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MATHEMATICAL MODEL OF A VERTICAL-AXIAL
WIND MOTOR IN A VISCOUS GAS FLOW

The development of vertical axial wind turbines in Ukraine is in its infancy for many reasons: the lack of
systematic theoretical and experimental studies of the aerodynamic characteristics of various schemes of wind
turbines, the lack of an appropriate experimental base in technical universities, design organizations,
insufficient number of available publications in foreign literature due to high competition between by
monopoly firms. At present, various numerical methods are widely used to solve urgent problems of aero
hydrodynamics, which are used for the approximate solution of boundary value problems in the form of
differential forms of mathematical models. Their common disadvantages are the particularity and
laboriousness of solutions, high requirements for computing resources, and, as a consequence, the complexity
of solving optimization problems and economic feasibility. These problems can be avoided by using exact or
approximate analytical dependences, which allow solving some urgent problems of studying the interaction of
a viscous gas with the bearing elements of both aircraft and engineering structures. The existing methods for
calculating the aerodynamic characteristics, based on the ideology of the mathematical model of the motion of
an ideal medium without viscous interaction, do not correspond to the real processes and demands of practice.
The article presents the ideology of determining the aerodynamic characteristics of the interacting system of
solid profiles in the configuration of a vertical-axial wind turbine in a viscous gas flow. Based on generalized
vector-tensor analysis, contour integral representations of solutions to the main problem of fluid and gas
mechanics related to the determination of kinematic and dynamic characteristics of interaction have been
constructed. In addition, the existence of a vector potential of the tensor of stresses and deformation velocities
has been proved, reducing, in the simplest cases, the process of determining characteristics to integration. The
limit values of these integral representations are a system of boundary integral equations, allow for elementary
algorithmization, and lead to a system of linear algebraic equations having a single solution.

Keywords: viscous gas; conservation laws; boundary integral equations; system of solid profiles; wind
turbine; aerodynamic characteristics.

Iran and Afghanistan, between the ninth and seventh
centuries BC. They had a vertical axis of rotation, from

Introduction

Wind energy is a field of alternative energy that
specializes in converting the kinetic energy of wind
into electrical energy.

For the best use of wind energy, it is important to
study in detail the daily and seasonal changes in wind
flows, changes in wind speed depending on the height
above the earth's surface, the number of wind gusts in
short periods of time, as well as statistical data for at
least the last 20 years.

Humankind has used wind energy for a long time.
One of the first devices to use wind energy was a
windmill built somewhere in the fifth millennium BC.
In the first century BC, the ancient Greek scientist
Heron of Alexandria invented a windmill that controlled
an organ.

Windmills for processing grain, were invented in
the middle Ages. It believed that the first windmills,
were built in Sistani, somewhere between present-day

six to twelve wings made of linen or poles, and were
used as mills and water pumps.

In recent years, wind energy has been increasingly
used to generate electricity. High-capacity windmills are
created and installed in areas where frequent and strong
winds blow. The quantity and quality of such engines is
increasing every year, their serial production has been
established.

Energy production from renewable (or alternative)
sources around the globe is growing at a rapid pace.
One of such inexhaustible sources of energy on Earth is
the wind.

However, the most common wind turbines today
with a horizontal axis of rotation of the wind turbine
cannot yet exceed the power figure of 5-7 MW, which,
in turn, limits the possibility of reducing the cost of a
kWh to a competitive value. For example, the most
powerful wind turbine of this type put into operation
today with a capacity of five MW was created in
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Germany. It is installed in the North Sea at a depth of 40
m, the blade length of its wind turbine is 61 m, and the
height of the tower is 120 m [1].

At the same time, the power of a wind turbine with
a vertical axis of rotation (VAR) of a wind rotor (of the
Darrius rotor type, but with straight blades) (Fig. 1) can
reach, according to experts, 10 - 30 MW.
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Fig. 1. Three-blade wind turbine

It is possible to enumerate such advantages of these
wind turbines as the independence of operation from the
direction of the wind flow, the possibility of switching
from a cantilever mounting of the wind rotor axis to a
two-support one, the possibility of placing an energy
consumer (electric generator, pump) at the base of the
wind turbine (reducing the requirements for height,
strength and rigidity of the support), simplifying the
design of the blades and reducing their material
consumption (and hence cost), reducing the noise level
of wind turbines and the area of land for its placement,
etc. [1]. In addition, the significant advantages of
vertical-axial layout include:

—the ability to work with very small gusts of wind
from 0.17 m/s;

-noiseless operation and absence of vibration,
which allows you to install the windmill in the
immediate vicinity of the house, or even on the roof;

-system operation does not depend on wind
direction;

-possibility of capacity
disassembly of the whole system;

—resistance to strong, hurricane gusts of wind;

- reliability and durability of the installation.

The ever-increasing interest of scientists and
designers around the world in wind turbines of this type
can be illustrated by the fact that at the 8th World
Conference on Wind Energy held in Canada in June
2008 in the section "Design of wind turbines" all reports
(from the USA, Canada, etc.), were devoted to wind

increase  without

turbines with WWII with straight blades. Intensive
research continues on promising layout schemes for
vertical-axis wind turbines [2].

The process of creating the Ukrainian wind power
industry began in 1996, when the Novoazovsk wind
farm was designed with a design capacity of 50 MW. In
1997, the Truskavets wind farm was put into operation.
In 2000, 134 turbines were already operating in Ukraine
and about 100 foundations were laid for turbines with a
capacity of 100 kW. In 1998-1999, three more new
wind farms began to generate energy.

A significant expansion of the construction of
wind farms has been observed since 2009, after the
introduction of the "Green Tariff" by the Government of
Ukraine.

1. Statement of the problem

Nonlinear aerodynamic characteristics of a vertical
axis engine are determined (Fig. 1). It is assumed that
when flowing around this turbine, aerodynamic forces
arise, leading it to intensive rotation around the vertical
axis. In addition, such an engine design with rectangular
bearing elements has a number of technical and
economic advantages over propeller-type engines. The
rotation of the turbine at a constant speed ® occurs in a
stationary flow of a viscous incompressible fluid inside
the control region (), the choice of the size of which
guarantees the attenuation of the arising disturbances of
the medium (Fig. 2).
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Fig. 2. Plane section of a three-blade wind
turbine in the control area

The fundamental feature of the differential forms
of mathematical models of gas-dynamic processes,
which creates significant difficulties for theoretical
studies, is their non-linearity. That is why, for the
majority of practically important gas-dynamic problems,
existence, uniqueness, and stability theorems for
solutions have not yet been proven. Therefore, the
numerical implementation of computational algorithms
that are widely used now is not provided with an
appropriate correct justification, which, even with a
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large expenditure of resources, does not lead to reliable
results. The theory of flows of viscous compressible
media seems to be one of the most important for
practice and the most interesting branch of continuum
mechanics for mathematical research.

It is no coincidence that J. Leray and J. Schauder
took the first steps in applying the methods of functional
analysis in the problems of viscous flow dynamics, and
recently the Navier-Stokes equations have become one
of the first objects of application of numerical methods.
The theoretical foundations of modern technologies for
studying the flows of viscous continuums were laid

back in the middle of the last century by
O. A. Ladyzhenskaya, J.-L. Lions, R. Temam,
O. M. Belotserkovsky, K. I. Babenko and many

others [3, 4], who also carried out numerical simulation
of the motion of bodies in various media. To date, many
scientists have conducted numerous studies and
obtained many results that are relevant to this work.

Unfortunately, the theoretical research methods
used today and the corresponding application software
packages based on finite-difference approaches are far
from perfect [5], and the results of the fundamental
works of our predecessors (N. E. Kochin, I. I. Lyashko,
B.E. Pobedrya, P.K. Rashevsky, E. Cartan,
V. D. Kupradze and many others) are waiting for their
demand. However, interest in this ideology has recently
been growing (Vector, tensor and the basic equations of
fluid mechanics. R. Aris. University of Minnesota;
publications in Pergamon Press, Springer, Philosophical
Transactions of the Royal Society of London Series A,
Mathematical and Physical Sciences, The Journal of
Fluid Mechanics, AIAA Paper, Acta Mechanica Sinica,
International Journal of Mechanical Engineering and
Automation, Journal of aircraft, NASA cooperative
agreement, NASA Langley research center, etc.).

The most promising method for solving initial-
boundary value problems based on the system of
Navier-Stokes equations or correct linearization is the
method of boundary integral equations [8]. Moreover,
this method is often used to solve a wide range of
applied problems [9, 11]. Reducing the boundary value
problem to a boundary integral equation or to an
adequate system of boundary integral equations allows:

- reduce the dimension of the problem and
consider more complex classes of problems than those
that can solved by other methods;

- immediately determine unknown quantities at
the boundaries, without calculating them in the entire
space of motion; solutions at interior points of the
domain found by integration;

- non-linear problems for differential equations or
their systems lead to a system of linear boundary
integral equations with respect to unknown boundary

values of the sought parameters of the problem or
functions from them;

- to set and solve problems of optimizing gas-
dynamic characteristics by studying their extreme
values.

1.1. Mathematical model

1.1.1. Conservative form of the laws of conservation
of fluid and gas mechanics

The mathematical model of the dynamics of a
viscous gas is the initial-boundary value problem for the
system of conservation laws of continuum mechanics in
differential form [4, 10]. Here we consider a two-
dimensional problem of the motion of a non-heat-
conducting viscous incompressible fluid.

The introduction of dimensionless coordinates
with a characteristic size L and parameters related to the
characteristics of the undisturbed flow, allows us to
represent  the laws of  conservation of
aerohydrodynamics in a conservative form (we restrict

. . 7]
ourselves to studying the stationary case, when o =0

and in the absence of external influences):

opu  Opv
PLLPE L.1)
ox oy
9 2 9 puv — 1y
LY P .
Jox oy (1.2)

0 puv — Txy 9 2

——————+— PV +pP—Ty =0.
| OX oy

Here, in the system of differential equations of the
momentum conservation law (1.2), the components of
the strain velocity tensor are calculated by the formulas
[4, 5, 10]:

2 ou ov ou 2 .
PNVl Sttt it AV
3 Rel ox Oy Re Ox 3 Re
w(ou ov 1.3)
Ty = —| —+— | =Ty :
Y Relay ax)

2 ov  ou ov 2
tyy:—i y R U S VAV
3Rel dy 9Ix Re 9y 3 Re

V. L
at the Reynolds number Re = Poo Yoo = andu, vare
Koo

the components of the velocity vector V in the Cartesian
coordinate system with divergence at a constant density
of the medium - p = const. in (1.1) and the absence of
external sources of mass, 1 is the coefficient of dynamic
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viscosity, depending only on the absolute temperature
T, which in the main problems of aerodynamics can be
considered a constant value.

Here, it is especially necessary to emphasize the
fact that the conservation laws (1.1), (1.2) are the
fundamental physical conservation laws of continuum
mechanics and in the process of their derivation, no
assumptions about the kinematic characteristics of the
medium were involved, which, along with the dynamic
characteristics, are determined in the process of solving
the initial -boundary value problems for this system of
equations.

In practical stationary problems of
aerogasdynamics, it is sometimes possible to assume the
absence of both heat and mass transfer and the presence
of mass and surface forces (although this does not
fundamentally affect the approach developed in the
future). In this case, the conservation equations (1.1),
(1.2) have a conservative form [4, 8, 10], which is
conveniently written in tensor form

V,P =0,

where the tensor P has the form

(1.4)

pu pVv
2
P=1pU™+p-tyy  PUW—Tyy . (L5)
2
PUV=Tyy  PVIHP-Tyy

In what follows, it is expedient to represent the
components of the strain rate tensor in the form of
standard vector analysis operators. Then the expressions
in (1.3) can give the form:

Tyy =T @—&-@
Y T T Relay | ax (L6)
2—+ [Za—V—Q ]
Re oy Re Ox

where in the plane case Q, =(k,Q)= (gi 2;] is the

only component of the vorticity vector orthogonal to the
flow plane.

The system of differential equations of the
momentum conservation law (1.2) in the stationary case
of flow in the absence of body forces has a conservative
form:

1o} o M aou 1o} u(,0u
+P—2——|+—|puW——[2——+Q
ox [p P Reax] 8y[p Re[ dy Z]
1o} ov 0 2 pn ov
w— 2% o, |+ X pv? 4 p—2 T,
6x[p Re[ ox Z]] ay[pV P Reay]

which can be associated with the tensor Il, which can be
expressed in multiple forms:

15
du ul,0ou
m=ili{pu + —21—]+ v—t12Z 10 ||t+
”[p P reax) 1PV Re y ¢
ui(,0 2 uov
+Hifpuv— 22—, ||+ j{pv2 +p-2— 2|t =
Jl[p Re[ 0 Z]] e Re@y]}
Ou u|,0u
2 £ S R o)
B P +p Reox TV Re[ c’)'y+ Z] (L7)
ov n 6V
— 2—79 2—
PV Re[ [0)4 ] pV P Re 6y

and which, by virtue of (1.2), (1.3), (1.6), is symmetric
and conservative, since

0 o M dul 0 u[ ov ]
VI = U +p—2——|+—[pW——|2—-Q, ||i +
lla [p P2 e ix ] ay[p Rel“ox *
du ) wov
L P 2= 0. (1.8
A5 ox P Re 8y 8y[p P Re 8y]} (L)

The coordinate representations of this tensor
I =ill, +jII, fully correspond to the system of

equations of the momentum conservation law (1.2).
Indeed, the vector components of the tensor (1.7)
have the form:
I, =i pu2+p +j puv ,zilei 1,Q;
Re Re (1.9)
m=ipw +jpv?+p 22wl jao;
Re Re

and are conservative in full agreement with equations
(1.8):
o} 2 %}
V., =— pu®+p +— puv —
X Ox p p dy p

DY LN (S

Re Re dy } ’ (1.10)

9 o + L v -
_Bxp Byp

—ZLAV—FLa& =0;
Re Re 9x

Conservative forms of conservation laws (1.8),
(1.10) are convenient to represent as second-order
differential equations [4, 5]:

VI,

V.,V =0=V V,V =0,
V(V,IL, ) =0;

y(v.1L,) -0, (1.11)

v(v,n):o:{

for the solution of which the necessary mathematical
apparatus of generalized vector-tensor analysis is fully
developed [8].
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1.1.2. Theory of generalized hydrodynamic
potentials

Potential theory is a branch of mathematics that
has developed in close connection with the theory of
classical boundary value problems of mathematical
physics (Laplace's equations, heat conduction, wave
equations, and a number of others). Apparently, the first
significant step was associated with the study of
potential flows of an ideal incompressible fluid. The
number of such flows turned out to be quite extensive,
and the available mathematical methods for their study
were almost perfect. However, all attempts to eliminate
the well-known paradoxes within the framework of the
theory of an ideal incompressible fluid were in vain,
which indicated the imperfection of this theory.

Conservatism (1.8) of the tensor (1.7) allows for
the existence of a vector potential W:

M=iipu’+p+jpu +
+jipuv +j pvi+p —2Riev*v+ (1.12)

+ L LQ =V, kk¥ |= VY1 V¥,
Re

1 0
where I =‘0 1‘ - unit tensor and tensor

¥, 0¥,
v oive, +jve, <| X Yo
TV T o, ow | T
ox oy
(0¥, .ov,| .[.0¥, 0¥
=ili + + i +
[ ox ) ay ] ! ox ) ay
is conjugate to a tensor
oy, 0¥y
" ox 8y oy, 0¥y
dy oy
0¥ 0¥
il 2 S|l 2
X X oy oy

Here, the vector components of tensor II (1.9) are
of the form:

I, = V¥,
I, =VY,

—i V¥ ;
-j VY.

(1.13)
(1.14)

From the expressions (1.9), (1.13), (1.14) follow
the following differential properties of the vector
potential ‘¥

) ou v
LI+ I, :pu2+p—2i[a—x+—]+pv2+p=

Re oy
oy, (ov, 0¥y| 0¥, | 0%y 0¥, oy, 0¥y
e X+ 2=+
ox | ox oy By ox oy ox oy
Thus,
oY
V¥ = O +—Y = pvi_2p, (L15)
Ox ay
where V2 =u? + V2.
Further:
i, =k puv—Zi@—iQZ :kdl}’x;
Redy Re oy
- pov, u oy
I k|puv —2—— =—-k—.
[J y} P Redx Re Z] X
Therefore
: . H(ov du u
i IL |+ 00, |=2k—| ——= |-2k—Q, =
[y +[ 3y | Re[ax 8yj Re
| Py 0¥y
ox oy
oYy o¥
and V,¥ =k|—L-Z-X|=0. (1.16)
ox ay

Then from the conservatism of the tensor II (1.12),

taking into account the potentiality of the vector ¥
(1.16), should

vl =0= V,V¥ -V V¥ =

-[v.v,¥]=0. (47

Let us move on to calculating the vortex of the
tensor II:

on, oy
ox oy

v, =k|—

]:-[I,v V. ¥ |, (1.18)

since {V, vy ]z 0, and for vectors from (1.13 — 1.14)

have
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VI, =k ag:y _51;;x]_
=V, iv¥ |=[iV V¥
or,, oI,
V. | =k " ay ]

= v.iv¥ |=[ivvy]

that's why i, V,I, =0; [V, | =0.

It makes sense to represent tensor (1.7)

H—i{i pu2 +p +jpuv fZLVu—EL
3 Re

iV,V +
Re

+%i,9}+j ipuv +j pv2+p —

p 2 p
R vV v,V +— Q
Re 3 Re ! ) }

it is advisable to submit records in invariant form

2 p [
Hepvvarlp—2t yv ot vvy
P {p 3Re } Re

H 2 p
+—1L,Q =pVV+I{p-S V,V |-
Re P {p 3Re }

ot ov-ta,
Re Re

(1.19)
where, unlike the previous one, in a curvilinear
coordinate system, the unit tensor | has the form
I=ss+nn.

Then the vector components of the tensor P can be
written as

HS:vaVJrsp—ZRiaa—V—RL 5,Q ;
€ ;V € (1.20)
u u

o =pv,V+np—2————n,Q.

n TPV e o Re

1.2. Fundamental solutions of differential
operators

1.2.1. Generalized differential operations
of vector-tensor analysis

It should be noted that here of particular interest
are generalized representations of solutions to the main
problems of wvector analysis [6], which are also
associated with differential operators of the form (1.11).
For the first time, a fundamental solution was
constructed as a singular solution to Laplace's

equation [7]. By definition, a singular solution is a
generalized function, i.e. a functional defined on finite
functions. However, in the present case, the singular
solution is locally summable, which significantly
expands the scope of its application and allows you to
get many important results.

For the further development of the method of
boundary integral equations, the solution of boundary
problems of viscous gas dynamics takes place proved in
[8], the following generalized differential operations of
vector-tensor analysis in the case when ¢=¢(x,y) and

=iG, (X, y) +JGy (X, Y)
differential properties:

have the  necessary

Table 1
Basic differential operation of vector-tensor analiz

[Vkko] =[Vokk]=[1Ve]; | (v,[1a])=[V.a];

[V.[kka]]=[V.[al1]]=

_Va-I(va) [I,[V,a]]:v*a—Va;

v(v.a)=(V.V'a)=

[V.[1.a]]=—Kkk(V,a);

=Aa+[V,[V.a]]

Of considerable interest are also generalized
algebraic and differential operations with combinations
of vectors:

[¥.[1G]]= |:(1‘P + iy ).[ KK (iGy + Gy )ﬂ
=[(iey + iy ).k (iGy ~iGy ) | = (iGy + Gy |‘Px+j‘I‘y)—

(G ¥, +Gy‘I’y) GY

where do we have symmetric expressions:

[¥.[LG]]=G¥-1(G,¥),

[G.[LY]]=YG-1(¥,G).  (L21)

Generalizing the well-known formula of vector
analysis for arbitrary vector functions a and b

[V,ab|=hbVa-2aVb-bVa +aVb,onto
the functions of tensor nature, we get
[V, ¥,T |=|V,k W,y — ¥, T, |=

VYl -TV,Y - ¥Vl +¥ V,I =

—[¥, V,T|+[V,¥ I+ V¥ —
~ ¥Vl +¥Y VIl -TV,¥;
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and finally,

V.¥.T|=VY¥Ir -rvy -

(1.22)
- ¥, VI' +%¥ V,I'.

In addition, for (1.21) we have
[V.[G[LY]]]=]V.(¥G-1(¥.G))]=
=[V,¥]G-[¥,VG]-

(1.23)

-[LV(¥,G)]=[V.¥]G-[¥,VG]-
—[I, {6V )w+(w. V*G)}J.

1.2.2. Vector potential of the tensor
of the momentum conservation law

It was shown above that the vector potential ¥ is a
solution to the vector equation (1.17)

[V.[v.¥]]=0. (1.24)

This linear differential operator is self-adjoin, and
its fundamental solution is the solution of the operator
equation

[v.[v.r]]=0 (1.25)
has the form

r=Ip-[Lky], (1.26)

In|r —r|
T

where ¢ = - the fundamental solution of the

X=X

Y—Yo

- conjugate ¢ solution of laplace's equation Ay = 0.
Due to Cauchy-Riemann terms:

Laplace equation, and the function y = Ziarctg
T

¢ _ Oy,
Ty’ Vo =[V,ky];
o oy Vo=Vl o
09 _ oy, |Vy=-[Vke],
oy  ox’
tensor T (1.26) is conservative
(VI)=0<Ve=[V,.ky], (128)

and due to the same Cauchy-Riemann conditions (1.27)
also potential

[V.r]=[V.(lo) ]-[V.[Lkv]] =

(a0 1212 | [uvel)- @29

_{I,(ig—(j + j%ﬂ =[L(Ve)]-[L(Ve)]=0.

1.2.3. Boundary problem of streaming the system
of body profiles VAWT stream of viscous gas

In the stationary case, the law of conservation of
mass, vorticity, momentum and its components (1.11)
have the form:

vV VvV =0 VVQ=0 VVI =0.(130)

It is especially important to highlight the fact that
the tensor I' (1.26) is a fundamental solution of the
differential operator of the second order of equations
(1.30):

V(V.T)=Ar+[V,[V.T]]=1A¢. (1.31)

The differential conservation laws of kind (1.11)
belong to the same class and, by virtue of (1.30), have a
fundamental solution of kind (1.28).

Thus, in order to determine the aerodynamic
characteristics of a certain engine as a whole and each
of its load-bearing elements separately, it is necessary
not just for the laws of conservation of dynamics of a
viscous incompressible fluid (1.30), but also for the
vector potential ¥ of (1.12)

[V.[V.¥]]=0 (1.32)
solve the boundary problem:
Vi|(|-i) =Qkr =Q jx;—iy; , §=iX; +]Jy; ;
V|(2) =V, =const,; 133

Q) =0 Q) =0

Plig) = Pno
with respect to the profiles of scalar pressure p
distributed along the boundaries, and vortex -

———], which  determine the force
oy

interaction of the turbine with the operating
environment. Here, in the flat case, the velocity vector

V Xy =iutjv.
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1.3. Generalized integral theorems
of vector-tensor analysis

The basis of the method of boundary integral
equations — it is integral representations of the solution
of corresponding boundary value problems, since the
boundary integral equations are the limiting values of
such representations.

The application of integral theorems of vector-
tensor analysis is based on the existence of fundamental
solutions of the corresponding differential operators of
the mathematical model. Fundamental solutions are well
known for second-order differential operators with
constant coefficients, such as Laplace, Cauchy-
Riemann, wave, transfer [6]. In the present case, such
operators are expressions from (1.25) and (1.31):

[V, v.r|=0;
vV V.l =0

(1.34)

1.3.1. Green's formula for the differential operator
of the vector potential

Performing standard integration by parts of a
combination of operators from (1.25), (1.32) [6, 8] in a
closed domain E:

[[ [v.v¥|r - ®[v,VI|dE -0=
= [[ [v.v¥|r- vy, vr +

+ V¥,V — ¥V, V,I'| dE=

:ff v, V¥ T]+[¥, v.r] dE=

=¢ n v+ vr] d=o

we get Green's generalized formula:

55 n[V.¥.I] - ¥[n, V.| di=0, (135
L

where L = JE is the closed boundary of domain E.
Using the differential expressions from Table 1.
([V.¥]=0,[V.T']=0), we have:
n|V,¥,T| = n¥ VI —[\P,Z—F]—
n
(1.36)

-nI' V¥ +[a—‘P,I‘].
on

And since

Sf N[V, ¥,T| dl:SLE{ n¥ VI _[W,Z_E]_

-nI' V,¥ +[3—‘P,F]}dlzo.
an
Then
§ [nve|r—¥wnvr| d=

ar or

on  oOn

}d.:

oY oY T

——nV,¥Y —+n V,¥
on

*

or or

¥Y,—-nV,I' —+n V,T
on on

il

But (see (1.22))

fofvowra=¢ll2E nvw |-
L L2
(1.37)
w2 Ly vr }dI:O,
n
and [, V,‘I’]:a,—‘ll—a—\l’:o. (see (1.16) and then
on  on
%—T—n V,¥ = n, kKk,¥ = nII (see  (1.12),
n
V., =0, V,¥ =-—pV?—2p. Therefore, Green's

formula (1.37) for operator b (1.34) takes the final form:

§ n[ver-whvr] d=

- gf{ nI,T —[‘I’,Z—E]}dl =0.

1.3.2. Generalized Green's formula
for the conservation differential operator

(1.38)

Obviously, the basic conservation laws, written in

a conservative form (1.30), can be represented in vector
form of second-order differential equations:
V(V,a)=0; V(V,B)=0, (1.39)

where vector a and tensor B are related to the study of a

specific law of conservation of continuum mechanics.
Then
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(V.((V.2)B))=(V.a)(V.B)=(V(V.a),B),
Similarly,

(v.(a(V.B)))-(V.a)(V,B)=

and
(a(V(v.B)))=(V.(a(V.B)))-(V.a)(V.B).
From here we have
(a(V(V.B)))-((V(V.a)).B)=(V.(a(V.B)))-
(v a)(v,B)—(V,((V,a)B))+(v,a)(V,B) =
B

- (V.(a(V.B)))~(V.((V.)B)).

Integrating this expression in the bounded domain
E, we obtain a second generalized Greene formula for
operators in (1.39):

ff V, V,aB — V,aV,B dE=
. (1.40)

=¢ VanB-na VB d
L
And returning to natural quantities (a= N, B =T),
we have:

f V,.a nB —na V,B dl.
L

g§ V.II nT — oI V,I dl=0.
L

(1.41)

\Y

In the case of a vectora=<Q ,

I;

application, this formula can be converted using the

integral formula (1.40) to Green's formula for the
differential operator in (1.39):

951 na V,I' — nI V,a dI:f {n, V,a],F —
(L) (L)

[ (1.42)
da or
— a,{n, V,F} —[%,F]—i—[a,%]}dl,
where [V,T'] =0 (see (1.29)).

for further

2. Integral representations of solutions
of a boundary value problem of viscous gas
flow around a system of thick airfoils
VAWE

To the original system of differential conservation
laws

ou  ov 0

ox oy

| o poul 0
u"+p-2——|+—
[p P Reax] ay P

ox

0 W, 0v 0| »
—|puv——[2=—Q, |[|+=—|pv* +p-2——
c’)x[p Re[ ox ° 8y[p P Re ay
it is also necessary to attach the vector potential ¥
tensor of stresses and velocities of deformations (1.7),
taking into account the law of conservation of mass:

uv—“[ZZ;-I—QZ]

Re

p ov

o ory B
m=pvw+lp2tvvit o=
Py P e Re 2.2)

=V, kk,¥ [=V'¥Y-1V,¥.
The values sought here are scalar characteristics:
pressure — p and swirling — QZ = o, as well as vector

potential ¥
Green's generalized formula (1.38)

¢ {((n,n),r) - (‘I’,Z—E)}dl ~0, where [\y,g_m _

(L)

_pl®

p -, k]éﬂ due to the known properties of the
n n

double layer potential Z—(P [6, 7], leads to an integral
n

representation of the solution of the equation (1.24)

Y= 4) {((n,n),r) —(‘I’, Z—Ej}dl . (2.3)

(L
As for the conservation laws (2.1), then the
justification formula Grin (1.42)

‘(}g{ o"a or

—l"Jr[a,a—]]dI:O, leads to an integral
n
(L)

on’
representation of the solution:

-

(L
which for specific physical vectors takes forms:

V:—g§{ n,v,v],r +[g—:,r]+[v,@] dl; (2.5)

n,v,alr +[%,r]+[a,g—g] dl, (2.4)

an
(L)
o- —25){ [, v,2],T +[g—f,r]+[9,g—gudl; (2.6)
m zf{ n, v, | T +[%,r]+[ni,g—§”dl, @7

(L
where in (2.5), in accordance with the expression (2.2),
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O=pVV+Ip——1[Q —-2—VV = \
P P Re Re n,v p7+p ,k\lf =
=V kk, ¥ |=V¥-1 V¥ ;
(2.8) 2 2
n,Q:[n,V,V}: = knxi pv—+p—nyi pv_+p Ky | =
Re v R agy| 2 ox| 2
== v Vnp 225 -8 v Kk
p On v2
In  this way j; n,v p7+p ,rdl =
(L)

which allows the last term, containing W, integrated into
parts. Indeed,

§ n[v. kk¥] T di=
(L)

(L)

(L

where the curvilinear integral with the kernel as a

tangent derivative of a simple layer [n,Ve] is a

N[V, ki¥ | o~ n[V, k¥ | ky| di=

nV(p ‘l’+ n,Vy k¥ dl,

continuous function.

In representation (2.6) summand [n, V,Q] in
agreement with the momentum conservation law (1.8),
(1.10)

2

\Y;
nVip—+
Pz p

o[ V. |+ 2-n v.]=0,

since n,Q = n,ko =0, has the form

Rel olo¥ (o]l
P35

nVv.Q|=-—=nV av,, (29

where the first term admits integration by parts. Really,

§ [nv.e|rd--ref 1 +9Vn’lr
(L) (L) B \%

It follows

(L)

2
nv p"7+p dl.

2

nv pv7+p r|d

ﬁﬂo
P

odl— ¢

(L)

n,v dl=

-

(L)

, Io— Lky

2

v 2
—+
Pz p

-¢ Pt

(L)

nv nv K [dI.

vl
PZ ¢

y

Here |n,V

n |

2

v 2
—+
92 p

v
P

—n,Vo

and

dl and integral representations

2

(L)
of solutions have the final form:

A W (2.10)
oV ar
- nVy k¥ —|==T —|trdh
vy [an ]* a]H
Q——j; EnV ﬁ—kp -
= Vo |p
(L (2.12)

oQ or
——V Qr I Q —(tdl;
+[a ]*[ an]}

w- cﬁ{(pvﬂvﬂp—%[n,g]—

(L) (2.12)
o aVJr —[ arj dl.
Re on an
Here it is necessary to use the well-known formula
of vector analysis
oV

—=n,V V:l VvV nV
on 2

[N V.V]-[V,Vn]+n V.V -V V,n =

~[V.nVv]-

—1 VWV, + VK, [V, V,n]+V Vin
2

Then, when V =sV; +nV,

8—V:n,VV—1 n ov, , n 9V
on 2 H on  Hg 0s
0 V,H
bl 2V L OV s JOVHs g
Hy ds H, on HsH, on
0 V,H
#]{v, V.n]+V V,n
0s

Conclusions

The development of the theory of vertical-axial
wind turbines in Ukraine is in its infancy for many
reasons: the lack of systematic theoretical and
experimental studies in wind tunnels and in full-scale
conditions of various WOVD schemes, the lack of an
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appropriate experimental base in technical universities,
a small number of publications in foreign and domestic
literature.

Existing mathematical models for calculation of
the aerodynamic and operational characteristics of
vertical-axial wind engines, as a rule, are based on
linear approximations of the conservation laws of fluid
and gas mechanics, which does not allow to fully take
into account the drag forces caused by the viscous
interaction of the flow with the streamlined elements of
the engine, and also do not take into account the change
in the speed of the oncoming flow along the rotor or
take into account changes in several planes (by analogy
with the horizontal-axis wind turbines). Improving
accuracy of the velocity field calculation in front of the
rotor of the vertical-axial wind engine can be useful in
the design of rotors VAWE, the choice of optimal
geometric parameters and modes of operation of the
VAWE.

The presented work is just devoted to the
construction of such a mathematical model based on a
complete, nonlinear system of conservation of fluid and
gas mechanics, the integral form of which allows,
firstly, to set an arbitrarily oriented oncoming flow, and
secondly, to vary both the number of bearing
elementary profiles, and their shape, orientation and
overall dimensions of the VAWE.

The main advantage of the work is, based on the
correct generalization of the apparatus of vector-tensor
analysis, an integral representation of solutions to the
boundary value problem of flow around a system of
airfoils. Moreover, the corresponding system of
boundary integral equations is linear and allows for
convenient algorithmization for the numerical
implementation of the computational process, making it
possible to determine not only the total aerodynamic
characteristics of the structural elements and the engine
as a whole, but also distributed ones, such as pressure
and friction.
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MATEMATHUYHA MOJEJIb BEPTUKAJIBHO-OCHOBOI'O BITPOIBUT'YHA
Y IIOTOLI B'A3KOI'O I'A3Y

0. I1. boopsaxkosa, A. O. I'ynoaps, C. 1. Isanos, I0. O. Kpawanuuys,
L O. Pyouk, O. B. Cepoun, /I. I. @eduenxo

PO3BUTOK BEpTHKaJIbHO-OCHOBUX BITPOJIBUTYHIB B YKpaiHi 3HaXOAWTHCS B 3apOJKOBOMY CTaHi 3 0arathbox
MpUYUH: Bi}]C}’THiCTB CUCTEMATUYHUX TEOPETUYHUX Ta CKCIICPUMEHTAIbHUX JIOCJ'li)I)KeH]) aepozmHaMquHx
XapaKTEePUCTUK PI3HUX CXeM BITPOTYpOiH, BIACYTHICTh y TEXHIYHHUX YHIBEPCHUTETaX IPOEKTHHUX OpTaHi3alisx
BiJIMIOBITHOT €KCIIEPUMEHTANILHOI 0a3M, HEeNOCTATHsS KUIbKICTh JOCTYMHHX MyOmikauiid y 3apyOibxHil JiTepaTypi
4yepe3 BHCOKY KOHKYPEHIiIo (ipMaMu-MOHOMoOJicTaMu. B ganuii 4ac il BUpIIICHHS aKTyaJbHUX 3aBJaHb
AeporiJpoIMHAMIKH LIMPOKO 3aCTOCOBYIOTHCS PI3HI YMCENbHI METOIH, IO 3aCTOCOBYIOTHCS Ul HAaOJMKEHOro
BUpILIICHHS KpaloBUX 3aqad y BHIUsAL AudepeHiianbHux (GopM MaTeMaTHYHHX MOJENed. X 3araJlbHUMHU
HEJIOJIKaAMH € YaCTKOBICTh 1 TPYJIOMICTKICTh PillieHb, BUCOKI BUMOTH JI0 OOYMCIIOBAILHUX PECYPCIB 1, SIK HACII/IOK,
CKJIQJIHICTh BHPIILICHHS 3aBJaHb ONTHMI3allii Ta eKOHOMI4HOI nomiIbHOCTI. L{Ux mnpoOiieM MOXHA YHHKHYTH,
BHUKOPHCTOBYIOYHM TOYHI 200 HaONIDKEHI aHANITHYHI 3aJIe)KHOCTI, SKi JO3BOJSIFOTh BHUPINIYBATH JIESKI aKTyalbHI
3aBJIaHHS JIOCIIKCHHS B3a€MOJIIT B'A3KOr0 ra3y 3 HECYUYMMH €JIEMEHTaMU JIITaJbHUX arapaTiB, TaK 1 IHKEHEPHUX
cnopy/. [cHyr04Yl METOMKU PO3paxyHKIB aepoIMHAMIYHUX XapaKTePUCTHK, 3aCHOBAHI Ha 1/1€0NIorii MaTeMaTHYHOT
MOJIETII PYXY 1/IealbHOTO CepeloBHIa 0e3 B'A3K0i B3a€MOJIii, HE BIJIOBIAIOTH PEALHUM IpOLEcaM Ta 3allUTam
MPaKTHKHA. Y CTATTi MPEJCTAaBIICHA 1/ICOJIOTisS BU3HAYCHHS aePOJJMHAMIUYHHUX XapaKTEePHCTHK B3a€MOJIIIOUO0i CUCTEMH
TiJecHUX mNpoduIB y KOH(Irypamii BepTHKaJIbHO-OCHOBOTO BITPOABHMI'YHa B MOTOII B's3koro rasy. Ha 06asi
y3arajibHEHOr0 BEKTOPHO-TEH30PHOI'0 aHaIli3y MOOY/I0BaHO KOHTYPHI 1HTErpasbHi PeICTaBICHHS PillIeHh OCHOBHOI
3a/aul MEXaHIKM PIJUHU Ta Ta3y, MOB’s3aHOi 3 BU3HAUCHHSIM KIHEMATHYHUX Ta ITUHAMIYHUX XapaKTePUCTUK
B3aemoii. OKpiM LOT0, JOBEJCHO ICHYBaHHS BEKTOPHOTO MOTEHIialy TeH30pa HAMpPYT 1 IBUAKOCTEH Aedopmaltiii,
SKAA 3BONUTB, Y HAHNPOCTINIMX BHIAJKaX, NPOLEC BH3HAUCHHS XapaKTEPHCTUK MO IHTErpyBaHHsA. | paHH4HI

3HAUeHHS LHX IHTErPAJbHUX IPEACTaBIeHh — CHCTEMAa TIPAaHMYHUX IHTETPAIbHUX pPIBHSAHB, L0 JIOIYCKA€E
eNIEeMEHTAPHY AJTOPUTMI3AIlil0 1 MPHU3BOIUTH JI0 CUCTEMH JIIHIHHUX anreOpaldHUX pPIBHSHb, IO MAIOTh €IUHUN
PO3B’SI30K.

KiarouoBi cioBa: B'si3kuii ra3; 3aKOHM 30epeXeHHS; TPAaHWYHI IHTErpalibHi PIBHAHHS, CHCTEMa TUICCHUX
poditiB; BITPOABUTYH; aepOJUHAMIYHI XapaKTEPUCTUKH.

MATEMATHYECKAS MOJEJIb BEPTUKAJIBHO-OCEBOI'O BETPOJIBUT ATEJIA
B IOTOKE BS3KOI'O I'A3A

E. II. Boopaxosa, A. O. I'ynoaps, C. H. Heanos, 10. A. Kpawmanuua,
U. A. Pyoux, A. B. Cepoun, /1. H. @eduenxo

Pa3BuTHE BEepTHKAIBHO-OCEBBIX BETPOABUraTENeH B Y KpanHe HAXOANUTCSA B 324aTOYHOM COCTOSTHAU 110 MHOTHM
NMPUYMHAM:  OTCYTCTBHE  CHCTEMAaTHYECKMX  TEOPETHYECKMX M  OKCIIEPUMEHTANbHBIX  HCCIEIOBaHHI
a’pOANHAMUYECKUX XapaKTEPHCTHK Pa3JIMYHBIX CXEM BETPOTYpPOMH, OTCYTCTBHE B TEXHHUYECKHX YHHBEPCHTETAaX
MIPOEKTHBIX OPTaHM3AIMAX COOTBETCTBYIOIIEH SKCIEPUMEHTANBHON 0a3bl, HEOCTATOYHOE KOJIUYECTBO AOCTYITHBIX
MyONMKanui B 3apyOeXHOW JIHTepaType W3-3a BBICOKOM KOHKYPEHIMH MEXTy (HUpPMaMH-MOHONONHCTaMH. B
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HACTOSIIIIEE BpEeMs JUIS PEIICHUS AaKTYalbHBIX 3a7ad adpOTHIPOAMHAMUKU MIMPOKO TPUMCEHSIOTCS pa3IHYHbIC
YHUCJICHHBIC METOJBI, MIPUMEHICMEIC U MPUOIMKEHHOTO PEIICHHs KPaeBBIX 3a1ad B Bujae auddepeHIraIbHbIX
dbopM MaTeMaTHUeCKHX Mojened. VX oOmuMHU HEeIoCTaTKaMu SBISIOTCS YACTHOCTh M TPYAOEMKOCTH PEIICHHIA,
BBICOKHE TpeOOBaHMS K BBIYHMCIUTEIBHBIM pECypcaM U, KaK CIICACTBUE, CIOKHOCTh PEIICHUS 3a1a4 ONTHMHU3AINN U
SKOHOMMYECKOU MEeNeco00pa3HOCTH. DTUX MPOOJIeM MOXKHO H30€XKaTh, UCIONB3YS TOYHBIC WM TPHOIMKCHHEBIC
AQHAJIMTHYCCKUE 3aBHCUMOCTH, KOTOPBIC IO3BONIIOT peEIIaTh HEKOTOPHIC aKTyaJbHBIC 3aJlaud HUCCICTOBAHHUS
B3aUMOJICHCTBHS BS3KOTO Ta3a C HECYIIMMH 3JICMEHTAMH KaK JICTATCNBHBIX AamllapaToB, TAK W HHXCHEPHBIX
coopyxeHuil. CyIIECTBYIOIME METOAUKH PACYCTOB ad3pPOJAMHAMHUYCCKHX XapaKTCPUCTUK, OCHOBAaHHBIC Ha
UICOJIOTHH MATEMATHYCCKOH MOJNEIU JBWKCHUS WACATBHOW cpeasl 0e3 BSI3KOrO B3aWMOJICHCTBHUSA, HE
COOTBETCTBYIOT PEajbHBIM IIpoIleccaM M 3alpocaM TPAKTHKH. B cTaThe MpencTaBlicHa HICONOTHS ONPEACICHHUS
AIPOTMHAMUYCCKUX XaPAKTCPUCTUK B3aUMOJCHCTBYIONICH CHCTEMBI TEJNEeCHBIX Npodmicd B KOHPHUTyparmu
BEPTHUKAJIHHO-OCEBOIO BETPOJBUTATENS B IIOTOKE BI3KOTO Ta3a. Ha 0a3e 000OMIEHHOTO BEKTOPHO-TEH30PHOTO
aHaJIN3a MOCTPOCHBI KOHTYPHBIC HHTETPAIbHBIC MPEICTABIICHHS PEIICHUA OCHOBHOM 3a7]aui MEXaHHUKH KUIKOCTH U
rasa, CBA3aHHOH C ONpENeICHUEM KHHEMAaTHYeCKHUX W JMHAMUYCCKHX XapaKTePHCTHK B3amMojneicTBus. Kpome
3TOro, JOKAa3aHO CYIISCCTBOBAHHE BEKTOPHOI'O IOTCHI[MAa TEH30pa HANpPSDKEHWH W CKOpOCTeH nedopmanuii,
CBOIAINIMN, B TPOCTEHINNX CIIydasx, MPOIECC OMPENEICHUS XapaKTePHCTHK K WHTEerpupoBaHuio. [IpenenbHbie
3HAYCHUS 3TUX HMHTCTPAJBHBIX TMPEICTABICHUNA — CHCTEMa TPAHUYHBIX WHTETPAIBHBIX YpPaBHEHUH, IOMYyCKaeT
JJIEMEHTAPHYIO aJrOPUTMHU3ANMUI0 M TMPHBOAUT K CHCTEME JIMHCWHBIX alreOpanuyecKux YpPaBHCHUH, WMEIOIIUX
€IMHCTBEHHOE PEIIICHHUE.

KiroueBble cjIoBa: BS3KHIA Ta3; 3aKOHBI COXPAaHCHUS, TPAaHWYHBIC WHTCTPAJbHBIC YpaBHEHHS, CHCTEMa
TEJECHBIX MPOQUIIEH; BETPOBUTATEIh; adPOTUHAMUYCCKUEC XaPAKTCPHUCTHKH.
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