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PRELIMINARY ANALYSIS OF NOISY IMAGE LOSSY COMPRESSION
BY DISCRETE ATOMIC TRANSFORM-BASED CODER

Remote sensing provides data (images) important for many modern applications. Image number and average
size tend to increase. This makes their transfer via communication lines, storage, and dissemination problematic.
Thus, compression should be applied where lossy compression is mostly used. Most methods of lossy compres-
sion assume that images do not contain noise. Meanwhile, images are often noisy, and this should be considered
in the design and performance analysis of image compression techniques. Lossy compression has already been
studied by several coders. However, it has not been investigated for the recently proposed atomic transform-
based techniques that possess several advantages, in particular, the ability to provide privacy of compressed
data. The main subject of this paper is the peculiarities of noisy image lossy compression by an atomic transform-
based coder. Our goal is to analyze whether the considered compression method provides the noise filtering
effect and the so-called optimal operation point. The task is to obtain rated distortion curves for the atomic
transform-based coder applied to noisy images and to analyze their behavior for several performance charac-
teristics such as quality metrics and compression ratio. In the first order, the monotonicity of the main depend-
ence is of interest. The main results are as follows. First, it is shown that the dependencies have non-monotonic
behavior and the appearance of analogs of optimal operation point is possible, at least, for such metric as max-
imal absolute error. Second, there is a specific dependence of compression ratio on a parameter called UBMAD
that controls compression. Experiments have been performed on several noisy test images having different com-
plexity and contaminated by noise of different intensities. In conclusion, it is demonstrated that one more coder
might have optimal operation points for images having a rather simple structure. However, at the moment, it is
difficult to predict its existence and the corresponding coder parameters.
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Introduction

Image acquisition from spaceborne and airborne
carriers and their further processing have become wide-
spread means for various applications [1, 2]. For useful
information extraction from the obtained remote sensing
(RS) data, they should be usually passed to on-land cen-
ters of data processing and, possibly, stored [3]. How-
ever, the problem with RS data transfer via communica-
tion lines and their storage is that the data size has an ob-
vious tendency to rapid increase [3]. There are several
main reasons behind this — the resolution of imaging sys-
tems improve, images are acquired more frequently, and
most imaging systems are multichannel [3, 4]. To solve
the problem, image compression is widely used [5-7].

Image compression methods can be divided into
lossless and lossy [8, 9]. The use of lossless methods is
limited since they usually do not provide appropriately
large compression ratios (CRs) and, besides, CR cannot
be varied. Thus, lossy compression techniques are widely
exploited [10-12].

There are various methods of image lossy compres-
sion [9, 13, 14] and priorities of requirements to them
[11, 15, 16]. Most modern lossy compression techniques

are based on orthogonal transforms, mainly discrete co-
sine transform (DCT) and discrete wavelet transforms
(DWTSs) [11, 13, 15] although there is also a permanent
interest in neural network-based compression [10]. A set
of requirements to image lossy compression might in-
clude the following:

1) to provide a desired CR [13],

2) to ensure an appropriate trade-off between qual-
ity characterized by a given metric and CR [16],

3) to provide a desired quality and make this easily
and quickly enough [11],

4) to ensure privacy protection for compressed data
[15], etc.

In a practical situation, not all of the aforementioned
requirements have to be satisfied simultaneously and
their priority can be different. Below, we concentrate on
the case when it is desired to provide privacy protection
easily and reliably as well as to ensure a reasonably high
quality of compressed noisy images.

In this sense, methods of lossy compression based
on discrete atomic transform (DAT) [15, 17] have several
positive features. First, they provide privacy protection
for compressed data. Second, DAT-based compression
performs better than JPEG in terms of peak signal-to-
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noise ratio (PSNR) for the same compression ratio (CR)
for grayscale and three-channel (color) images [15].
Third, DAT-based methods allow for controlling maxi-
mal absolute deviation (MAD), which is important in re-
mote sensing applications when image classification is
the final goal [18]. Fourth, there are quite strict connec-
tions between MAD and standard metrics of image qual-
ity such as PSNR that allows relatively easy and fast
providing of the desired quality of compressed images
[15]. Finally, there are approaches intended to suffi-
ciently decrease the memory expenses at compression
and decompression stages [17].

The DAT-based compression methods have been
intensively tested for grayscale and color images
(see [15, 17] and references therein) where those images
did not contain noise or, at least, this noise was invisible.
Meanwhile, there are quite many practical situations
[19-21] where noise is inevitable or can be quite inten-
sive. Noise is visible in radar images [19] as well as in
images acquired in bad illumination conditions [20] or in
some component images of hyperspectral remote sensing
data [21]. Lossy compression of noisy images has certain
peculiarities discovered about 25 years ago [22, 23] and
studied later more in detail [24, 25] for coders based on
discrete cosine transform (DCT) and wavelets. In partic-
ular, specific noise-filtering effect was discovered.

It has been also shown that, due to this effect, opti-
mal operation point (OOP) might exist where OOP is
such a parameter that controls compression (PCC) that
compression in it provides the maximal similarity be-
tween a compressed and the corresponding noise-free
(true) images, which is better than for the original (noisy,
uncompressed) image. It has been also shown that, even
without having the noise-free images, OOP existence and
PCC for it can be predicted [24, 25].

Meanwhile, DAT-based compression has been
never tried for noisy images, and it is not known does
OOP exist for it. Thus, the main goal of this paper is to
check if OOP can be observed in the case of DAT-based
compression of noisy images and, if yes, what are the in-
itial assumptions concerning the corresponding PCC.

Problem statement

DAT-based compression uses a scheme typical for
most wavelet-based compression techniques (Fig. 1). A
three-channel (or RGB) image is first decomposed using
RGB to YCbCr transform to decorrelate data. Then, DAT
is applied component-wise, and the obtained coefficients
are quantized and compressed using a combination of
Golomb codes and context-adaptive binary arithmetic
coding. Decompression is carried out in inverse order.
The wavelets are constructed using the atomic function
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where s is an integer; k is an index, which varies from
one to infinity; x is an independent variable; t is an inte-
gration variable; i and © are classic mathematical con-
stants. In this study, we consider the case s = 32. We note
that, in DAT, non-stationary infinitely locally supported
wavelets are applied.
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¥
OUTPUT: DAC-file

Fig. 1. The block diagram of DAT-based compression

Compression based on DAT is controlled by the so-
called upper bound of MAD (UBMAD). A larger
UBMAD relates to a larger MAD, larger mean square er-
ror (MSE) and CR, and smaller PSNR. Meanwhile, CR
also depends on image complexity. Approximate expres-
sions that allow estimating (predicting) MSE or PSNR
for a given UBMAD are presented in [15].

Analysis of lossy compression of noisy images has
several specific features [23-25]. First, studies are usually
carried out using three types of images: noise-free (true)
image I, noisy image 1", and compressed image 1°. Then,
in fact, it is possible to calculate two types of rate/distor-
tion curves - dependencies of a considered full-reference
metric for 1) images 1" and 1% 2) images 1'and I°. In the
former case, one gets traditional dependencies that can be
obtained in practice since both 1" and 1°(PCC) are avail-
able. For the latter case, such dependencies can be ob-
tained only in simulations since images I' are not availa-
ble. Because of this, we need to say a few words about
the conditions of carrying out simulations.
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If some study concerning noise influence on perfor-
mance of some image processing methods is started, it is
commonly assumed that noise is additive, white, and
Gaussian (AWGN) [24]. We will do the same supposing
that we deal with AWGN with zero mean and variance
o2 known in advance or pre-estimated with high accu-
racy. Our goal is to determine do OOP exist and accord-
ing to what metrics. If a metric is determined for the im-
ages 1" and 1 the subscript nc will be used. In turn, if a
metric is calculated for the images 1" and I°, it is marked
by the subscript tc.

OOP existence can be considered proven if, accord-
ing to a given metric Metry, there is a global maximum
for which Metr(PCCoop)< Metr(PCCoop—0). Here we
assume that the metric value is larger if the similarity is
larger (PSNR is an example) and PCCoop—0 relates to
practically uncompressed images (one example is the
quantization step for DCT-based coders and another ex-
ample is UBMAD for the considered DAT-based com-
pression). Thus, our task is to consider typical rate/dis-
tortion curves and to analyze the peculiarities of their be-
havior for the DAT-based compression. Recall here that,
according to previous experience, OOPs are usually ob-
served for simple structure images (containing large ho-
mogeneous areas) corrupted by a rather intensive noise.
In addition, OOPs are more often observed for such con-
ventional metrics as PSNR compared to visual quality
metrics.

Analysis of rate/distortion curves

Keeping in mind the aforementioned property, we
have carried out our studies for two images presented in
Fig. 2.

Let us start our analysis from the most typical de-
pendencies [9, 11]: the rate-distortion curve
MSE\.(UBMAD) and CR(UBMAD). They are presented
in Fig. 3. As one can see, they are both a little bit specific.
First, a general tendency for MSE,. is that it increases if
UBMAD increases. However, there is an MSEn; small
jump for UBMAD=48 and the dependence is not monot-
onous — there is a small decrease of MSE.. when
UBMAD is about 350. Besides, MSENc increases slower
(nonlinearly) for larger UBMAD. Note that in this paper
we consider UBMAD values that have not been earlier
studied in [15] and other our paper that dealt with DAT-
based compression mostly in the visually lossless mode
(for PSNRy larger than 33-35 dB, i.e. MSE smaller than
20-30).

Dependencies CR(UBMAD) are specific too. They
have some “flat” intervals where UBMAD increase does
not lead to CR increase. This shows that it is a little bit
problematic to set a proper UBMAD to provide a desired
CR or MSE even if one uses a two-step procedure [11].
This also means that dependencies MSE,.(UBMAD) and

CR(UBMAD) should be studied in the future more in de-
tail, especially for large UBMAD values.

Meanwhile, we are more interested in studying the
dependencies Metr,(UBMAD). Two of them are pre-
sented in Fig. 4 (let us start by considering the case of
AWGN with noise variance equal to 100). The first is
PSNR((UBMAD) and the second one is PSNR-
HA(UBMAD). Recall here that PSNR-HA is a visual
quality metric [26] that has larger values if compressed
image quality is better. Similarly, to PSNR, PSNR-HA is
expressed in dB.

Fig. 2. Images Frisco (a) and Point Loma (b)
used in experiments

PSNR(UBMAD) starts from 28 dB which corre-
sponds to PSNR of I" with respect to I'. Then, if
UBMAD increases, PSNRy. decreases but there are lo-
cal maxima for UBMAD of about 280. PSNR-
HA(UBMAD) is characterized by steadily decreasing
behavior without local maxima, i.e. visual quality of
compressed images reduces if UBMAD decreases.
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Fig. 3. Dependencies MSE.(UBMAD) (a)
and CR(UBMAD) (b) for DAT-based compression
applied to noisy images in Fig. 2 corrupted by AWGN
with noise variance equal to 144
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Fig. 4. Rate/distortion curves PSNR(UBMAD) (a)
and PSNR-HA(UBMAD) (b) for the DAT-based
compression applied to noisy images in Fig. 2 corrupted
by AWGN with noise variance equal to 100

Since any visual quality metric is not perfect
[27-29], itis worth using, in addition, to PSNR-HA, some
other good visual quality metric. For this purpose, let us
use MDPI [30, 31]. Note that MDSI varies in the limits
from O for perfect quality to about 0.6 (very poor visual

quality).
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Fig. 5. Rate/distortion curves MDSI(UBMAD)
for the DAT-based compression applied to noisy
images in Fig. 2 corrupted by AWGN
with noise variance equal to 100

The plot analysis shows that although OOP is for-
mally absent for the metric MDSI (Fig. 5). However,
there is an interval of “flat” behavior or even local mini-
mum neighborhood observed for UBMAD of about 200.
Thus, if it is strongly desired to provide a rather high CR
(for example, about 10, see Fig. 3,b), it can be recom-
mended to set UBMAD=200 (for a given o? = 100).

Consider now the case of a slightly larger variance
of AWGN (c® = 144). Rate/distortion curves
PSNR«(UBMAD) (a) and PSNR-HA(UBMAD) are
given in Fig. 6. The RDC PSNR«(UBMAD) (Fig. 6,a)
starts from PSNR=26.5 dB and has local maxima or
quasi-flat interval at UBMAD=~280. Meanwhile, for-
mally OOP does not exist. Similarly to the plots in Fig.
4,b, the plots PSNR-HA(UBMAD) (Fig. 6,b) have, in
general, the decreasing, but “staircase-like” behavior.

Fig. 7 presents the rate/distortion curves
MDSI(UBMAD). Again, OOP is formally absent. How-
ever, there is a rather large interval of quasi-constant val-
ues with the “central” value of UBMAD~250 that can be
recommended for practical use if it is an ultimate goal to
provide a large CR with a reasonably good quality of
compressed images.

Finally, Fig. 8 shows the plots MAD(UBMAD).
As one can see, OOP formally exists and this happens for
UBMAD of about 300 (although jumps of MAD are ob-
served). We associate the OOP presence according to
MAD since DAT-based compression has been designed
to minimize and control MAD (in opposite to other com-
pression techniques designed to minimize MSE).
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Fig. 6. Rate/distortion curves PSNR(UBMAD) (a)
and PSNR-HA(UBMAD) (b) for the DAT-based

compression applied to noisy images in Fig. 2 corrupted

by AWGN with noise variance equal to 144
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Fig. 7. Rate/distortion curves MDSI,(UBMAD)
for the DAT-based compression applied to noisy
images in Fig. 2 corrupted by AWGN with noise
variance equal to 144

Fig. 9, a presents the noisy image and Fig. 9, b
shows this image compressed with optimal
UBMAD=206. As one can see, noise is clearly visible
in Fig. 9,a, especially in homogeneous regions that
correspond to water surface. It is sufficiently sup-
pressed in the compressed image (Fig. 9,b) although
some residual noise is visible. Fig. 10 gives another
example. Noise intensity is larger here and noise is
more annoying (Fig. 10,a). Compression with
UBMAD=258 (Fig. 10,b) produces quite efficient
noise suppression, although some smearing takes

place too.
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Fig. 8. Rate/distortion curves MAD(UBMAD)

for the DAT-based compression applied to noisy

images in Fig. 2 corrupted by AWGN with noise
variance equal to 144

Fig. 9. Examples of noisy image Frisco, 5?=100 ()
and compressed with optimal UBMAD=206 (b)
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=

Fig. 10. Examples of noisy image Frisco, noise
variance is equal to 144 (a) and compressed image,
optimal UBMAD is equal to 258

Conclusions

The task of noisy image lossy compression using
the DAT-based approach is considered. It is shown that
the noise-filtering effect is observed if UBMAD is set
properly. OOP has not been formally observed for PSNR
and some considered visual quality metrics although lo-
cal maxima or minima of rate/distortion curves have been
found. Meanwhile, OOP is observed according to the
MAD criterion (metric) that has not been earlier studied
in the analysis of lossy compression applied to noisy im-
ages.
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MOIEPEHIN AHAJII3 CTUCHEHHS 3 BTPATAMM 305PAKEHD 3 IIIYMOM KOJEPOM
HA OCHOBI JUCKPETHOI'O ATOMAPHOI'O HEPETBOPEHHSAA

B. O. Makapiues, b. B. Kosanenko, B. B. JIykin

JucraHiiiiHe 30HAYBaHHs HaJa€ AaHi (300pakeHHs), BAKIIUBI U 0araTboX CydacHHX NonaTKiB. KiabKicTh 30-
OpakeHb 1 X cepeaHili po3Mip MaloTh TEHAEHIIIIO 10 3pocTaHHs. [le ycKamHioe X mepenavy Imo JiHigIX 3B'sI3Ky, 30e-
piraHHs Ta PO3MOBCIOKCHHSA. TakuM YMHOM, 0a)KaHO 3aCTOCOBYBATH CTHCHCHHS, TPUYOMY MTEPEBAYKHO BUKOPUCTO-
BYETHCS CTHCHEHHS 3 BTpaTaMu. BijbIIicTh METOMIB CTHCHEHHS 3 BTpaTaMH 0a3ylOThCs Ha MPUITYIICHHI, 10 300pa-
JKCHHS HE MICTSATh myMy. TUM 4acoM, 300pa)KeHHS 4aCTO MArOTh IIIyM, 1 II¢ CJTiJ] BPaXOBYBATH ITPU PO3POOIIi Ta aHATi31
e(PeKTHUBHOCTI METOJ[IB CTUCHEHHS 300pakeHb. CTUCHEHHS 3 BTpaTaMH B)KE BUBYAIOCS IS KIJTbKOX KojepiB. OmHak
He OyJI0 TOCTIIKEHO HEIIOJaBHO 3alPONOHOBAaHI METOIU Ha OCHOBI aTOMapHOI'O MEPETBOPEHHS, SKi MAIOTh HHU3KY
repeBar, 30KpeMa, 3JaTHICTh 3a0e3meuyBaTH KOH(DIASHIIIHHICTh CTUCHYTHX AaHUX. OCHOBHOIO TEMOIO i€l CTATTI €
0COOJIMBOCTI CTUCHEHHS 3aIIyMJICHOTO 300pakKeHHS 3 BTpaTaMH 3a JIOIIOMOr 0K KOJiepa Ha OCHOBI aTOMapHOTO Tiepe-
TBOpeHHs. Harra Meta — npoaHanizyBaTh, 4u 3a0e31euye pO3MISTHYTHH METOJT CTUCHEHHS e(heKT BinbpTparii mymis i
TaK 3BaHy ONTUMAaJIbHY pO00UYy TOUYKY. 3aBIaHHS MOJISTA€E B TOMY, 11100 OTpUMATH KPHBI PiBHS CIIOTBOPEHB BiJI Mapa-
METpPIB CTUCHEHHS JJ1s1 KOZiepa Ha OCHOBI aTOMapHOI'0 IIEPETBOPCHHS, SKHI 3aCTOCOBAHO 110 3aIIYMJICHUX 300paKeHb,
1 MpOaHAaII3yBaTH 1X MOBEIIHKY /IS KiJIBKOX XapaKTePHCTHK e(hEKTUBHOCTI, TAKHUX SK MOKA3HUKU SKOCTI Ta CTYIIHb
CTUCHEHHs. Y Ieplly 4epry Hac I[IKaBUTh MOHOTOHHICTh OCHOBHMX 3ajiekHocTed. OCHOBHI Pe3yabTaTH HACTYIIHI.
[To-mepitre, Moka3aHo, 110 3aJIEKHOCTI MAIOTh HEMOHOTOHHHI XapakTep 1 MOXKIIMBA MMOSIBA aHAJIOTIB ONTHMAIBHOI po-
00401 TOUKH TPUHAKMHI JJIs TAKOT METPHKH SIK MaKCHMallbHa a0CONMOTHA ToxuOKa. I1o-pyre, icHye eBHa MOBEIIHKA
3aJICKHOCTI CTyIeHs cTHCHEHHs Bif mapamerpa UBMAD, sikuit KOHTPOJIIOE CTHCHEHHS. Bynu mpoBeneHi ekcrepu-
MEHTH I KIJIbKOX TECTOBHX 3aIIyMJICHHX 300paKe€Hb PI3HOI CKIIAJIHOCTI Ta IIyMiB Pi3HOI iHTEHCHBHOCTI. B sKoCTi
BHCHOBKIB IIOKa3aHO, 1[0 PO3TIISIHYTHH KOAEP MOKE MaTH OINITHUMAJIbHI P00l TOUKH 151 300pakeHb, IKi MarOTh 10~
CHUTb NIPOCTY CTPYKTYpy. OHAK Ha JaHUIT MOMEHT Ba)XKKO Iepef0aynTy iX iCHyBaHHs Ta BIAMOBIJHI MapaMeTpu Ko-
aepa.

KarouoBi cjioBa: cTHCHEHHS 3 BTpaTaMu; aTOMapHI NEPEeTBOPEHHS; KPUBaA CIIOTBOPEHHS-IIBUIIKICTD; ONTHMA-
JIbHa po0oya TOUKa.
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