Inghopmauiiini cucmemu i mexnonozii

67

UDC 528.852.1

doi: 10.32620/aktt.2023.1.07

Galina PROSKURA, Oleksii RUBEL, Sergii KRYVENKO, Vladimir LUKIN

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

ON CLASSIFIER PERFORMANCE FOR REMOTE SENSING IMAGES
COMPRESSED BY DIFFERENT CODERS

Remote sensing data are widely used in numerous applications. A conventional task solved using remote sensing
images is their classification. The classification maps are commonly produced by some pre-trained classifiers
applied either to uncompressed or compressed images where lossy compression is often needed and employed
in practice due to the necessity to reduce data volume at stages of image transfer and storage. Then, the classi-
fication accuracy depends on the characteristics of an image, a classifier, and a coder used. The main subject
of this paper is the factors that determine classification accuracy. One of them is compressed image quality. We
fix the quality of compressed image quality characterized by the peak signal-to-noise ratio for several coders
and rely on the same training approach. Our goal is twofold. First, we would like to consider classification
accuracy for two approaches to classifier training: based on undistorted data and images with simulated distor-
tions. Second, our desire is to compare the performance of different techniques of image compression. The task
of this paper is to obtain an idea is it worth training the neural network classifier for uncompressed images or
images of similar quality to the quality of compressed data to be classified. The coder’s influence on classifica-
tion results is of special interest as well. The main results are the following. First, the classification accuracy is
almost the same for classifiers trained for uncompressed and simulated compressed data for the general distor-
tion model. Second, there is a certain difference in the classification results for different compression techniques
studied. Lightly better classification results are observed for data produced by more sophisticated (modern)
coders. Experiments have been carried out for two real-life three-channel Sentinel-2 images of Kharkiv and the
Kharkiv region having different complexity. Four typical classes have been considered. As a conclusion, it is
possible to state that either the general model of distortions must be modified or the classifier training should be

performed for data produced by the corresponding compression technique.
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Introduction

Remote sensing (RS) from spaceborne and airborne
platforms has found a variety of important applications
recently [1, 2]. A common intermediate or final task in
RS data processing is image classification [3, 4]. Mean-
while, before classification, RS images are often pro-
cessed where the processing might include different op-
erations [5, 6]. Image compression is one of them [7-9].
The need for it arises due to the large volume of collected
and processed RS data as well as the restricted bandwidth
of communication lines and/or storage space. Whilst
lossless compression does not introduce distortions, com-
pression ratio (CR) reached for methods belonging to this
group often occurs to be inappropriate for practice [10,
11]. In turn, lossy compression techniques are able to
provide a considerably larger and variable CR [12-14].
However, distortions introduced by lossy compression
affect classification in a specific way [9, 14, 15]. In some
cases, even improvement of classification accuracy is
possible [14]. Meanwhile, in most cases, the probability
of correct classification tends to decrease if the compres-
sion ratio increases and, hence, the introduced distortions
become larger [15, 16].

In general, classification accuracy depends on sev-
eral factors, namely, the classifier used [9], its training
strategy [16], compression ratio attained, employed
coder, image complexity [15, 16], etc. Here, we consider
the neural network (NN) based approach [17] to classifi-
cation that has been earlier used in our papers [15, 16].
The reason for this is that NN-based approaches are pow-
erful and often used for RS data classification [18] due to
their ability to incorporate non-Gaussian properties of
features exploited. The NN-classifier performance also
depends on image complexity, the number of classes and
their separability, training sample size, and methodology
of learning. In particular, in [16], it has been shown the
following. If the classifier has been trained for un-
distorted data and then applied to compressed images,
then the probability of correct classification has the ten-
dency to reduce with CR increasing, especially for com-
plex structure images containing a lot of textures, edges,
and small-sized details (objects). On the other hand, the
probability of correct classification for compressed im-
ages can be slightly increased if the classifier training has
been carried out for images with a similar level of distor-
tions. Note that distortions due to lossy compression in
[16] have been modelled as additive white Gaussian
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noise based on preliminary analysis of statistical and spa-
tial spectral characteristics of distortions [15] for several
coders. However, characteristics and specific features of
distortions are individual for different image compres-
sion methods. The most known peculiarities are the
blocking artifacts for JPEG [19] and Gibbs phenomenon
for JPEG2000 and SPIHT [20]. The model in [15] takes
into account only the facts that distortions due to lossy
compression have quasi-Gaussian distribution and are
practically spatially correlated. These distortions are easy
to simulate to model the desired peak signal-to-noise ra-
tio (PSNR) of distorted images.

Keeping this in mind, our idea is to produce images
having the same PSNR for different coders and to ana-
lyze the characteristics of their compression and classifi-
cation. Such a study should give answers to different
questions the main of which are the following: 1) is it
worth using uncompressed or generally simulated images
for NN training?; 2) do different coders produce approx-
imately the same or sufficiently different results for the
same PSNR of compressed images?

Problem statement

Since compression artifacts and classification re-
sults usually depend on image complexity, it is reasona-
ble to perform our studies for, at least, two images of dif-
ferent complexity. Thus, we have chosen the images SS1
and SS2 composed of visual range components of Senti-
nel-2 multispectral data and visualized as RGB color im-
ages (Fig. 1). As one can see, the image in Fig. 1,ahas a
simpler structure than the image in Fig. 1,b since the for-
mer image corresponds to the countryside region (Stariy
Saltiv, Kharkiv Region) whilst the latter image relates to
the North part of Kharkiv with neighbor forests and agri-
cultural fields.

We have used four coders. The first and second ones
called AGU and ADCT, respectively, are based on dis-
crete cosine transform where AGU [21] employs fixed
32x32 pixel block size and the ADCT [22] coder uses an
optimized partition scheme for adapting the block size to
image local content. JPEG2000 is the known standard
[20] whilst the fourth analyzed coder called better porta-
ble graphics (BPG) [23, 24] is known to be a part of the
video compression standard HEVC [25]. Thus, the cod-
ers are based on different orthogonal transforms (DCT
and wavelets) and exploit different parameters that con-
trol compression (PCC) — quantization step (QS) for the
AGU and ADCT coders, bits per pixel (BPP) for
JPEG2000, and the parameter Q (which is an integer
from 1 to 51) for the BPG encoder. All coders allow
providing a desired PSNR quite accurately for a fair com-
parison of the obtained results.

Thus, our task consists in determining whether is it
reasonable to use the distortion-free or general model-

based distorted image for NN classifier training. Another
task is to compare the classifier performance for com-
pressed images having identical quality (according to the
PSNR criterion) but compressed by different coders.
Note that we consider the case of PSNR=31 dB, i.e. mean
square error of introduced distortions about 50 (for three-
channel images with the 8-bit representation of data for
each component.

Fig. 1. The considered real-life three-channel images
of the country-side (a) and urban (b) areas

Table 1 gives data that allow getting some prelimi-
nary imagination concerning the coder performance for
both images. From the very beginning, let us explain why
we have decided to consider setting the desired PSNR
equal to 31 dB. First, such a value was used (as one of
four possible) in the papers [15, 16]. Second,



Inghopmauiiini cucmemu i mexnonozii

69

PSNR=31 dB corresponds to the case when the intro-
duced distortions are visible for practically all images ir-
respective of their complexity. Third, it has been found
earlier that the probability of correct classification starts
to radically reduce when distortions become visible.

Table 1
Performance characteristics of coders
for two considered images
- CR PSNR
Im Coder
age R G B R G B

SS1 AGU 398 | 36.0 | 57.4 | 31.0 | 309 | 31.0

SS1 ADCT 451 | 384 | 62.9 | 31.0 | 31.0 | 30.9

SS1 BPG 50.4 | 447 | 70.1 | 31.0 | 30.8 | 311

SS1 | JPEG2000 | 32.0 | 27.1 | 447 | 309 | 31.1 | 31.0

SS2 AGU 523 | 522 | 53 | 311 | 309 | 310

SS2 ADCT 568 | 542 | 576 | 31.0 | 31.1 | 309

SS2 BPG 6.44 | 6.30 | 6.47 | 30.8 | 30.7 | 30.7

S§S2 | JPEG2000 | 5.02 | 5.00 | 5.01 | 31.2 | 309 | 31.1

Fig. 2. Image SS1 compressed by AGU (a)
and JPEG2000 (b)

The examples given in Fig. 2 show that the intro-
duced distortions are visible (both images are smeared)
compared to the original image in Fig. 1,a. Although for
both images PSNR is equal to 31 dB, the difference in
them can be found by attentive observation.

Data in Table 2 show that the desired PSNR has
been provided quite accurately for all coders for both im-
ages (the worst accuracy takes place for the BPG coder
for which PCC Q can fall only to integers). All coders
have been applied component-wise. For image SS1, the
compression ratio for the “blue” component is larger than
for the other two components. For image SS2, the CR
values are approximately the same for all three compo-
nents (for each coder). Meanwhile, the CR values for the
simpler structure image (SS1) are by many times larger
than for the complex structure image (SS2). The ADCT
and, especially, BPG coders provide sufficiently larger
CR than AGU and, especially, JPEG2000. Thus, for the
same quality (characterized by PSNR), BPG and ADCT
coders have certain advantages. However, here we are
more interested in indicators of classification accuracy
discussed in the next Section than in CR.

Analysis of classification accuracy

Before starting the analysis of the obtained data, let
us remind a few details about the classifier used. First, we
dealt with multichannel images acquired by the Sentinel-
2 satellite sensor at the end of August 2019. Four visually
distinguishable classes have been studied: 1 — Urban, 2 —
Water, 3 — Vegetation, and 4 — Bare Soil for which the
features intersect considerably.

Since we had the maps of the corresponding territo-
ries sensed, homogeneous fragments of images that rep-
resent the aforementioned classes have been marked by
experts. They have been marked with a conditional color
corresponding to each class as follows: Urban - yellow,
Water - blue, Vegetation - green, Bare Soil - black. The
sets of the marked pixels have been divided into two sub-
sets: the training and control (verification) samples
(Fig. 3and 4).

The sizes of the training samples were from 4 x 10°
to 20 x 10° pixels, and the sizes of the verification sam-
ples were larger — from 7 x 103 to 50 x 103 pixels. Thus,
the classes were representative enough.

Only the three pixel (voxel) values have been used
as input features. In other words, we have not used any
textural information (that, in general, could be helpful for
better classification). The classification information from
neighbor pixels has not been aggregated (although this
could improve classification as well). Therefore, a simple
pixel-wise classification approach has been employed to
understand and compare the classifier performance for
different coders with any “assistance” of post-classifica-
tion techniques.
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Fig. 3. Fragments used for the classifier training
for images SS1 (a) and SS2 (b)
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Fig. 4. Fragments used for the classifier verification
for images SS1 (a) and SS2 (b)

Although we have already decided that the classifier
to be used is based on an NN, there is a wide space of
options for what NN and with what parameters to choose.
Since we have only three input parameters (features), a
small number of classes (four), and a limited sample size
(thousands) for NN training, we have decided to use a
simple NN - a multilayer perceptron (MLP) with super-
vised learning based on backpropagation. It has an input
layer, an output layer, and several hidden layers. With the
exception of input neurons, all other neurons commonly
use a non-linear activation function. In our case, the NN
has 4 hidden layers containing 64, 32, 16 and 8 neurons
respectively.

The optimal parameters of MLP (the number of hid-
den layers, neurons in them, and the learning function)
have been determined by experiments with a single data
set. The ReLU (Rectified Linear Unit) activation function
has been used in hidden layers. The linear activation
function has been used for the output layer. The
RMSProp optimizer has been employed in MLP training.
Cross-entropy has been used as a loss function. More de-
tails concerning the MLP and its training can be found
in [16].

Classification accuracy can be characterized in dif-
ferent ways including confusion matrices, probabilities
of correct classification for particular classes and in ag-
gregate, as well as by F1-measure as an efficiency esti-
mation metric [12, 26]. The latter indicator (criterion) is

a harmonic mean of accuracy and completeness (accu-
racy indicates how many of the objects identified by the
classifier as positive are indeed positive; completeness
shows how many of the positive objects have been iden-
tified by the classifier). An important property of the har-
monic mean is that it approaches zero if, at least, one of
these arguments approaches zero. In the multi-class case,
F-measure is determined as the average of the
Fl1-measures of each class with the corresponding
weighting [12].

Let us start with the image SS1 where the MLP has
been trained for the uncompressed image. The obtained
data are presented in Table 2. Analysis shows that the
class Water is recognized very well, the class Vegetation
is recognized well, and the classes Bare Soil and Urban
are recognized not well because of a high percentage of
misclassifications between them. Although there are cer-
tain variations of F1 values for particular classes for dif-
ferent coders, the total values are very close.

If the classifier has been trained for the simulated
(noisy, PSNR=31 dB) compressed image, the situation
changes — the corresponding data are presented in Ta-
ble 3. F1 values decrease for two classes for the coder
JPEG2000 and for all classes for three other coders. As a
result, the total (aggregate) F1 values have decreased as
well: by about 0.02 for the coders ADCTm AGU, and
BPG, and by about 0.01 for JPEG2000 where the results
for the coder JPEG2000 occurred to be the best where the
worst results have been observed for data compressed by
the AGU coder.

Table 2
Classification data (F1-measures) for image SS1
with MLP training for uncompressed image

Coder
Class I —ABCT [ AGU | BPG | JPEG2000
Urban 0.78 0.81 0.81 0.81
Water 0.99 0.99 0.99 0.99
Vegetation | 0.95 0.94 0.94 0.94
Bare soil 0.76 0.76 0.75 0.76
Total 0.9526 | 0.9533 | 0.9527 | 0.9543
Table 3

Classification data (F1-measures) for image SS1
with MLP training for simulated compressed image

Coder
Class
ADCT | AGU BPG | JPEG2000

Urban 0.71 0.77 0.72 0.83

Water 0.98 0.98 0.98 0.98
Vegetation 0.91 0.91 0.92 0.92

Bare soil 0.72 0.74 0.72 0.77

Total 0.9301 | 0.9347 | 0.9353 0.9457
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Thus, for image SS1, it has happened that it is worth
using the MLP training for uncompressed image. The
classification results obtained for MLP training for the
simulated “general” compressed image are not too much
but worse.

Fig. 5 represents the classification maps obtained
for the classifier trained for the general simulated image
applied to the data at the output of the considered coders.
The classification results are quite similar although dif-
ferences can be easily found. As one can see, there are
many pixels misclassified from the class Vegetation to
the class Water. There are also misclassifications be-
tween the classes Urban and Bare Soil.

Let us now consider the data obtained for image
SS2. Consider the case when the MLP has been trained
for the uncompressed image. The data obtained are given
in Table 4. This time the classes Urban and Bare Soil are
recognized well whilst the classes Vegetation and Water
are recognized badly because of a lot of misclassifica-
tions between them. There are variations of F1 values for
particular classes for different coders, but the total values
are quite close. The best results this time are obtained for
the image compressed by BPG whilst the smallest F1 val-
ues are again observed for the image compressed by
AGU.

Assume now that the classifier has been trained for
the simulated compressed image (see data in Table 5). F1
values have decreased (compared to the corresponding
data in Table 4) for the class Bare Soil for all coders but
radically improved for the class Water. For other classes,
small changes take the place. As a result, the total (aggre-
gate) F1 values practically have not changed except for
the data for the AGU coder for which the F1 increase by
about 0.01 has taken place.

The results are still the best for the BPG coder and
the worst for the image compressed by the AGU coder.
As one can see, for the complex structure image, it almost
does not matter what image to use for the MLP training.

Fig. 6 presents the classification maps for the clas-
sifier trained for the uncompressed image SS2 applied to
the data for all four considered coders. The classification
results are again very similar although it is again possible
to find the differences. There are many pixels misclassi-
fied between the classes Vegetation and the class Water.

Table 4

Classification data (F1-measures) for image SS2
with MLP training for uncompressed image

Cl Coder
85 "ADCT | AGU | BPG | JPEG2000
Urban 0.91 0.90 0.91 0.90
Water 0.71 0.69 0.70 0.72
Vegetation | 0.63 0.59 0.64 0.64
Bare soil 0.89 0.88 0.90 0.89
Total 0.8461 | 0.8275 | 0.8521 0.8431

Fig. 5. Classification maps for images compressed
by the coders ADCT (a), AGU (b), BPG (c),
and JPEG2000 obtained by the MLP-classifier trained
for the general simulated compressed image
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Table 5
Classification data (F1-measures) for image SS2
with MLP training for simulated compressed image

Class Coder
ADCT | AGU BPG | JPEG2000
Urban 0.91 0.90 0.89 0.90
Water 0.75 0.79 0.84 0.75
Vegetation 0.60 0.59 0.69 0.64
Bare soil 0.88 0.86 0.87 0.88
Total 0.8463 | 0.8375 | 0.8517 0.8408

There are fewer misclassifications between the clas-
ses Urban and Bare Soil (compared to image SS1). Since
many areas correspond to private houses with gardens,
we have a lot of mixed pixels and “mosaic” results of
classification.

Finally, let us give two examples of classification
maps for the MLP classifier trained for the noisy image
(Fig. 7). One specific feature of these two maps is that
many pixels have been classified as Water (in the right
part of both images) although they correspond to the clas-
ses Urban or Vegetation (in fact, these are typical city re-
gions with multi-store buildings and trees around them).
The possible reason is that, by adding noise to the image
to be used for training, we “expand” the features that cor-
respond to the class Water and make them intersect more
with feature spaces for other classes.

Fig. 6. Classification maps for images compressed
by the coders ADCT (a), AGU (b), BPG (c), Fig. 7. Classification maps for images compressed
and JPEG2000 (d) obtained by the MLP-classifier by the coders BPG (a), and JPEG2000 (b) obtained

trained for the uncompressed image by the MLP-classifier trained for the simulated image
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Thus, we can put forward two hypotheses. First, the
AWGN model of distortions introduced by lossy com-
pression is not adequate enough (is too simple or is not
valid for all lossy compression techniques or all images
or all compression ratios). Second, particular coders
might introduce specific distortions that are worth taking
into account at the classifier training stage. Putting aside
the former hypothesis, let us check the latter one.

Classification with adaptation
to properties of particular coders

Thus, let us see what are the classification results if
the classifier is trained for fragments of the image com-
pressed by a given coder and then applied to other frag-
ments of this image. The F1 values for image SS1 are
presented in Table 6. Comparing these data to the corre-
sponding data in Tables 2 and 3, it is possible to see that
the total probabilities are larger than both total probabil-
ities for other ways of the classifier training. Note that the
total probabilities for data produced by different coders
are very close.

Table 6
Classification data (F1-measures) for image SS1
with MLP training for the same compressed image

Cl Coder
85 ADCT | AGU | BPG | JPEG2000
Urban 0.83 0.83 0.83 0.82
Water 1.0 0.99 1.00 0.99
Vegetation | 0.96 0.95 0.95 0.95
Bare soil 0.77 0.77 0.75 0.78
Total 0.9622 | 0.9578 | 0.9589 0.9583

Table 7 gives data for the same training methodol-
ogy but for the image SS2. The obtained results can be
compared to the corresponding results in Tables 4 and 5.
As one can see, the values of F1 have improved (in-
creased) compared to the corresponding values in Ta-
bles 4 and 5. The best classification results are reached
for data produced by the BPG coder.

Table 7
Classification data (F1-measures) for image SS2
with MLP training for the same compressed image

Cl Coder
85 TADCT | AGU | BPG | JPEG2000

Urban 091 | 091 | 092 0.91
Water 077 | 077 | 0.7 0.74
vegeta- | 565 | 060 | 066 0.65
tion

Bare soil 0.87 0.89 0.89 0.89
Total 0.8480 | 0.8405 | 0.8546 | 0.8482

Hence, we can conclude that if one plans to classify
compressed images, it is worth using for training the data
compressed by the same coder (and with similar quality
characterized by PSNR).

Fig. 8 presents two classification maps for images
compressed by the coders BPG and JPEG2000 obtained
by the MLP classifier trained for the corresponding com-
pressed images. As one can see, the classification maps
in Fig. 8 are very similar to each other. Compared to the
maps in Fig. 7, there are fewer misclassifications to the
class Water in the urban region in the right part of the
image.

Fig. 8. Classification maps for images compressed
by the coders BPG (a), and JPEG2000 (b) obtained
by the MLP-classifier trained for the same
compressed images

Conclusions

The presented results obtained for two images of
natural scenes of different complexity show that, if com-
pressed images are planned to be classified, it is reason-
able to carry out the classifier training for compressed
data but only under the condition that the data used for
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training have been obtained for the same coder and with
similar characteristics of compression. The use of the
general model of simulated compressed data for training
is not so efficient. There are two possible reasons behind
this. First, the current version of the general model is too
simplified. Second, it does not take into account the pe-
culiarities of particular coders.
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IIOJ0 XAPAKTEPUCTHUK POBOTH KJIACU®IKATOPA
JIUISI 30BPAKEHD JUCTAHIIIMHOTO 30HIYBAHHS,
SIKI CTUCHYTI PI3HUMH KOJEPAMU

I. A. Ilpockypa, O. C. Pyéens, C. C. Kpusenko, B. B. JIykin

TpaauuifiHuM 3aBIaHHIM, IO BUPIIIYETHCS 32 JOMOMOror0 300paxens J[33, e ix knacudikamis. Kaptu kiacu-
(ikamii 3a3BUYail CTBOPIOIOTHCS IESKUMI TONIEPEAHBO HABUCHIMH KJIaCH(iKaTOpaMH, SIKi 3aCTOCOBYIOTHCS IO HECTH-
CHyTHX a00 CTHCHYTHX 300pakeHb, JI¢ 9YacTO MOTPiOHE CTUCHEHHS 3 BTPAaTaMH, K€ BUKOPUCTOBYETHCS HA MPAaKTHIIL
4yepe3 HeoOXiHICTh 3MEHIINTH OOCST IaHUX Ha eTarax nepenadi Ta 30epiranHs 300paxenb. Toi TouHicTs Kiacudi-
KaIIii 3aJIeKUTh BiJ] XapaKTEePUCTHK 300pakeHHs, KiTachugikaTopa Ta Kofepa, o BUKOPUCTOBYETHCS. OCHOBHUM TIpe-
JIIMETOM CTaTTi € (PaKTOpH, III0 BU3HAYAIOTh TOYHICTh KiTacudikarii. OJHAM 3 HUX € AKiCTh CTUCHEHOTO 300paskeHHS.
Mu (ikcyeMo SIKiCTh CTHCHEHOT'0 300pa)KeHHS, 10 XapaKTePHU3YETHCS MIKOBUM BiTHOIICHHIM CHUTHAI/IITYM JUISI KiJTb-
KOX KOJZIepiB 1 MOKJIaIaeMOCs Ha TOW caMUi miaxif 10 HaBdaHHS. Hama mera nposika. [lo-mepire, Mu xotinm 6 po3r-
JITHYTH TOYHICTH Kiacu(ikamii s ABOX MiAXOMIB 0 HAaBYaHHS KJIACH(IKaTOPiB: HA OCHOBI HECIIOTBOPEHUX JaHUX i
300pakeHb 13 3MOJIETbOBAHUMH CIIOTBOPEHHAMHU. [10-1pyTe, MU X04eMO MOPiBHATH €(PEeKTUBHICTD Pi3HUX TEXHIK CTH-
CHEHHS 300pakeHHs. 3aBIaHHSA Ii€i CTATTi MOJIATaE B TOMY, 00 OTpUMATH YSBJICHHS PO T, M BapTO TPCHYBATH
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kiacudikaTop HEUPOHHOI MEPEXi TS HECTUCHYTHX 300paKeHb a00 300pakeHb 13 AKICTIO, MMOMIOHO0 IO SKOCTI CTH-
CHYTHX JIaHUX, sIKi TOTpiOHO KiacudikyBatu. OcoOnuBuii IHTEpeC TAKOXK IPECTaBIIsIE BIUIUB Kojiepa Ha pe3ylIbTaTH
knacudikamii. OcHOBHI pe3ynbraT HacTynHi. [lo-miepiie, TouHicTs Kiacudikamnii Maibke ofgHaKoBa Ay Kinacupika-
TOpPiB, HABYEHHX JIUIsI HECTUCHYTHX 1 3MOJIETbOBAHMX CTHCHYTHX JaHWX JUISl 3arajbHOi Mozenmi crnoTBopeHHs. Ilo-
Jpyre, iCHye NeBHA PI3HMILI B pe3ynbTaTax Kiacu(ikamii Uit pisHUX JOCTIUKYBaHMX METOJIB CTHCHEHHS. Jlemio
KpaIli pe3ynbTaTu Kiacudikaii criocTepiraroThCs [UIsl TAaHUX, CTBOPEHNX OLTBII CKIIaTHUMU (CYy4aCHHMH) KOIEPAMHU.
ExcriepuMenTH npoBeieHO Ha JIBOX peaslbHUX TPUKaHAJIbHUX 300pakeHHsAX XapKoBa Ta XapKiBChbKOI 00iacTi pizHOI
ckmagnaocti Sentinel-2. Po3ristHyTo 4OoTHpH THITOBI KiacH. SIk BUCHOBOK, MOJKHA CTBEP/KYBATH, IO a00 3araibHa
MOJIEJIb CIIOTBOPEHB MOBHHHA OyTH MoaudikoBaHa, abo HaBYaHHS Kiacudikaropa Mae OyTH BUKOHAHO JUIS JAHHX,
CTBOPEHHX BiJITIOBITHOIO TEXHIKOIO CTHCHEHHSL.

Knro4oBi ciioBa: cTUCHEHHS 3 BTpaTaMy; TPUKaHAJIbHI 300pa)KeHHsT; KIach(iKaTop Ha OCHOBI HEHPOHHOI Me-
PEXi; HAaBYAIbHI JaHi.
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