ex-

pression (1), being absolutely correct mathematically, 

has nothing to do with the real physics of the problem, 

since energy dissipation occurs at every moment of time. 

These contradictions disappear when, in the gener-

alized Navier-Stokes equations, the viscosity in the 

boundary layer is considered, in the general case, as a 

variable: in steady motion, the viscosity is a function of 

the distance to the boundary of the solid body (wall) (see 

[7]), and for non-steady motion is a function of time and 

distance (see below). 

The development of this topic can be found in sub-

sequent works by Gohrtler [9], Howards [10], Sowersby 

[11, 12], and Watson [13], in which the growth of the 

boundary layer and the boundary layer in a semi-infinite 

region of various shapes are considered. Flows in the 

Stokes boundary layer in the form of harmonic oscilla-

tions are still used now when considering various non-

steady problems [14]. 

For a better understanding of the further presenta-

tion, let's briefly review the article [7], devoted to the 

steady boundary layer. The starting point of the study is 

Schlichting's monograph [15], where the reader can find 

a summary of the problem (at the time of publication of 

this book). An important role is assigned to experimental 

work on measuring the boundary layer [16]. The theory 

of the boundary layer, which is currently used, was de-

veloped by Prandtl [17] almost sixty years after the pub-

lication of the work of Stokes [5]. Isn't this a paradox? 

The Stokes theory [5] of the motion of a viscous fluid 

already exists, but its purpose, which is primarily related 

to the description of internal friction in the boundary 

layer, finds its implementation only in the work of 

Prandtl [17]. The answer to this question can be found 
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in [7]. The theory of the steady boundary layer of an in-

compressible flow was further developed in the works of 

Blasius [18] (as well as a generalization of his prob-

lem [19]) and Boltze [20], as well as in the works of Kar-

man [21] and Pohlhausen [22]. Van Drist's work [23], 

which is somewhat separated in time, although formally 

dedicated to the turbulent boundary layer, uses an expo-

nential multiplier that is characteristic of the laminar 

boundary layer [6]. Successes in the study of the bound-

ary layer before 1970 are described in Loitsianskyi's re-

view [24]. Modern works on the laminar boundary layer 

include the formally mathematical works of Wyburn [25, 

26], the work of Sohrab [27], based on a statistical de-

scription of the flow physics in both laminar and turbu-

lent boundary layers. And, perhapsy, the work of Abdul-

lah Grafor [28], in which the ideas of the Polhausen 

method [22] are developed, also deserves attention. 

 

1. Formulation of the problem 

 
In this paper, we consider unsteady incompressible 

flows in laminar boundary layers: 

 a non-gradient non-steady boundary layer formed 

during the acceleration motion of an infinite plane; 

 a gradient non-steady boundary layer, which is 

formed when a fluid flows around along fixed plane at a 

constant speed. 

The purpose of the work is to obtain, based on the 

calculus of variation approach, analytical distributions 

for the velocity field in gradient and non-gradient laminar 

unsteady boundary layers of an incompressible fluid and 

compare them with the classical ones, pointing out the 

shortcomings of the latter. 

 

2. Laminar unsteady incompressible  

fluid flow due to uniform acceleration  

of the plane 

 
It is impossible to instantly accelerate the body to a 

finite speed: an infinitely large power is required. There-

fore, no matter how small the acceleration time of a 

rocket or projectile is, it is still finite. The plane acceler-

ates or decelerates within the time limit. This tells us that 

the problem of a laminar boundary layer that is constantly 

changing over a finite time is quite real. Apparently, that 

is why Rayleigh, as stated in the introduction, solved the 

problem of uniform acceleration of a plane to a constant 

speed [8]. What follows in this section cannot be consid-

ered entirely original. It is rather a bridge between the 

classical (old) presentation and the modern one, which is 

becoming more and more difficult to understand every 

day. Although the formal mathematical notation and rep-

resentation differ from the works of Stokes [6] and Ray-

leigh [8], it is essentially the same physical problem. In 

this work, the problem of braking will not be considered: 

only acceleration. 

The speed of uniform acceleration of the aircraft for 

finite time bτ
 
 and subsequent steady motion  y 0 is 

described by law [29] 

 

 
x y=0

b
0 b

b b

.
t-τt

V =U H(t)- H t-τ
τ τ

 
 
 

     (3) 

 

In (3) H(t) is the Heaviside function. The second bound-

ary condition was already mentioned above: 

 

 xV y= =0 . 

 

Solution of the Navier-Stokes equation 

 
2

x x

2

V V
=ν

t y



 
 

 

with the listed boundary conditions and the initial condi-

tion (which is automatically fulfilled in (3)) has the form 

(compare with the solutions of Stokes [6], (formulas 185, 

186) and Rayleigh [8], formulas 17, 18): 

 

 

 

 

2t
b

0
x 3/2

0

b
b

b b

)
×

        ×

exp -y /(4ν t-τU y
V (y,t)=

2 νπ t-τ

τ-ττ
H(τ)- H τ-τ dτ.

τ τ

 
 

 
 
 


       (4) 

 

The integral of the right-hand side of (4) can be con-

veniently expanded into the sum of the following two in-

tegrals: 

 

 

 

b
2

b
0

1 3/2
b0

)τ exp -y /(4ν t-τU y τ
I (y,t)= dτ,

τ2 νπ t-τ

 
 



 

 
b

2t
b

0
2 3/2

τ

)exp -y /(4ν t-τU y
I (y,t)= dτ.

2 νπ t-τ

 
 

  

 

These integrals are respectively equal to 

1 p 1I (y,τ )-I (y,0) and 2 2 pI (y,t)-I (y,τ ) , where 

 

 

 

2
0

1 b
bb

b

,

U y y1
I (y,t)= 2 t-τ exp - +

4 t-ττ 2ν π

y2t πν 1
      + y π+ erf

y 2 ν t-τ

  
 
   

   
         
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 
0

2
b b

.
U y1

I (y,t)= erf
2τ ν ν t-τ

 
 
 
 

         (5) 

 

It is easy to see that the solution (4) – (5) under the 

condition of instantaneous  b 0 
 
 setting of immobile 

plane to motion coincides with the Stokes solu-

tion [6, 8] – the second integral (5). But, as is obvious, in 

the absence of the second, immobile plane, which is at a 

finite distance from the moving one, the solution (5) will 

not have a linear distribution [16]. We also do not take 

into account the constant due to relation (2) (the finite 

power in the presence of dissipation cannot set the entire 

infinite space in motion at a constant speed). Information 

available on the Internet on laminar boundary layer re-

search [7] indicates that all theories, starting with Blasius' 

work [18] on the flow around a flat plate, are nothing 

more than a good approximation of the parabolic law that 

corresponds to the motion of a fluid under the action of a 

longitudinal pressure gradient and, of course, does not 

correspond to the motion of a body in a fluid. 

As mentioned above, the classical approach leads to 

unphysical results: after acceleration of the plane, with 

time (see (1)) the gradient of the velocity of the fluid in 

contact with the surface of the plane inexorably asymp-

totically tends to zero. It turns out that having accelerated 

the plane to a finite speed, we no longer need to make 

further efforts to maintain the motion at a constant speed. 

But, excuse us, where does viscous scattering go? Of 

course, it does not disappear. The boldness of these state-

ments is confirmed by the results of work [7], where it is 

proved that in the boundary layer of an incompressible 

laminar fluid flow, the viscosity cannot remain constant 

in the absence of a longitudinal pressure gradient: it must 

be a function of the distance to the solid surface to ensure 

the constancy of the shear stress in the flow (see [7] for 

details). To avoid the physical inconsistency associated 

with the violation of the basic law of physics on the con-

servation of energy, we apply the ideas of a new approach 

initiated in [7]. 

 

3. Unsteady laminar non-gradient flow  

in the boundary layer: calculus  

of variation approach 

 
Now it is appropriate to note that the approach used 

in [3] corresponds to the first ever calculus of variation 

principle of mechanics by Pierre's Maupertuis [30]. 

Unsteady non-gradient flow of incompressible fluid 

in the boundary layer is described by the generalized Na-

vier-Stokes equation 

 

x x ,
V V

= μ
t y y

 
 
 

 

  
                     

(6) 

taking into account the variable viscosity coefficient

(y, t)  and also the following initial and two boundary 

conditions (hereafter all values have dimensionless 

form [7]) 

 

x

x

x

(t )=1; 

(y=0)=f(t);

(y ) 0.

V

V

V



 

                      (7) 

 

Therefore, the fluid flow functional can now be rep-

resented in the form 

 

x x
x

0

,
V V

J = V dy
t y





 

 

  .               (8) 

 

The Euler equation of the extreme of the functional 

(8) has the following form 

 

x x

x x

V V
- - =0

V Vt y
t y

  
      
  

   
   

 

  
 

. 

 

Since this equation must hold for any instant of 

time, from the asymptotic coincidence at large values of 

time (see also the gradient flow case below) we obtain  

 

x x

x x

V V
= =0

V Vt y
t y

  
      
  

   
   

 

  
 

. 

 

As in [7], let's transform the previous equation into 

the form 

 

x x

2 2
x x

2 2

V V1 1
= =0

t t y yV V

t y

  
  

    
           

 

   

 

.  (9) 

 

If we solve the problem directly, that is, using 

known approaches, something incomprehensible comes 

out. Let's try to use the method of variables separation by 

Fourier. According to this method, 

 

x x V = V (t,y) = T(t) Y(y).            (10) 

 

After substituting (10) into (9), (9) turns into 
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2 2

2 2

d dT 1 d dY 1
=0,    =0

dt dt dy dyd T d Y

dt dy

  
  
  
  
        

.   (11) 

 

It follows from (11) 

 
2 2

yt
1 12 2

dT d T dY d Y
=C ,    =C

dt dydt dy
        (12) 

 

with solutions in the form 

 

1t

t t

y y
1y

t

.

T(t)=A +B exp ,
C

y
Y(y)=A +B exp

C

 
 
 
 

 
 
 
 

            (13) 

 
 

In (12), (13) yt
1 t t y1 y

C , C , A , B , A , B  are integration 

constants. Some of them are found from the following 

initial and boundary conditions 

 

T(0)=0,  T( )=1; Y(0)=1,  Y( )=0 .    (14) 

 

As a result, the sought solution takes the form: 

 

x t
1

t
V (t,y)= 1-exp( ) exp(-y)

C

 
 
 
 

.      (15) 

 

In the solution (15), the constant 
y
1C =-1  is the 

same as for the case of steady flow [7]. The constant t
1C

will be defined later. It follows from (15) that 

 

xV (t,y) exp(-y),  t ,   

 

and this is consistent with the results (flows with small 

Reynolds numbers) of modern works [31, 32] (see [3] for 

more details). 

 

4. Unsteady laminar gradient flow  

in the boundary layer: calculus  

of variation approach 

 
The motion is described by the generalized Navier-

Stokes equation with variable viscosity inside the bound-

ary layer 

 

p
ρ +

x

V Vx x=- μ
t y y

  
 

  

 

  
, 

 

initial and boundary conditions (7). It also follows from 

the conditions of the problem that 

 

p
- =Const

x




. 

 

Further, taking into account the physics of the 

boundary layer (viscosity force of the same order as iner-

tial force and pressure gradient), in dimensionless quan-

tities Const 1 . To use the calculus of variation ap-

proach, let us assume, as it was already done for the 

steady flow [7], that now 

 

x x
x x

0

,
V V

J = V V , dy
t y




 

  

  .       (16) 

 

The corresponding Euler equation for the extremum of 

the functional now has the following form 

 

x x

x x

V V
1- - =0

V Vt y
t y

  
      
  

   
   

 

  
 

.          (17) 

 

We use the method of separation of variables again 

and obtain 

 

2 2

2 2

  
d dT 1 d dY 1

= 1- = Const
dt dt dy dyd T d Y

dt dy

  
  
  
  
        

. (18) 

 

So far, we do not know the value of the constant in equa-

tions (18). Therefore, we will find their general solution. 

For this, as above, we find the first integrals (18). We 

have 

 

 

  

2
t
1 2

2
y
1 2

.

dT d T
=  Const t+C ,

dt dt

dY d Y
= 1-Const y+C

dy dy




          (19)

 

   

 

The general solution corresponding to (19) is 

 

y
1

x y yV ×

-2+Const
-1+ConstC

(y,t) = A +B y-
-1+Const

 
  
  

  
  

 
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t
1

t t× .

1+Const
ConstC

A +B t+
Const

 
  
  

   
 
 

        (20) 

 

The solution (20) asymptotically, when

Const 0 , turns into a solution of the steady prob-

lem: 

 

 y
y y 1x

t t t
1

×

t
           × .

2
A +B y+ClimV (y,t)=

Const 0

A +B exp( )
C

 
 
  

 
 
  



   

(21) 

 

So, let's set Const=0 . After meeting all the bound-

ary conditions (by spatial coordinate and by time), we get 

the following solution 

 

t
1

t
V (y,t)= 1-exp( ) y(2-y)x

C

 
 

 
 

.      (22) 

 

As one can see, at C <01t  

 

V (y,t) y(2-y), tx   .          (23) 

 

Expression (23) completely coincides with the solution 

of the problem in the case of steady flow [7]. 

 

5. Functions of viscosity, shear stress  

and power of friction force 

 
Unlike steady motion, as follows from the solutions 

obtained above, now the viscosity is a function of time 

and spatial coordinate (in the case of a non-gradient 

boundary layer): 

 

μ=μ(t,y) .                             (24) 

 

For a non-gradient boundary layer, substituting so-

lution (15) into equation (5) leads to the relation: 

 

 

   

t t
1 1

t
1

1 t
-

t
,

exp exp -y +φ(t)=
C C

=μ t,y 1-exp exp -y
C

 
  

 
 

  
  

    

 

 

from which it follows that 

 

 

 

 

t
1

t
1 t

1

t

t

exp exp -y +φ(t)
C

μ t,y =

С 1-exp exp -y
C

 
 
 
 

  
  

    

,       (25) 

 

with φ(t) to be some function of time arising from partial 

integration. Since the steady flow can be considered as 

the limiting case of the non-steady one for t ,  then, 

comparing with the solution for steady problem, we ob-

tain that for any t>0  

 

 

 

 

 
t t
1 1

t
1

1 t

,  t .

t

- exp exp -y +1
C C

μ t,y = exp y

1-exp exp -y
C

 
  

 
 

 
  
  

    

 

 
For a gradient flow, according to solution (22) and 

equation (5), we obtain 

 

 

t t
1 1

t
1

1 t

t
.

        - exp y(2-y) =
C C

= 1+ μ 2-2y 1-exp
y C

 
 
 
 

   
   

   
   



 

 
Whence, after integration over y , we obtain: 

 

 

3
2

t t
1 1

t
1

1 t

3
.

t

y
ψ(t)- exp y - -y

C C
μ t,y =

2(1-y) 1-exp
C

   
    

   
   

  
  

  
  

 (26) 

 
For t   the flow becomes stationary. Then, 

from the condition of agreement with the steady flow, we 

obtain (t) 1  . Finally, the viscosity function has the 

following form 

 

 

3
2

t t
1 1

t
1

1 t

3

t

y
1-y- exp y -

C C 1
μ t,y = ,  t .

2
2(1-y) 1-exp

C

   
    

   
   


  
  

  
  

  

 

The viscous stress functions are found by the formula 

 

Vxτ =μxy y




.                        (27) 
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For a non-gradient boundary layer, according to 

(25) and (27), we obtain 
 

 xy t t
1 1

1 t
 τ = - 1- exp exp -y -1,  

C C

                       t .

  
   

  
  



  (28) 

 

For the case of a gradient boundary layer, it is ob-

tained similarly from (26) and (27), 
 

3
2

xy t t
1 1

1 t
 

3C C

y
τ = 1-y- exp y - 1-y,  

                           t .

  
  

  
  



   (29) 

It is important to note that when a fluid flows along 

an immobile body (gradient boundary layer), the surface 

shear stress acting from the side of the fluid on the plane 

 

xyτ =1,  y=0,  t 0  

 

always constant and, of course, directed along the flow 

of the fluid, since it is the motion of the fluid that causes 

the appearance of stresses. 

In practice, it is important to know at each moment 

of time the power of the frictional force, which is deter-

mined by the formula 

 

xy xVP=τ  .                          (30) 

 

According to (30), for a gradient-free boundary 

layer, taking into account the expressions for velocity 

(15) and shear stress (28), we obtain 

 

t
1

t
P(t,y)= 1-exp( ) exp(-y)×

C

 
 
 
 

 

 
t t
1 1

1 t
× -1+ ×exp exp -y .

C C

  
  

  
  

         (31) 

 

For the gradient boundary layer, after substituting expres-

sions (22), (29) into (30), we obtain 

 

t
1

t
P(t,y)= 1-exp( ) y(2-y)×

C

 
 

 
   

3
2

t t
1 1

1 t
× .

3C C

y
1-y- exp y -
   
   

   
   

         (32) 

 

If we compare expressions (28) – (30) with (1), the 

meaning of the above considerations will become clear: 

relation (24) is the cornerstone of this entire theory. Due 

to the possibility of changing the molecular viscosity 

through the boundary layer, physically appropriate solu-

tions of non-steady problems are obtained. These solu-

tions, on the one hand, do not contradict the law of con-

servation of energy (the tangential stresses on the surface 

of the plane do not disappear during the transition from 

non-steady to steady motion), and on the other hand, they 

are completely asymptotically consistent with their ana-

logues for steady problems. Finally, these analogues, 

most importantly, are consistent with the relevant results 

of existing experiments and theories [7]. 

To obtain explicit graphical dependencies, it is also 

necessary to determine the constant 
t
1С in solutions (15), 

(22). Here it is appropriate to use the recent work of 

Schreas Mandre [33], where a calculus of variation prob-

lem on the method of acceleration of a flat plate of finite 

length with a limitation on the available power is consid-

ered. For the acceleration function, the following relation 

was obtained there ([33], formula (3.27a)) 

 

1/4
' 'f(t )= 1-exp(-2.62t ) 

 
 

.          (33) 

 

If we try to find t
1С  in the solution (15) for y=0  

from the condition of equality to (33), then we obtain 

 

t
1 -0.25С  . 

 

However, the analysis of graphic data, as well as the 

absolute analysis of the tendency of the velocity to zero 

(further decline does not exceed 1%), indicates in favor 

of the fact that 

 

t
1 -0.2С  .                             (34) 

 

Figure 1 shows the time evolution of the velocity 

distribution. It is clearly visible that the obtained solution 

(15) reaches an asymptote (see Fig. 1, b), that is, a steady 

solution, which is consistent with the exponential de-

crease of the amplitude (see [6, 7]). Moreover, immedi-

ately after acceleration (dimensionless time is equal to 

one), the curves practically coincide at the following mo-

ments of time. What cannot be said about the self-similar 

solution: over time, this solution approaches a constant 

value in physical coordinates (see Fig. 1, a). And this 

cannot be achieved due to the presence of viscous dissi-

pation. If we consider the uppermost curve in Fig. 1, a as 

an asymptote for a steady flow, we will not find experi-

mental data on such a velocity distributions [16]. 

Figure 2 shows a comparison of shear stress func-

tions on the surface of the moving plane. These are the 

solution (28) and the Rayleigh solution (see [8], (17), 

(18)). Since the Navier-Stokes equations are equations of 

stress dynamics, the focus is on the stress function, and 
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especially on the surface. According to Rayleigh's solu-

tion, the shear stress only increases during acceleration 

and then, for unknown reasons, decreases to zero, allow-

ing, as mentioned above, the existence of a perpetual mo-

tion without further external energy input. As for the time 

dependence of the shear stress in the obtained solution, 

this dependence indicates a constant value, which corre-

sponds to a steady (constant – in this problem) value, 

which is consistent with the existing ideas about this type 

of motion. The fact that the shear stress at the initial mo-

ment of time is maximum is fully consistent with such a 

concept as friction of rest: this phenomenon occurs pre-

cisely during the imparting of momentum to the body, in 

fact, accelerating it to a constant speed. From a technical, 

as well as an energy point of view, the time dependence 

of the power spent on acceleration, and then on maintain-

ing steady motion, is of interest.  

 

  
 

a 

 

 
 

b 

 

Fig. 1. Time evolution of the Stokes solution (Fig. a)) 

and solution (15) (Fig. b). In fig. and moments  

of dimensionless time 0.1.1 00.10000 are given;  

in fig. b are equal to 0.1, 1 and 2, respectively 

 

 
 

Fig. 2. Dependence of shear stress on time  

on a flat surface (dimensionless values):  

upper curve – solution (28), lower one is Rayleigh  

solution, [4], formulas (17), (18) 

 

Figure 3 shows the dependences for the power of 

the friction force on the surface of the moving plane. It is 

clearly visible that the power required for acceleration of 

the plane increases both during acceleration with con-

stant acceleration (Rayleigh [8]) and according to rela-

tions (15) and (28). However, if the specified growth for 

the model presented in this article is replaced by a con-

stant value that is reached (asymptotes), then, according 

to Rayleigh's solution, the power required to maintain 

steady motion decreases in time to zero. 

 

 
 

 

Fig. 3. Dependence of the power of the force  

of friction against a flat surface  

on time (dimensionless values):  

the upper curve is the solution (31),  

the lower one is the Rayleigh solution [4],  
formulas (17), (18) 
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Discussion 

 
Of course, it is not entirely correct to use the results 

of the problem of the motion of an infinite plane for bod-

ies with finite dimensions, at least in the direction of mo-

tion. But, you see, viscous dissipation does not disappear 

anywhere even in the case of an infinite region (formula 

(2)), and therefore, at each moment of time after reaching 

a steady mode of motion, a finite power is needed to 

maintain this motion. On the other hand, it is known that 

when calculating friction, both for an external problem 

and for an internal one, resistance exists on the entire sur-

face of a solid body. For example, when calculating the 

resistance of the pipeline, the length is of significant im-

portance: the longer the pipe, the more powerful the 

pump is needed to pump the liquid. There is no such phe-

nomenon when the resistance does not increase after a 

certain region of the pipe. Such a conclusion, if it is as-

sumed as a consequence of the constancy of molecular 

viscosity, contradicts reality. 

In addition, if the plane is semi-infinite, then when 

flowing along it, there is a region of establishment of the 

current, beyond which the same motion as for an infinite 

plane takes place. The existing modern theory has many 

shortcomings, which are gaps in our knowledge. In order 

to eliminate these gaps, as it turns out, it is necessary to 

develop new approaches to setting and solving mathe-

matical problems – also new ones. As for the approach 

presented in this work, it has proven itself well in the 

problem of steady flow [7]. In particular, the results ob-

tained in [7] agree well with the experimental data. 

 

Conclusions 

 
As shown in this paper, at speeds not exceeding the 

order of the Mach number Ma = 0.2 (that is, up to 70 m/s), 

which is characteristic of the take-off mode and from a 

mathematical point of view corresponds to an incom-

pressible flow, in the approximation of the laminar 

boundary layer, the molecular viscosity is variable de-

pending on the distance to the body surface and time. The 

currently used Stokes model, based on the constancy of 

molecular viscosity for an incompressible flow, leads to 

deliberately erroneous results: after the acceleration of a 

body in a viscous fluid over time, the possibility of the 

existence of a perpetual motion is revealed. 

In steady flow around an immobile body with a 

fluid flow uniform at infinity, the molecular viscosity can 

be considered constant, and for the simplest geometry, 

which is an infinite plane, the boundary layer is described 

by a parabolic law for the distribution of velocity. What 

cannot be said about the motion of a body in a still fluid. 

Here, on the example of an infinite plane, the condition 

of constancy of shear stress across the boundary layer 

(due to the absence of a longitudinal pressure gradient) 

inexorably leads to the requirement of variable character 

of molecular viscosity. The approach outlined in this ar-

ticle made it possible to obtain a physically consistent de-

scription of the boundary layer of an incompressible lam-

inar flow, which is expressed in the presence at any time 

of the frictional stress of a moving body against a still 

fluid – or vice versa. 

Finally, in order to answer the question of the prac-

tical use of the above results, we point out the need to 

rethink the conduct of experiments in wind tunnels. Alt-

hough the main component of the lift force associated 

with the redirection of the air flow by the wing remains 

unchanged, in the conditions of the wind tunnel it is not 

possible to obtain the structure of the non-gradient 

boundary layer, the same as in the conditions of flight. 

Therefore, as a recommendation, we suggest rethinking 

the very technology of the experiment and think about 

how to create the motion of the test sample in laboratory 

conditions and thus bring the experiment as close as pos-

sible to a real flight. 

As a further study, it is possible to consider the var-

iations of the change in acceleration during acceleration 

of the aircraft and its effect on the characteristics of the 

set motion. 
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НЕСТАЦІОНАРНИЙ НЕСТИСЛИВИЙ ЛАМІНАРНИЙ ПРИМЕЖОВИЙ ШАР:  

ЗМІННА У ЧАСІ ТА ПРОСТОРІ МОЛЕКУЛЯРНА В’ЯЗКІСТЬ  

Павло Лук’янов, Лінь Сун  

Предметом даної роботи є два підходи до опису ламінарної нестаціонарної течії нестисливої рідини в 

примежового  шарі. У першому підході в'язкість рідини і прискорення, з яким приводиться в рух площина, 

вважають сталими. По суті, це задача Релея. Розв'язок, отриманий на основі цих припущень, асимптотично 

збігається до відомого автомодельного розв'язку Стокса. Важливо, що розв’язки  Стокса і Релея асимптотично 

при великих значеннях часу відповідають  зникненню  напружень зсуву між рідиною і рухомою площиною 

після прискорення. Виходить парадокс: виведені Стоксом рівняння для опису внутрішнього тертя свідчать 

про відсутність того самого тертя між рухомим тілом і рідиною. Оскільки при дослідженні методами варіа-

ційного числення виявилося, що всередині стаціонарного  примежового шару молекулярна в'язкість повинна 

залежати від відстані до рухомої поверхні, була розглянута відповідна нестаціонарна задача. У результаті, як 

і раніше для стаціонарного випадку, отримані розв’язки, що описують як безградієнтні, так і градієнтні течії 

нестисливої рідини в примежовому шарі. Асимптотичний аналіз переходу до стаціонарної течії свідчить про 

узгодженість цих розв’язків. Для випадку безградієнтної течії проведено порівняння класичного розв’язку з 

розв’язком, що відповідає екстремуму втрати рідини, що переноситься рухомою поверхнею. Показано, що 

згідно з розв’язком, отриманим на основі варіаційного підходу, напруження зсуву на поверхні після встанов-

лення руху нікуди не зникає, а, як і очікувалося, набуває сталого значення. Методи дослідження є суто тео-

ретичними, а результати аналізуються шляхом порівняння з наявними теоретичними та експериментальними 

даними та відповідністю до фундаментальних законів фізики, зокрема закону збереження енергії. Ці методи 

базуються на побудові аналітичних математичних моделей, що представляють собою диференціальні рів-

няння в частинних похідних, доповнених відповідними фізичними початковими та граничними умовами. 

Крім того, використовуються диференціальні рівняння Ейлера теорії екстремуму функціонала (в даній роботі 

це екстремум втрати  рідини поперек перерізу  примежового  шару). При розв'язуванні цих рівнянь викорис-

товується відомий метод розділення  змінних Фур'є. Довільні функції часу, що виникають при частинному 

інтегруванні (за однією зі змінних – просторовою координатою), визначаються з умов асимптотичної пряму-

вання розв’язків нестаціонарних задач до відповідних до них  розв’язків  стаціонарних задач. Висновки. Пред-

ставлені результати мають принципове значення для розуміння фізики обтікання частин літака, оскільки вка-

зують на суперечливість існуючого уявлення про оборотність прямої та оберненої задач: руху тіла в нерухомій 

рідині та обтікання рідиною  нерухомого тіла. 

Ключові слова: літак; ламінарний примежовий шар; нестаціонарна нестислива течія; змінна молекуля-

рна в'язкість. 
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