Koucmpykuuﬂ U npodYHoOCmMb A6UAUUOHHBIX osuzameinei u IHEP2O0YCMAHOBOK

51

UDC 631.7.04-197:631:7.019.13
V. 0. POVGORODNY

National Aerospace University named after N. Ye. Zhukovsky “KhAI”, Kharkov, Ukraine

INVERSE PROBLEMS OF THERMOELASTICITY
FOR RECTANGULAR PLATES

New inverse thermoelasticity problems for frictionally interacting layers have been formulated, in which un-
known thermal loading (temperature of boundary surface and intensity of frictional heat flux) has been deter-
mined using additionally given vertical displacements of one of the outer boundary surfaces. The functional
spaces, for which the problems are well-posed, have been found. The method for solving the problems has
been suggested and numerically verified with the use of the solution of the direct problem. This paper deals with
the determination of heating temperatures and temperature distributions on the upper surface of a thin rectan-
gular plate, (defined as —a/2 <x < a, —b/2 <y < b/2). The expressions of the heating temperatures and tem-
perature distributions have been obtained in series form, involving Bessel’s functions with the help of the inte-
gral transform technique. Thermoelastic deformations have been discussed and illustrated numerically with

the help of temperature and determined.
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INTRODUCTION

The inverse thermoelastic problem consists in the
determination of the temperature heat flux on the
boundary surfaces of the solid body when the conditions
of the displacement and stresses are known at some
points of the solid under consideration.

The problem at issue was studied by many scien-
tists: Grysa & Cialkowski (1980), Grysa & Kozlowski
(1982) investigated one-dimensional transient thermoe-
lastic problems and derived the heating temperature and
heat flux on the surface of an isotropic infinite slab. The
problems of normal deflection of an axisymmetrically
heated circular plate in the case of fixed and simply
supported edges were considered by Boley & Weiner
(1960). Further, Roychoudhuri (1973) succeeded in de-
termining the normal deflection of a thin clamped circu-
lar plate due to ramp-type heating of a concentric circu-
lar region of the upper face. Ishihara & Noda (1997)
considered the theoretical analysis of thermoelastoplas-
tic deformation of a circular plate due to partially dis-
tributed heat supply.

In this paper, we have based our calculations on
Roychoudhari (1973) and analyzed the thermoelastic
deformation on the upper surface in a thin circular plate
exposed to heating. The results, obtained in series form
involving Bessel’s functions, are illustrated numerically.

ANALYSIS

Consider a thin circular plate of radius a and thick-
ness b defined as 0 <r < a,—b/2 <z < b/2. The plate is

initially of zero temperature.

The thermal stressed state of electronic plates un-
der known initial-boundary thermal and mechanical
conditions can be investigated with the use of well-
known methods, such as [1-3].

However, for electronic plates, the information on
thermal loading is often available only on some part of a
surface due to the limited access that makes an arelevant
thermoelasticity problem ill-posed. To determine a
thermal mode and thermal stressed state of the block’s
electronic plates in this case, it is possible to use addi-
tional information and to converse the initial thermoe-
lasticity problem to the inverse one [4,5]. The problem
of determining the mathematical and mechanical char-
acteristics of plate material is also important. The
mathematical and mechanical characteristics of the plate
material are often considered as to be constant values in
calculations. In reality the mathematical and mechanical
characteristics depend on many factors, such as normal
loading, temperature of plates, Young’s module, Pouis-
son’s coefficient, etc., which are also changeable in the
case of non-stationary process. In this paper is shown
that the problem of finding the pattern law of the ther-
mal stress and temperatures under known boundary and
initial conditions can be solved by using additionally
measured horizontal and vertical displacements of one
of the outer boundary surfaces of the electronic plates,
that is by solving of the inverse problem. Using the
found time change of the thermal stress...... and known
sliding velocity and contact pressure, it is possible to
determine the time change heat flux intensity, which is
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required for adequate calculation of the electronic plates
and for the choice of rational operating modes.

CHALLENGE

Let us consider a two-dimensional model of the
electronic plates. We assume that the lower surface of
the first plate is elastically fixed, while the second plate
is moving with variable speed over the first one and is
pressed to it. As a result of plate motion on the contact
surface, heat is formed. The intensity of the heat flux
equals the specific power of mechanical forces. The
mechanical contact of plates is assumed to be ideal and
the thermal (heat) flux is considered to be non-ideal.
Within the assumed framework, we need to solve the
following problems:

— (1) unknown thermal loading on the fixed surface
of the electronic plates at given temperature and
vertical and horizontal displacements of the other
boundary surface;

— (2) time change of the temperature’s range (inten-
sity of heat flux) using additionally known hori-
zontal and vertical displacements of the outer
loaded boundary surface of the electronic plates
under given initial and boundary thermal condi-

tions;
— the inverse thermoelasticity problems involve two
parameters — thermal loading (temperature of the

boundary surface) and heat flux intensity — that are de-
termined by displacements of the boundary surface.

METHODS & DISCUSSION

In this paper we have relied on equations of the
correspondent problem of thermoelasticity for the elec-
tronic plates consideration [3]. We have based our cal-
culations on horizontal and vertical displacements of the
second plate in the form of dependence of temperature
of each plate upon the distribution. The temperatures of
plates have been found with the help of the Laplace in-
tegral transformation of dependences on loading thermal
factors and take into account that the displacements of
the outer boundary surface of the second plate are
known, we will obtain the convolution type of Volterra
integral equations of the first kind

i=12 (1)

To determine the unknown function with the time
moment In equations (1) F denotes known functions
presented by the prescribed displacements and func-

tions, which are given in the boundary and initial condi-
tions, are known kernels.

The investigation of the kernel has shown that it is
possible to find the unique continuous stable solution to
problem (1) using the Laplace integral transformation, if
input functions (displacements, temperature of the sur-
face, intensity of the heat flux) are twice continuously
differentiable from space. This means that in the indi-
cated functional spaces problem (1) is well-posed. Inte-
gral equation (1), which corresponds to problem (20,
can be reduced to the Volterra integral equation of the
second kind with the kernel of integrable singularity.
The unique continuous stable solution of the obtained
equation can be found by the method of averaged func-
tional corrections [6]. In this paper the inverse problem
is well-posed if input functions (displacements, tem-
peratures of surfaces) are continuously differentiable
space. The obtained solutions of the formulated prob-
lems allow us to investigate the change of functions in
time during the whole period of plates as well as de-
pendence of the plates on the determinined parameters
of the process (such as sliding velocity, contact pres-
sure, temperature of contact surface, Young’s module
and Pouisson’s coefficient).

NUMERICAL VERIFICATION

For the steklotekstolit’s STEF plate the suggested
method for solving the formulated problems has been
numerically verified. For this purpose, we havepre-
scribed boundary thermal conditions and determined the
time change of horizontal and vertical displacements of
the outer boundary surface of the plate as a solution of
the appropriate direct contact thermoelasticity problem.
The found displacements are approximated by cubic
spline with accuracy and have been used as given in
inverse problems. Using the suggested approach, we
have determined the solutions of inverse problems — the
boundary surface temperature (problem (1)) and the
coefficient of heat flux (problem (2)). The comparison
of the found solutions with the functions given in direct
problems has shown that the maximal relative deviation
of the solutions from the appropriate known functions
does not exceed in problem (10 and in problem (2). This
provides evidence of satisfactory accuracy of obtained
inverse problems solutions. It should be noted that
smaller of the error of horizontal and vertical displace-
ments approximation leads to the decrease of relative
deviation that numerically confirms the stability of ob-
tained solutions.

CONCLUSIONS

Within the framework of the two-dimensional
model of the temperature stress of electronic plates, new
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inverse thermoelasticity problems have been formu-
lated, in which unknown thermal loading (temperature
of the outer boundary surface, heat flux) is determined
by the additionally known time change of horizontal and
vertical displacements of one of the outer boundary sur-
faces.

The method for solving the formulated problems
has been suggested based on their reduction to the
Volterra integral equations with further use of the
Laplace integral transformation and the method of aver-
aged functional corrections.

On the basis of the analysis of the formulated
problems, the functional spaces in which the problems
are well-posed have been determined.

For the electronic plates, the numerical verification
of the suggested method for solving the formulated
problems has been performed, which has confirmed its
efficiency.
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OBPATHBIE 3AJTIAUU TEPMOYIIPYTOCTHU AJISI TIPAMOYI'OJIBHBIX IIJIACTUH
B. O. I1ogzopoonui

HoBeie oOpatHble 331241 TEPMOYIPYrOCTH I (GPUKIIMOHHO B3aMMOJECHCTBYIOIIUX CIIOEB OBUTH C(HOPMYIIH-
poBaHbl. B 3TnX 3amayax Hew3BecTHasl TEIUIOBas Harpyska (TemIiepaTypa TPaHUYHOW MOBEPXHOCTU M MHTECHCHB-
HOCTB ()PUKIIMOHHOTO TEIUIOBOI'O IOTOKA) ObLIa ONpeesIeHa C UCTIOIb30BAHUEM JIAHHBIX BEPTUKAILHOTO CMELICHUS
OJTHOM W3 BHEIIHUX IPaHUYHBIX MMOBEpXHOCTeH. DyHKIMOHAIBHBIE IPOCTPAHCTBA, JJIsl KOTOPBIX OOpaTHBIE 3a/lauu
KOPpPEKTHBI, ObUIN HalfeHbl. BbuT mpeanoxkeH crmocod penieHus oOpaTHBIX 3a1ad U IPOBEPEH C UCIIOIb30BAaHHEM
MHOTOKPaTHOT'O PEIIEHHS MPSIMOH 3aa4u. JTa CTaThsl MOCBSIIEHA ONpeEIeNIEHHIO TEMITEpaTyp HarpeBa U pacrpese-
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JICHUsI TEMIIEpaTyp Ha BEpXHEW MOBEPXHOCTH TOHKOW MPSMOYTONBHOMN TUIACTHHBI (onpeaenseMoi kak -a /2 <x < a,
-b /2 <y <b/2). Belpaxenus TemrepaTyp HarpeBa M pacrpeeieHuss TeMIeparyp ObUTH HOJY4eHbl B BUJIE PAJia,
BKitouast pyHkimy beccenst ¢ moMoisio nHTErpagbHOro npeodpasoBanus. Tepmoynpyrue nedopmaryu Obun 00-
CYXXJIEHBI U IPOHJUTIOCTPUPOBAHBI YUCIEHHO C TIOMOIIBIO YUCIEHHBIX METOJIOB OIPEEIICHHs] TEMIIEPATYD.

KaroueBsbie cioBa: obparHas 3amaya, oOpaTHas repexojHas (yHKIMs, TEpMOYyIpyras jaedopMarus, Ipsmo-
yrojibHasl IIacTUHA

OBEPHEHI 3AJIAUI TEPMOIIPY KHOCTI AJISI IPSAMOKYTHHUX IIJIACTUH
B. O. IIoszopoonin

Hogi obepHeHi 3ama4i TepMONPYXHOCTI U1l (PPUKIIHHO B3a€MOJiOYHMX mapiB Oynu chopMmynaboBaHi. B mux
3aJjauax HEBiJIOMe TEIIOBE HaBAaHTAXKEHHs (TeMIepaTypa rpaHHYHOI TOBEPXHI Ta IHTEHCUBHICTh (DPUKIIIHHOTO TeTl-
JIOBOTO TTIOTOKY) OYJIO BU3HAU€HE 3 BUKOPUCTAHHSM JAaHUX BEPTUKAJIBHOTO 3MIIIEHHS OJIHIE€T 3 30BHILIHIX I'paHWY-
HUX MOBEepXOHb. DyHKIIIOHANBHI MTPOCTOPH, LI KOTPUX OOEpHEHI 3ajaui KOpeKTHi, Oynu 3HaiiieHi. byB 3anpomo-
HOBaHMH 3aci0 BUKOPHCTaHHS OOEPHEHMX 3aJiad Ta INEepeBipeHUI 3 BUKOPHCTAHHAM 0araTOKpaTHOrO BHPIIIEHHS
npsiMoi 3aaadi. L[ crarTs mpucesiueHa BU3HAUSHHIO TEMIIEPATyp HAarpiBy Ta pO3IMOJIUICHHIO TEMIIEPAaTyp Ha BEpXHIi
TIOBEPXHi TOHKOI NPSIMOKYTHOI TJIACTUHU (sIKa BU3HAYAEThCS sIK -a / 2 <X <a, -b/2 <y < b /2. BupaxxeHus temrie-
patyp HarpiBy Ta pO3IOJiIEHHS TeMIepaTyp OyJu ojepikaHi y BUIJIsAL psay, BpaxoByrouun ¢yHkuii becens 3a no-
TIOMOT'OI0 1HTETPaIBHOTO TepeTBOpeHHs. TepMorpyxHi nedopmaltii Oynu po3mIsIHYTI Ta IPOITIOCTPOBaH] YUCETBHO
3a JIOIIOMOTOI0 YHCEBHUX METOIB BU3HAUECHHS TEMIIEPATYD.
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IUIaCTHHA

IoBropoanuii Baagumup OsieroBu4 — KaHJ. TeXH. HayK, JOLEHT Kadeapbl TEOPETHIECKONH MEXaHUKH, Ma-
LIMHOBE/IEHHUsI 1 poOOTOMEXaHUIECKUX CUCTeM HallmoHanbHOro a’pokocMuueckoro yHuBepcurera «XAI», Xapb-
KOB, YKpauHa, e-mail: povgorod@ukr.net.

Povgorodny Vladimir Olegovich — Candidate of Technical Science, Associate Professor of Department of
theoretical mechanics, machines and robotomechanical systems, National Aerospace University named after
N. Ye. Zhukovsky “KhAI”, Kharkov, Ukraine, e-mail: povgorod@ukr.net.



