98 ISSN 1727-7337. ABUAIIMOHHO-KOCMMNYECKAS TEXHUKA U TEXHOJIOI'USA, 2015, Ne 9(126)

UDK 621.452.32.001.57
A. SUMTSOYV, K. SZURMAN

UNIS, a.s., Division Aerospace and Advanced Control, Brno, Czech Republic

MODEL BASED DESIGN APPROACH APPLIED ON THE DEVELOPMENT
OF THE ENGINE MONITORING MODULE

The development of the aerospace industry nowadays is focused on continuous monitoring of equipment. The
outputs of the monitoring algorithms can be used for planning the maintenance with respect to operative
modes and conditions. In such systems, the device that monitors particularly the engine is usually referred to
as the Engine Monitoring Module (EMM). The Model Based Design (MBD) approach and its application on
the development process of EMM are described. Using this approach a dramatic development time saving is
acquired. Monitoring algorithms are implemented in Matlab/Simulink environment and the final software is a
combination of hand-written and automatically generated C code.

Keywords: FADEC, engine monitoring, MBD, Matlab, Simulink, code generation.

Introduction

One of the main differences between conventional
preventive maintenance and the application of monitor-
ing systems is the approach to the planning. The former
relies on time-based scheduling of maintenance actions,
whereas the latter enables condition-based practice. A
complex view into the health of each aircraft of the fleet
is granted and upcoming component problems are indi-
cated in advance. This means that operators are pro-
vided with all the necessary information to make bene-
ficial maintenance-related planning decisions.

Small problems that can be easily fixed like imbal-
ances, faulty installations or starting gear and bearing
degradation are indicated. The operator then focuses the
maintenance on these easily fixable things and prevents
the problem to develop and cause collateral damage to
the aircraft.

The monitoring system allows both quick intuitive
on-board real-time troubleshooting and on-ground com-
plex in-depth data processing. Trend analysis tools help
to detect the root of emerging problems and minimize
the troubleshooting time, greatly reducing the no-fault-
found component removals.

The Engine Monitoring Module (EMM) develop-
ment process described in this paper took place during a
collaborative aerospace project under Efficient Systems
and Propulsion for Small Aircraft (ESPOSA). UNIS,
a.s. company contribution part was to develop a Full
Authority Digital Electronic Control unit (FADEC) for
an aircraft engine AI450-BE2+.

The FADEC itself consists of four modules — two
redundant Electronic Control Units (ECUs), the EMM
unit and a Vibration Monitoring Module (VMM). ECU
units are in charge of engine control where the one is
active and the second performs the same functionality
but its actuators do not control, the VMM acquires data

from vibration sensors around the engine and it also
detects overspeed of a free turbine and gas generator.
Dangerous vibration and overspeed situations are han-
dled by the ECU algorithms and the EMM carries out
the monitoring and diagnostics tasks.

In this paper, the system requirements for the
EMM are introduced and the process of development of
the EMM with the use of the Model Based Design
(MBD) is described. Moreover, implemented software
architecture and proposed interface between hand-
written and generated MBD tasks are presented. Finally,
the process of generating the C source code from Simu-
link models is presented and benefits of the MBD ap-
proach are summarized.

1. Requirements

The EMM is designed to complete the following
tasks:

— the module continuously monitors the values of
defined engine parameters and signals. It processes
these signals and values of parameters according to the
algorithms described below and send results to the crew.
This monitoring and processing takes place both while
the aircraft is on the ground and during the flight;

—the module continuously checks if the monitored
parameters are in the defined range. The range for the
measured parameters can be defined both statically and
dynamically according to the change in flight mode;

—the module detects faults and damage that can af-
fect decisions of the crew concerning the control of the
aircraft during the flight and the actions of maintenance
crew during the on-ground after-flight service;

—forming messages of the “event” type concerning
faults and the damage of the engine and its systems and
sending them to the cockpit;

—detection of flight modes for later use in deter-

© A. Sumtsov, K. Szurman

ﬂeuzameﬂu U IHEP2O0YCMAHOBGKU AIPOKOCMUUECKUX J1emamelbHblX annapamoe 99

mining the wear-off of the engine;

—calculating sum flight durations for limited
modes and the total sum flight duration for the engine in
hours and cycles;

—determining the engine's slow-down time after it
is switched off;

—processing the data for on-ground maintenance
and trend analysis diagnostics of the flow system of the
engine.

The input signals and parameters of the EMM are
being previously validated using the reliability criteria
defined for the built-in validation check system. If the
input signal in a given sample is detected to be faulty,
the last validated sample is used for the algorithm proc-
essing.

2. Hardware

The EMM module is based on a hardware platform
which is used also for the ECU units considering modu-
lar approach applied on the FADEC development.

The platform consists of three digital cards: pe-
ripheral, control and communication. Each digital card
contains except of specific hardware equipment and
peripherals given by defined functionality also TI
tms320F28335 microcontroller (MCU) which is respon-
sible for execution of implemented software. Digital
cards are interconnected through a Controller Area
Network (CAN) bus where a data and control parame-
ters are transferred. The control card controls start and
operation states of other digital cards.

3. Software

For software development a combined approach
was chosen to implement the demanded functionality of
the EMM by hand-written source code and source code
generated and developed through the MBD approach.

Software was implemented in C programming lan-
guage according to ANSI C90 standard conforming to
software standard MISRA-C 2012 for safety-critical
systems.

3.1. Software architecture

Software equipment for all digital cards of the
EMM is based on the same architecture. This architec-
ture and its basic layers are shown in Figure 1. The core
of the software architecture consists of card framework
which implements simple operating system with a
scheduler. Low level system initialization and functions
for operation with the MCU’s peripherals are imple-
mented in the peripheral drivers’ layer.

The scheduler periodically executes system and
application tasks. Application tasks can be implemented
in hand-written software modules or in software mod-

ules generated from models
Matlab/Simulink during the MBD.

developed in

Application layer generated from MBD

Application layer with specific
handcoded funclionality

Card framework Scheduler

Peripheral drivers

Figure 1. Basic software architecture layers

Before the card framework is started, an initializa-
tion sequence and low level configuration of the digital
card must be performed. Then, execution of application
tasks specific for the given card is started.

3.2. Scheduler

After the initialization sequence is finished, the
scheduler starts the periodic execution of scheduled
tasks which were added during the initialization se-
quence. The execution of all tasks is performed in the
scheduler’s loop.

During the scheduler execution, the timer TIMER2 is
counting up to TASK TIMER PERIOD VALUE. When
the timer counter is equal to this value, a global counter is
incremented in an interrupt routine. The scheduler checks
the deadlines of all tasks. A task is executed when its
scheduled deadline is met. After a task execution is fin-
ished, a new task deadline is calculated.

Clear timer counter and

scheduled tasks info

Run all tasks scheduled to
3 Try to schedule next tasks the time slot and reset their

Run IDLE task

IDLE task "scheduled" flag,

exists?

Remove marked
tasks.

Tasks marked for
removal?

Scheduled tasks
exist?

Figure 2. Main scheduler loop

Figure 2 shows the state diagram implemented by
the scheduler. The scheduler supports dynamic adding
and removing of tasks. Nevertheless, the scheduler
executes a static sequence of tasks added during the
initialization. An idle task or low power MCU mode is
not used.

100 ISSN 1727-7337. ABUAIIMOHHO-KOCMHMNYECKAS TEXHUKA U TEXHOJIOI'US, 2015, Ne 9(126)

3.3. Generated source code integration

Generated source code and software modules from
MBD are integrated into the software architecture on the
two levels. Function which are supposed to be executed
periodically are generated in a form of task which can
be directly added into the scheduler queue. Then, these
application tasks can use functions from the software
architecture e.g. for reading of inputs.

Therefore, we defined unified interface which define
a function name mapping between software modules
implemented by a hand for the card specific functional-
ity and generated software modules. It is formed by
card gets.h and card sets.h header files. An illustra-
tive diagram is shown in Figure 3.

(F:arc:i(_;et Application layer
Card Specific T unctions H* SW Modules
SW Modules 4 Generated from
o € Cagset | e
Functions

Figure 3. Interface between the card specific functions
and generated functions from MBD

4. Model based design and generated
tasks

There are three main tasks in the EMM system.
Tasks are called according to the card they are run on.
These are the peripheral card task, the communication
card task and the control card task.

The role of the peripheral and communication cards
can be called supportive. The control task is the one that
runs the top level — most important from functionality
point of view — algorithms.

In this chapter I will briefly go through the periph-
eral and communication cards tasks, and then have a
closer look at algorithms that are run on the control
card.

4.1. Peripheral card task

There are raw analogue signals from the sensors
voltage and raw discrete input signals entering the algo-
rithm. This task reads raw electrical values, validates
them and provides the shavings detection algorithm.
The inputs are transferred into the control card through
the CAN bus. The outputs of the peripheral card are
generated according to demands of the main algorithms
in the control card which are received via the CAN bus.

As the name suggests, the card purpose is to manage
the communication, signal harvesting and control of the
peripheries. This card takes the input signals and ac-
cording to the sensor specification turns the electrical
signal into a physical interpretation. Along with the

mentioned conversion process the validation process
takes place. The code running in this card also detects
and generates the corresponding error flags of electrical,
range, gradient and channel errors of the inputs.

4.2. Communication card task

This task runs on 100Hz and services communica-
tion with redundant ECU channels through an ARINC
interfaces. The task periodically transmits the EMM
data and parameters to both of ECU channels.

First, the card task communicates with the VMM
through the CAN bus and CANAerospace application
protocol and reads acquired data from vibration sensors
around the engine and speed of a free turbine and gas
generator. These data are sent to the control card to
process and evaluate by the main EMM algorithms.

Then, evaluated engine monitoring parameters and
other data are received from the control card through the
CAN bus. These data are processed and converted to a
form compatible with ARINC communication protocol
and sent to the ECU units.

Simply put, the communication card takes input sig-
nals from other modules, decodes, regroups and pre-
pares again them for other two tasks to be used as in-
puts, then takes these task’s outputs, regroups again
them, code them back and sends them to other modules.
The most important challenge of this task is to make the
coding/decoding receiving/transmitting as efficient as
possible.

4.3. Control card task

This task reads data from the VMM module received
by the communication card and data from the peripheral
card received through the CAN bus. Then, the task
executes the EMM functionalities and evaluate acquired
parameters of the engine.

This task runs several subsystems — modular algo-
rithms — that will be described closely further into this
chapter. These are:

—Emm_counter — it manages the calling of other
sub-algorithms;

— AKO1 — Engine modes detection;

— AKO02 — Gas dynamics parameters monitoring;

— AKO03 - Oil system monitoring;

— AKO04 — Fuel system monitoring;

— AKO5 — Number of starts and duration of start se-
quence monitoring;

— AKO06 — On-ground engine slow-down time moni-
toring;

— AKO07 — Wear-off calculation algorithm;

— AKOS8 — Data gathering algorithm for the purpose
of on-ground maintenance of the flow system.

ﬂeuzameﬂu U IHEP2O0YCMAHOBGKU AIPOKOCMUUECKUX J1emamelbHblX annapamoe

101

i

12

<u16_idx>
DO_u16_idx == 8—@
b_enable1Hz1
Counter100 o BO_b_enable1Hz1
== 16| V.(2)
b_enable1Hz2
Bitwise 4% BO_b_enable1Hz2
W M0 16_last1idxDigit #| Bealehn b ble50H; <
u16_last1idxDigi | enable50Hz C)
2 _ . - BO_b_enable50Hz

P DI_u16_number

DI_u16_divider DO_u16_remainder

k-l

DivisionRemainder

DI_u16_number

DI_u16_divider DO_u16_remainder

F
\ 4

DivisionRemainder1

~ i@
b_enable5Hz

u16_div20Rem
- - BO_b_enableSHz
6%
==0 4
b_enable20HzOdd @
- BO_b_enable20HzOdd

P73

u16_divBRem =

b_enable20HzEven
- BO_b_enable20HzEven

Figure 4. Trigger generating algorithm implemented in Simulink model

The task itself is called periodically at 100 Hz, Dif-
ferent algorithms listed above are supposed to run on
frequencies of 1, 5, 20 and 50 Hz. There is subsystem
enabling counter algorithm used to call different algo-
rithms at desired frequencies (Figure 4). In fact it is a
simple counter which is continuously incremented and
is reset when 100 is reached. To generate a certain fre-
quency of triggering the value of the counter is either
compared to a number (1 Hz), or is divided with the
remainder that is compared to a number (5, 20 Hz), or
the last bit of the value of the counter is checked on
oddity (50 Hz).

Parameters of this algorithm are chosen to mini-
mize the load on a processor by calling different sub-
algorithms non-simultaneously.

engine operative?

gas generator no

speed over 5%7
max. fuel
pressure check
+ fuel min. sensor
fuel filter fail check
clog check
fuel min, fuel filter clog

sensor fail check

pressure check
[I

exit

Figure 5. AK04 flowchart diagram

Each sub-algorithm is implemented in Matlab Simu-
link as a Stateflow diagram. Figure 5 shows the flow-
chart diagram representing the fuel monitoring algo-
rithm. Every time the subtask is triggered, it is sequen-
tially executed and corresponding signals are sent out.

5. Code generation sequence

In this chapter code generation method used during
the project is briefly described. Some suggestions on
model adjustments are given and things to avoid when
creating Simulink model for the purpose of automatic C
code generation are listed.

Each task represents a separate functionality and it
is created with a standardized interface. The top level
algorithms are generated and are embedded into a hand-
written low level microcontroller interface containing
drivers and a scheduler. This approach is inevitable in
case the target hardware is not supported by the Embed-
ded Coder or if non-standard drivers or scheduler are
required.

The approach gives us full control over the code
and an unlimited ability to update or improve the code.

5.1. Implementation

During the implementation phase, the module's al-
gorithms are converted from a Simulink model to the
target platform source code in C language. This can be
done with the use of Matlab Coder and Simulink Coder
toolboxes. There is also a possibility of using the Em-
bedded Coder Toolbox to generate the entire code in-
cluding the scheduler and drivers for a specific micro-
controller. This toolbox includes a set of blocks that
provide the hardware interface in the model.

The appearance and the behavior of the final gen-
erated code is highly influenced by many factors, such
as the model architecture, settings and constructions,
signal data types or the storage class definitions. Be-
cause the target code is highly model-dependent, it is
necessary to use certain constructions and keep strict
model-designing rules and standards. If we didn't keep
them, the generated code would lack legibility, compre-
hensibility, traceability to the source model and a stan-
dard interface for connection with other source code
parts.

102 ISSN 1727-7337. ABUAIIMOHHO-KOCMHMNYECKAS TEXHUKA U TEXHOJIOI'US, 2015, Ne 9(126)

With Matlab Simulink, the generated C source
code can be easily traced back to its origin if it was
modelled in appropriate way. From the other side, au-
tomatic transformation of the Simulink model into un-
derstandable C source code can be quickly checked.
Moreover, the Matlab Simulink can be integrated with
the Polyspace tool for static code analysis to check
compliance with the MISRA-C 2012 rules and for ab-
sence of a dead code and runtime errors.

Conclusion

The monitoring systems’ introduction was given
and requirements were shown for a particular monitor-
ing module. The Model Based Design approach use was
shown. The C code automatic generation procedure was
suggested and some hints were given.

Overall the automatic generation of the C source
code and MBD approach is the current trend in aviation
development with its origin in flexible altering the soft-
ware and its time-saving fundamentals. Also this ap-
proach is anchored in RTCA/DO-178C aviation stan-
dard. Since 2013 it is used by certification authorities
such as FAA, EASA and Transport Canada.

Acknowledgments

This work was supported by FP7 EU project
ESPOSA — “Efficient Systems and Propulsion for Small
Aircraft”, grant agreement no. ACP1-GA-2011-284859.

References

1. UTC Aerospace Systems, Health and Usage
Management Systems (HUMS) [Electronic resource]. —
Access mode: http://utcaerospacesystems.com/cap/
products/Pages/health-usage-management-
systems.aspx. — 12.04.2015.

2. US Joint Helicopter Safety Implementation
Team, Health and Usage Monitoring Systems Toolkit,
2013 [Electronic resource]. — Access mode:
http://www.ihst.org/portals/54/Toolkit HUMS.pdf.
—12.04.2015.

3. Sumtsov, A. SW development and HIL testing
for engine monitoring module [Electronic resource] /
A. Sumtsov. — Brno : Brno University of Technology,
2015. — 65 p.— Access mode: https://dspace.vutbr.cz/
bitstream/handle/11012/39389/2015 DP_Sumtsov_
Artem_108123.pdf?sequence=1&isAllowed=y.
—12.04.2015.

Iocmynuna 6 pedaxyuro 2.06.2015, paccmompena na peokonneeuu 22.06.2015

Penen3enT: 1-p TexH. HayK, mpod., 3aB. Kad. KOHCTPYKUMHM aBUanuoHHbIX nsurateneid C. B. Enmdanos,
HarmmonaneHslil aspokocMudeckuid ynuBepcuteT uM. H. E.)KykoBckoro «XapbkoBCKuUil aBUAITMOHHBIN HHCTUTYT».

NPUMEHEHUWE MOJEJBbHO-OPUEHTUPOBAHHOI'O TPOEKTUPOBAHU A
JIJISI PASPABOTKH BJIOKA YIIPABJIEHUS CAMOJIETHOI'O JIBUTATEJIS

A. Cymuyos, K. Illypman

PasBuTHe a’3pOKOCMHUYECKOM MPOMBIIIICHHOCTH B HACTOSIIEE BPeMsl COCPEIOTOYCHO Ha HEMPEPHIBHOM MOHU-
TOpUHTe OOOPYHOBaHUs. Pe3ynbTaThl aJlrOpUTMOB MOHHTOPHHTAa MOXKHO HCIIONB30BaTh IS IUIAHHUPOBAHUS
TEXHUYECKOTO OOCITY)KUBAHHS B COOTBETCTBHHU C ONEPATUBHBIMU PSKUMAMH M YCIOBUAMH. Y CTPOMCTBO, KOTOPOE
KOHTPOJIMPYET MapaMeTphl IBUTATENA, OOBIYHO HA3BIBACTCS MOIYJIEM KOHTPOJISA JBHTaTeNls. B craThe onmucaH MOJ-
XOJI MOJICJIbHO-OpUCHTUPOBAaHHOTO npoektupoBanus (MOII) Ha npuMmepe pa3pabOTKU aJrOpUTMOB KOHTPOJISI JBU-
rarenst. VCmonb30BaHUE A3TOrO IOAXOJMA IO3BOJISET COKPATHTh CPOK pa3pabOTKU. AJTOPUTMBI MOHHUTOPHHIA
paspaboransl B cpeme Matlab/Simulink. ®uHampHOE mNpoOrpaMMHOE OOECIICUEHHE SBIACTCS COYCTAHUEM
aBTOMATHYECKU F'eHEPUPYEMOTro U HAIMCAHHOTO Bpy4yHYyIo kKona C.

Karouesnie ciioBa: FADEC, koutpons aurarersi, MOII, Matlab, Simulink, renepupoBanue kozaa.

3ACTOCYBAHHA MOJEJIBHO-OPIEHTOBAHOI'O ITPOEKTYBAHHSA
JJIAA PO3POBKU BJIOKA KEPYBAHHA IBUT'YHA JIITAKA

A. Cymuyos, K. Illlypman

Po3BHUTOK aepOKOCMIYHOI ITPOMHCIIOBOCTI Y MOTOYHHUH Yac 30CEpPEPKEHHH Ha Oe3lepepBHOMY MOHITOPHHIY
obnasHaHHs. Pe3ynbraTi ajdropuTMiB MOHITOPHHTY MOXKHa BUKOPHCTOBYBATH IJIS TUIAHYBaHHS TEXHIYHOTO 00CIy-
TOBYBaHHS BiJITIOBIJIHO IO OMEPAaTHBHUX PEXKUMIB 1 yMOB. [IpuCTpii, SIKHil KOHTPOJIIOE MAapaMEeTPH JIBUTYHA, 3a3BH-
Yyaii Mae Ha3By MOMAYJIb KOHTPOJIIO JBHTYHA. Y CTATTi OIMHUCAHO MiAXiJ] MOAEIHHO-OPi€HTOBAHOTO IPOCKTYBAHHS
(MOII) Ha npuKIai PO3pOOKH aJrOPUTMIB KOHTPOJIO NBUTYHA. BHKOPHCTAHHS IHOT0 MiAXO0IY O3BOJSIE CKOPOTH-
TH TEPMiH PO3POOKH. ANTOPUTMU MOHITOPUHTY po3poliieHo y cepenoBuiii Matlab/Simulink. dinansHe nmporpamue
3a0e3neueHHs € croydeHHsIM Koy C, sIKHid TeHepYeThCS aBTOMAaTHYHO 1 HAIIMCAHUH YPYUHY.

Kmiouosi cioBa: FADEC, xonTtpons asuryna, MOIT, Matlab, Simulink, renepyBanns xomy.

Sumtsov Artem — MBD developer at UNIS, a.s., Division Aerospace and Advanced Control, Brno, Czech
Republic, e-mail: asumtsov(@unis.cz.

Szurman Karel — Embedded software developer at UNIS, a.s., Division Aerospace and Advanced Control
Brno, Czech Republic, e-mail: kszurman@unis.cz.

