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A FLEXIBLE FAULT CLASSIFICATION FOR GAS TURBINE DIAGNOSIS

Diagnostic algorithms that use gas path measurements and models are capable to diagnose not only different
faults of the gas path itself but also malfunctions of measurement and control systems. Since the variety of gas
turbine fault conditions is great, they are joined in a limited number of classes. Different principles to create
these classes are known and there are many fault classifications in practice. In an investigation stage, it is dif-
ficult to predict what classification will then be applied in a real monitoring system therefore the investigators
usually experiment with different fault types and fault numbers. The present paper proposes the approach that
allows simple creating multiple classification variations including complex and realistic fault classes. This ap-
proach also permits easy changing between the variations and the pattern recognition techniques applied for
each variation. As a result of application of each technique to each classification, probability of correct diag-
nostic decisions and execution time are determined. They are criteria of diagnosis efficiency. In this way, the
approach allows studying the influence of fault classification on diagnosis efficiency. The paper performs such
a study for a power plant for natural gas pipelines. Twelve classification variations are analyzed with the use
of three recognition techniques: Multi-Layer Perceptron, Radial Basis Network and Probabilistic Neural Net-
work. Additionally, a new boundary for fault severity is proposed and investigated by comparing three bound-
ary options.
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Introduction

In modern gas turbine health monitoring systems,
diagnostic algorithms based on gas path analysis may be
considered as principal. They analyze gas path meas-
ured variables and are capable of identifying different
faults and degradation mechanisms of gas turbine com-
ponents (e.g. compressor, turbine, and combustor) as
well as malfunctions of the measurement system itself
(sensor errors).

The fault identification algorithms widely use the
pattern recognition theory and, in the last three decades,
the use of many recognition techniques has been re-
ported: first of all, Artificial Neural Networks [1], and
also Bayesian Approach [2], Support Vector Machines
[3], and nonparametric methods [4]. The necessary fault
classification is mainly constructed by using a gas path
mathematical model. It relates gas path monitored vari-
ables with special fault parameters that shift a little the
performance maps of engine components (compressors,
turbines, burner and others). The maps of each compo-
nent can be shifted in different directions therefore the
model is capable to simulate all possible engine faults
and degradation mechanisms.

Fault classes of two types are generally created us-
ing the model. A class of single faults of varying sever-
ity is formed by changing one fault parameter while a
class of multiple faults is formed by independent vary-
ing of two or more fault parameters. The classification

structure (faulted engine, type of classes, and their num-
ber) depends on many factors. Even for the same en-
gine, the classification can vary a lot. Investigating
diagnostic algorithms, it is difficult to predict what
classification variation will be finally used in a real
monitoring system. For this reason, some more probable
classification variations are usually analyzed.

In our previous studies [2, 4, 5], only two rigid
variations were considered: a classification with only
single fault classes and a classification with only multi-
ple fault classes formed by two fault parameters.

The purpose of the present work is to investigate
how the classification influences gas turbine diagnostic
accuracy. To this end, a flexible fault classification is
proposed. The procedure that realizes this classification
allows easy creating any new classification variation
that can be more complex and more realistic then the
classifications previously analyzed. Twelve variations
have been prepared for examining in this paper.

The procedure also permits simple choosing the
variation to be currently examined. For this fault classi-
fication, many fault patterns are generated and diag-
nosed by one of three neural networks: Multi-Layer
Perceptron (MLP), Radial Basis Network (RBN) and
Probabilistic Neural Network (PNN). For each network,
a probability of correct diagnosis is finally determined
to be criteria of diagnostic accuracy. Using these criteria
and execution time as an additional criterion, the net-
works are compared within each classification variation.
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Such an analysis allows better choosing the best diag-
nostic technique. An average probability provided by
the three networks allows comparison of classification
variation. An optimal classification structure can be
found as a tradeoff between this probability and the
width of coverage of possible component faults.

The paper also introduces and studies a new boun-
dary for fault severity. With this boundary, the fault
class description becomes more realistic thus providing
more accurate diagnosis.

1. Gas turbine models
1.1. Nonlinear thermodynamic model

This thermodynamic model computes a (mx1)-
vector Y of gas path monitored variables as a function of

avector U of steady state operational conditions (control
variables and ambient conditions) as well as a (rx1)-

vector ©® of fault parameters, which can also be named
health parameters or correction factors depending on
addressing problems. Given the above explanation, the
thermodynamic model has the following structure:
Y=F(U,0). (1)
There are various types of gas turbine deterioration
and faults such as fouling, tip rubs, seal wear, erosion,
and foreign object damage. Since such real defects occur
rarely during maintenance, the thermodynamic model is a
unique technique to create necessary class descriptions.
To take into account the component performance changes
induced by real gradual deterioration mechanisms and

abrupt faults, the fault parameters © that shift a little the
components’ maps as shown in Fig.1.

Mathematically, the model is a system of nonlinear
algebraic equations reflecting mass, heat, and energy
balance for all components operating under stationary
conditions.

A

Pressure ratio

Air flow

Fig. 1. Compressor map shifting by the fault parameters

The thermodynamic model for steady states has
wide applications in gas turbine diagnostics. First, as

shown before and in more detail in [5], this model is
used to describe particular faults or complete fault clas-
sification. Second, the thermodynamic model is an inte-
gral part of numerous diagnostic algorithms based on
system identification such as described in [6]. Third,
this nonlinear model allows computing simpler models,
like a linear model used in [7] and in the present paper
to create flexible fault classifications.

1.2. Linear static model

The linear static model presents linearization of
nonlinear dependency \?zfz (@) between gas path

variables and fault parameters determined for a fixed

operating condition U . The model is given by a vecto-
rial expression:

8Y = H30 . )
It connects a vector 80 of small relative changes of

the fault parameters with a vector 8Y of the correspond-
ing relative deviations of the monitored variables by a
matrix H of influence coefficients (influence matrix).

Since linearization errors are not too great, about
some per cent, the linear model can be successfully
applied for fault simulation at any fixed operating point.
However, when it is used for estimating fault parame-
ters by system identification methods like in study [6,8],
estimation errors can be significant. Given the simplic-
ity of the linear model and its utility for analytical
analysis of complex diagnostic issues, this model will
remain important in gas turbine diagnostics.

2. Methodology for gas turbine diagnosis
2.1. Deviations

By direct analysis of the variables themselves it is
difficult to discriminate performance degradation effects
from great changes due to different operating modes. To
draw useful diagnostic information from raw recorded
data, a total gas turbine diagnostic process usually in-
cludes a preliminary procedure of computing deviations.
The deviations are defined as differences between
measured and engine baseline values. As the baseline
depends on an engine operating condition, it can be

written as function \?0 (U) usually called a baseline

function. With this model the deviations for each moni-
tored variables Y;;_; , is computed in a relative form:

sy, il _Y‘)i(U), 3)
Yoi (0)

*
where Y; denotes a measured value.
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2.2. Diagnostic space

As mentioned before, models are used in gas tur-
bine diagnostics to describe engine performance degra-
dation and faults and the deviations are employed to
reveal the degradation influence. These deviations are
written in relative form and normalized so as to facili-
tate simulating faults and their subsequent recognition.
At a steady state, the deviation is defined for i-th meas-
ured variable as:

¥, (0,60 +56) - Yo; (0.6,

Z: = —
Yoi (U= @)o)GYi

1

; “4)

where oy; is the amplitude of possible random fluctua-

tions in the original deviation SYi* . To take into ac-

count possible measurement errors, the vector € of
random variables distributed within the interval (-1,1) is
added. A resultant vector

7' = (z+¢) (5)
corresponds to the deviations that are calculated in prac-
tice for actual measurements.

2.3. Principles for developing classification

Engine faults vary considerably. Hence, for the pur-
poses of engine diagnostics this variety has to be broken
down into a limited number of classes. In the pattern rec-
ognition theory, it is often supposed that an object state D
can belong only to one of q present classes

Dy, Dj....,D,. 6)

Consequently

q
ZDJ =1 and P_]#l(DJ/Dl)zo (7)
j=1

We accept this hypothesis for a gas turbine fault
classification.

Fault classifications can contain two different
types of fault classes: singular or multiple classes. The
first type works with only one fault parameter while the
second one is formed by independent changes of two or
more fault parameters in order to represent more com-
plex faults in gas turbines.

For each class, singular or multiple, numerous pat-

terns Z are generated according to expression (4) set-
ting the necessary quantities 8®j and g; by the uni-
form and Gaussian distributions accordingly. A typical
number of patterns per class is 1000. A totality Zj of

all classification’s patterns is employed to train the used
neural network and is therefore called a learning set.

2.4. Recognition decision making

A nomenclature of possible diagnosis d;, dz,...,dq

made by a recognition technique (neural network within the
present paper) corresponds to the accepted classification (6).
To make a diagnosis d, a criterion R = R(Z*, D) specific
for each technique is introduced as a measure of membership

of a current pattern Z" in class D i - To determine the func-

tions R; =R(Z*,Dj) , a learning set Z; 1is used. After

calculating all values R i j=1,q, a decision rule
d=d; if Ry =max(R;,Ry,... Rq)  (8)
is applied.

2.5. Recognition accuracy

To verify a recognition technique determined with
the help of the learning set, one more set is required.
The necessary set Zy, , called a validation set, is created
in the same way as the set Z;, . The only difference is

that other series of random numbers is generated to

simulate fault severity and errors in the deviations.
Every pattern in the validation set belongs to a

known class. Comparing this class Dj with the diagno-

sis dj, we can compute probabilities Pdy; = P(dl /Dj)
and compose a confusion matrix (Table 1). Its diagonal
elements Pd, form a vector P of true diagnosis prob-
abilities that are indices of classes’ distinguishability.

Mean number of these elements — scalar P — character-
izes total engine diagnosability. No diagonal elements
are wrong diagnosis probabilities. They help to identify
the causes of bad class distinguishability. For 1000
patterns per class, the computational precision of the
mean probability P is approximately +£0.01. In order to

enhance the precision, each calculation of P is repeated
in the present study 100 times, each time with new se-
ries of random numbers. The 100 corresponding random
values of P are averaged, resulting in a probability P,,
with higher precision of +0.001.

Table 1
Confusion matrix
Di ) Classes
iagnosis D, D, |..]| D
d; Pd;; | Pd;» Pdq
d, Pd,y; | Pdy, Pd,,
dg Pdg | Pdgy | ... | Pdgq
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3. Pattern recognition techniques

Three different artificial neural networks described
below have been chosen in the present study for gas
turbine fault recognition.

3.1. Multi-Layer Perceptron (MLP)

The MLP is a feedforward artificial neural network
model that maps sets of input data onto a set of appro-
priate outputs. It consists of multiple layers of nodes in
a directed graph, with each layer fully connected to the
next one. Except for the input nodes, each node is a
neuron with a nonlinear activation function (Fig. 2).
When the perceptron is applied to a classification prob-
lem, each output £ gives a closeness measure between

the analyzed input pattern Z and a class Dy .
f1
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Fig. 2. Typical MLP structure

During the learning, unknown weight coefficients
and biases are determined by a back-propagation algo-
rithm, in which a network output error is propagated
backwards to correct these unknown quantities. They are
corrected in the direction that reduces the error unless a
global error minimum is reached. The back-propagation
algorithm needs differentiable transfer functions and they
usually are of a sigmoid or linear type. MLP is a modifi-
cation of the standard linear perceptron and can distin-
guish data that are not linearly separable

3.2. Radial Basis Network (RBN)

A RBN is an artificial neural network that uses ra-
dial basis functions as activation functions. The output
of the network is a linear combination of radial basis
functions of the inputs and neuron parameters. A radial
basis neuron operates as follows. Neuron's weight coef-
ficients form a weight vector that is one of learning
patterns. First, a distance between the weight vector and

an input vector Z is computed. This distance is then
divided by a bias b resulting in an input n to a radial
basis transfer function (RBF). The RBF finally com-

putes a neuron’s output according to an expression

n

? . When the distance is 0, this function has a
maximum value a =1. The function decreases when the
distance increases. The bias b allows changing an action
area (window) of the neuron and is called spread. The
output layer of the RBN works similarly to a usual per-
ceptron output layer with a linear transfer function.

a=¢

3.3. Probabilistic Neural Network

A probabilistic network, specific type of radial ba-
sis networks, is specially intended for classification
problems. It consists of three layers. The hidden layer is
formed and operates just like the same layer of the RBN
algorithm. It is built from learning patterns united in a
matrix W. Each learning pattern w; i specifies a center

of the RBN of one hidden neuron. A Euclidean distance
Lj between the function center w; i and the input pat-

tern Z is firstly computed. The distance L; divided by

the spread b is a hidden neuron input. A radial basis

function fj; then calculates a neuron output

-L{?/b?

ajj=fjj=e . The closer the input vector is situ-

ated to the neuron center, the greater the neuron output
will be. Thus, elements of a vector a; indicate how
close the input pattern is to the learning patterns.

The output or classification layer differs from the RBN
output layer. Each classification neuron corresponds to one
of the analyzed classes. An input of the classification neuron,
which is interpreted as a probability of this class, is com-
puted as a sum of the signals a, i related with the learning

patterns of the same class. In other words, each hidden neu-
ron is connected with only one classification neuron and
connection weights are equal to one. To realize such a con-
nection, a matrix W, is composed in a particular way from
zero and one elements and a product W,a, is computed. It
is an input vector for the classification layer and consists of
probabilities of all considered classes. Finally, the classifica-
tion layer transfer function f, producesa 1 corresponding to
the largest probability, and 0's for the other network outputs.

Thus, the PNN classifies the input vector Z into a specific
class on the basis of a probability measure.

4. Calculation conditions

The approach and three neural networks described
above were applied for diagnosing a turboshaft stationary
power plant with a free turbine intended for driving a cen-
trifugal compressor in natural gas pipelines. Five compo-
nents of the engine are diagnosed: inlet device, axial com-
pressor, combustion chamber, compressor turbine and
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power turbine. An engine operating point is given by a
constant compressor rotational speed 10700 rpm and stan-
dard atmospheric conditions. The six gas path variables of
Table 2 corresponding to an engine standard measurement
system are available for monitoring. To simulate gas path
and measurement system faults, the eighteen fault parame-
ters from Table 3 are involved.

Table 2
Monitored variables
Number Variable* Symbol
1 Compressor pressure P,
2 Turbine pressure P,
3 Compressor temperature T,
4 Turbine temperature T,
5  |Power turbine temperature Tyt
6  |Fuel flow Gy

* component pressures and temperatures correspond to a component
discharge section

Table 3
Fault parameters
Number Fault parameter Symbol
1 Compressor air flow 0G,
2 Compressor efficiency e
3 Turbine gas flow 0G;
4 Turbine efficiency o
5 Power turbine gas flow OGy
6 Power turbine efficiency Myt
Combustion chamber pressure
7 00
recovery factor
8 Combustion efficiency Mee
9 Inlet pressure loses factor dGi,
10 Compressor pressure oP,
11 Turbine pressure oP,
12 Compressor temperature OT,
13 Turbine temperature OT,
14 Power turbine temperature 0Ty
15 Fuel flow 0Gg
16 Inlet pressure oP;,
17 Inlet temperature 0T,
18 High pressure turbine speed Oy

On the basis of the fault parameters specified in Ta-
ble 3, the next section introduces various fault classifi-
cation variations.

5. Fault classification variations

With the intention of studying the influence of the
fault classification structure on final diagnostic accu-
racy, twelve fault variations are introduced. These varia-
tions contain different class quantities, fault parameters,
fault development directions (positive or negative) and
engine components. These variations are specified in
Table 4 and additionally briefly described below.

— Variation 1: It has nine singular classes formed
by gas path parameters whose changes are negative;

— Variation 2: It is formed by four multiple

classes with two gas path parameters per class and
grouped by an engine component: compressor, turbine,
power turbine and combustion chamber (Fig. 3);

— Variation 3: The combination of variation 1
and three singular classes with positive direction of a
fault parameter (turbine and power turbine air flow
parameters and combustion chamber pressure ratio) to
simulate burns in hot parts;

— Variation 4: The combination of variation 2 +
three multiple classes formed by turbine and power
turbine air flow parameters, combustion chamber pres-
sure ratio and their respective efficiencies (negative
direction);

— Variation 5: It contains six singular classes of

sensor faults in Y . Each of them has positive and nega-
tive directions of fault;

— Variation 6: The combination of variations 3
and 5 resulting in eighteen singular classes to simulate
gas path faults and sensor errors;

— Variation 7: Formed by seven multiple classes
of variation 4 and six singular classes (sensor faults)
with double limits;

— Variation 8: It has the six sensor faults in Y

and three singular classes of sensor faults in U ;

— Variation 9: Formed by three multiple classes
(turbine and power turbine air flow parameters, combus-
tion chamber pressure ratio and their respective effi-
ciencies) and one multiple class of faults in compressor;

— Variation 10: It contains nine singular classes:
three singular classes with double direction of fault
(turbine and power turbine air flow parameters and
combustion chamber pressure ratio), four efficiencies
for all components, one for the compressor air flow and
another one for the inlet pressure loses factor;

— Variation 11: In this variation, each class is cre-
ated by four fault parameters. It is formed by the combi-
nation of air flow parameters (with the exception of the
combustion chamber pressure ratio) and efficiencies. The
first three classes are formed by combining the turbine,
the power turbine and the combustion chamber with the
compressor, the fourth and the fifth - by combining the
power turbine and the combustion chamber with the
turbine. The last class is formed as the combination of the
power turbine and the combustion chamber (Fig. 4);

— Variation 12: It is practically the same as varia-
tion 11, but, in this case all the classes have negative
directions to simulate gas path faults.

For each classification variation, fault diagnosis
was performed by with three neural networks: Multi-
Layer Perceptron, Radial Basis Network and Probabilis-
tic Neural Network and the probability P,, and execu-
tion time were determined for each network. Table 5
shows all the results. All the computation was per-
formed in a Dell Inspiron One Desktop: Intel Pentium
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G2020T processor, 2.5 GHz, and 4 GB of RAM.
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Fig. 3. Classification variation 2: four multiple classes
with two fault parameters

Analyzing the probabilities, one can state that the
differences between the networks within the same clas-
sification variation are not great (excepting variation 6),
about 0.015 (1.5%), while the difference between the
variations can reach the value 0.10. Thus, these results
reaffirm once more the conclusion drawn in [9] that
many recognition techniques may yield the same gas
turbine diagnosis accuracy.

+ 4 5.
=
1=

76 - Fuel rate

£2 - Turbine pressure 55 71 - Compressor pressure

Fig. 4. Classification variation 11: six multiple classes
with four fault parameters

The execution time includes 100 cycles of calcula-
tion of the mean probability P . Each cycle consists of a
learning stage with thousands diagnosis cycles of a

validation stage at which the probability P is com-
puted. In Table 5, we can see that this total time is by
far smaller for the PNN for all classifications. This is
explained by the fact that this network does not need a
learning stage. Thus, the PNN seems to be the simplest
network to tailor for gas turbine diagnosis.

Table 4
Variations of classification and their fault class formation
FAULT CLASSES
VARIATION [ 2 3 4 5 6 7 8 9 1o mn [ 12 13141516 17 [ 18
Variation 1 -0G, | -0, 0G| -One [-0Gp | -Onpt | 06cc | -OMee | -00in
3G, -| 0G; | 0G| -00ec
Variation 2 Me | -ome 3Nt | -OMec
Variation3 | 5G| -5ne | -8Gi | -01: |-Gy | -5Mpi | 06| -0Mec | -0in | +0Gi | 0G| +30ec]
L. -0G. | 0G; | -0Gp | -00c | +0G: | +0Gy| +80cc
Variation 4 . | -on, i | e | O RMES
Variation 5 +0P, | £8P, | +8T. | +38T: |+8Ty | +3G
Variation 6 | 3G, [ -one | -3G. | -9 [-0Gy | -0np | -00ec | OMec [ -06in [+0Gi [ +8Gp| +80cc| £8P [ £8P, | 3T [ +3T, [£3Ty [ +3Gy
-0G. -| -0G; | -0Gp | -00cc | +0G; | +0Gp-| +00c.| 0P | £6P; |[£0T, | £8T( | £6Tp |Gy
Variation 7 M | -On -OMpt | -ONee | -OM; Mpt | -OMee
Variation 8 0P, | £06P; | +8T, | £0T |£8Tp | £0Gr| £0Pin| £0Tin | £0ny, |
3G, -| £0G; | £0Gy| £00cc
Variation 9 M. | -on Mt | e
Variation 10| -5G, | M | -one | -9Mp|-0Nec | -6 | +0Gi] £5Gp | £50c |
3G, -| -0G. | 0G. | +0G, | 3Gy | +0Gy
Variation 11 Me | oM | oM | -Ome | -Ome | -OMpe
+0G; | £0Gyy | 00cc | £0Gyp | £30cc | £30cc
-On | -OMpe | -OMee | -OMpe | -OMee | -OMec
-0G. -| -0G. | -0G. | -0G; | -0G; | -0Gp
Variation 12 Mme | O | oM | -Ome | -Ome | -OMpe -
-0G; | -0Gpt | -00c | -0Gp | 00 | OO
-One -5% -OMec -5% -OMee | -OMee

6. Boundaries for multiple fault classes

When multiple faults are simulated by summing
the influence of each fault parameter, there is the risk
that the simulated fault exceeds a severity limit of real
faults. In Fig.3, a multiple class D, created by two fault
parameters is illustrated. The point “0” corresponds here
to an engine normal state. Each of the vectors OL; and

OL, results from the change of one fault parameter.
Points L; and L, and vector lengths 1; and 1, correspond
to an engine health limit. An area Q; of deviation vec-

tors Z without errors presents a parallelogram and area
Ql* corresponds to deviation vectors Z* with errors. It

can be seen that vectors Z in the upper right corner of
the parallelogram can be longer than base vectors OL,
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and OL, produced by a maximal change of the corre-
sponding fault parameters. In other words, simulated
faults can have higher severity than real ones.

A (D1)

Z2

A
~

Fig. 5. Straight line boundary

To make the simulated faults more realistic, we
previously used a linear boundary L,L, that restricts
fault pattern vectors inside the triangle OL,L,. However,
this boundary becomes too restrictive when the angle
L,0L, increases.

An ideal boundary seems to us like a smooth curve
formed by a vector that turns from OL, to OL, and gradu-
ally changes its length from /; to [, proportionally to the
turning angle. It is proposed to express this length by:

1=11+(12—11)ai, ©)
12

where o is the angle between a current vector and the
first base vector and o, is the angle between the two

base vectors. As can be seen, the boundary determined by
(9) corresponds to the Archimedean spiral. Figure 6 illus-
trates action of the proposed boundary: the deviation

vectors Z that are inside the curve are only accepted.

ZE - Fuel rate

75 - Power turbine temperature
I1 - Compressor pressure

Fig. 6. Archimedeaspiral boundary
(Two fault parameters)

The described boundary rule can be easily ex-
tended on the case of three fault parameters illustrated
by Fig.7. The boundary vector of the length / deter-
mined in the plane of the first and second fault parame-
ters (orange area) is considered as a base vector. The
second base vector OL; is produced by the third fault
parameters. The boundary is determined in the plane of
these two base vectors (green area). For the case of four
and more fault parameters, we only need to repeat the
above procedure.

To better understand the importance of the new
boundary, three boundary options have been examined:
no boundary (parallelogram area €); ), straight line

(triangle area Q;), and Archimedean spiral. The boun-

daries were applied for multiple faults of classification
variations 2 and 12. For each option and each variation,
the three selected neural networks were used by turn for
computing average true diagnosis probabilities P,,.
Table 6 contains all the results, which help to draw the
following conclusions. First, the new boundary results
in a visible change of the probability P,, (up to 0.04).
This change can be greater for particular fault classes.
Second, for all cases the “Archimedean spiral” probabil-
ity occupies an intermediate position between ‘“No
boundary” probability and “Straight line” probability.
This is naturally explained by the fact that the Archi-
medean spiral curve is situated between the straight line
and the parallelogram sides. Third, for the new bound-
ary, the difference between the recognition techniques
(three networks) remains small: 0.0045 for classification
variation 2 and 0.0133 for variation 12.

Z6 - Fuel rate

Z1 — Compressor pressure
2 Z5 — Power turbine temperature

Fig. 7. Archimedean spiral boundary
(Three fault parameters)
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Table 5
Average true diagnosis probabilities P,, for different classification variations
Variation Probabilities Time
MLP RBN PNN MLP RBN PNN
1 0.8172 0.8169 0.8099 20 min 4h 11 min 27 min
2 0.8732 0.8759 0.8720 36 min 57 min 6 min
3 0.8091 0.8072 0.8037 59 min 3 h 48 min 29 min
4 0.8490 0.8524 0.8474 5h 32 min 2 h 44 min 23 min
5 0.8033 0.8080 0.8036 2h 21 min 2 h 2 min 14 min
6 0.6805 0.7319 0.7316 6 h 42 min 4 h 34 min 36 min
7 0.7362 0.7616 0.7567 5h 28 min 4h 41 min 30 min
8 0.7828 0.7965 0.7910 1 h 10 min 3 h 40 min 27 min
9 0.9279 0.9280 0.9260 26 min 1 h 6 min 6 min
10 0.7909 0.8017 0.7930 4h 39 min 3h 41 min 22 min
11 0.8075 0.7867 0.7775 4 h 44 min 2h 21 min 14 min
12 0.8209 0.8184 0.8076 6 h 21 min 2h 19 min 17 min
Table 6
Average true diagnosis probabilities P,, for different fault severity boundaries
Probabilities
Boundary option Variation 2 Variation 12
MLP RBN PNN MLP RBN PNN
No boundary 0.9164 0.9182 0.9140 0.8288 | 0.8248 0.8156
Straight line 0.8732 0.8759 0.8720 0.8120 | 0.8105 0.8005
Archimedean spiral 0.9121 0.9136 0.9091 0.8209 | 0.8184 0.8076
Conclusions Acknowledgments

In investigations and practice of gas turbine diag-
nosis, fault classifications vary considerably. That is
why, the present paper proposes a flexible fault classifi-
cation that allows creating any necessary totality of fault
classes of different types. Twelve classification varia-
tions were introduced and investigated in the paper. For
each variation, an average probability of correct fault
diagnosis was determined using by turn on of three
neural networks as a fault recognition technique. Addi-
tionally, a new boundary that restricts fault severity was
proposed and examined. The following conclusions
have been drawn as a result of the investigations:

- the procedure of flexible classification has proven to
create any necessary totality of fault classes of different
type y complexity. Formation of a new classification varia-
tion and change from one variation to another is simple and
does not need reprogramming the software;

- for all classification variation examined, three
networks provide practically equal average probability
of correct diagnosis. This confirms the conclusion made
in previous studies that many recognition techniques
can have the same diagnostic accuracy;

- among the three networks, the probabilistic neu-
ral network seems to be simplest gas turbine fault rec-
ognition technique;

- the new boundary (Archimedean spiral) proposed
for restricting the severity of simulated faults makes the
simulation more realistic and allows to determine more
precisely the level of diagnostic accuracy.

The work has been carried out with the support of
the National Polytechnic Institute of Mexico (research
project 20144199) and the National Council of Science
and Technology (CONACYT).
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PeneH3eHT: KaHI. TeXH. Hayk, mpodeccop Kadempsl KoHCTpykimu aBuansurareneii 0. A. I'yce, HarmoHanbHbIH
aspokocmmdeckuil ynusepcureT uM. H.E. J)KykoBckoro «XapbKOBCKUIA aBUALIMOHHBIM HHCTUTYT», XapbKOB.

T'HYUYKA KJIACU®PIKAIISA JE®@EKTIB J1JISA JIATHOCTYBAHHSA I'TJ
X JI. Iepec Pyic, I. 1. Jlobooa

JliarHOCTHYHI aJlTOPUTMH, SIKi 3aCHOBAHO Ha BHUMIPIOBAaHMX MapaMeTpax i MOZIEISX IPOTOYHOI YaCTHHH, 3/aTHI Jia-
THOCTYBATH HE TIIBKH Je()eKTH caMoi MPOTOYHOI YaCTHHH, a i HECIIPaBHOCTI CHCTEM BHMIPIOBaHHS Ta KepyBaHH:. Tak
SIK pi3HOMaHITHICTh TposiBiB AedexriB ['T/] Benuke, BOHM 00'€qHYIOTECS Y 00MeXeHe YMCII0 KiaciB AedekTiB. IcCHyoTh
pi3Hi npuHIMIK (OpMyBaHHS KJIAaciB Ta 0araTo KOHKPETHHMX Kiacu(ikalliii, 3acTOCOBYBaHHMX Ha mpaktuii. Ha cramii
JIOCHIPKEHb BaXKKO TIepen0aunTH sika came Kiacugikaiys Oyze IOTiM NpUiHATa B PealbHiil CHCTeMi KOHTPOITIO, TOMY
JIOCITIZTHUKY 3a3BUYall €KCIIEPUMEHTYIOTh 3 PI3HUMH TUIIaMH KJIaciB Ta IX KUIBKICTIO. B maHiil cTaTTi MponoHyeThes mij-
XiJI, SIKWI J03BOJISIE CTBOPEHHS! YKCIICHHNX BapiaHTIB Kilacuikallii, o BKIIOYAOTh CKJIa (Hi 1 OUTBII pealicTUYHI Ki1acu
nedekriB. Llei miaxin Takox MO3BOJSIE JIETKY 3MiHY aHaJIi30BaHOro BapiaHTa Kiacu@ikallii Ta METoay po3Ii3HaBaHHS,
3aCTOCOBYBAHOT'O YISl 1ILOTO BapiaHTy. [yt KokHOT Kiacu(ikallii i KOXKHOro METoy BU3HAYAETHCS WMOBIPHICTh NPaBU-
JIBHOT'O TIarHOCTYBAHHS 1 4ac PO3PaXyHKY, SIKi € KpUTepisiMi epeKTUBHOCTI JiarHOCTyBaHHs. TakuM YMHOM, POIIOHOBA-
HHUH TiIX1T T03BOJISIE BUBYMTH BIUTHB KiaacHikallii gedekTiB Ha edekTuBHICTL miarHoctyBanus ['T/]. JlocmimkeHHs B
CTaTTi BUKOHAHO I CHJIOBOI YCTAaHOBKH, BUKOPHCTOBYBAHOI JUIsl TepeKauku mpupojaHoro rasy. IIpoanamizoBano 12
BapiaHTIiB Kacudikamii 3 BAKOPUCTAHHSAM TPhOX METOJIB po3mi3HaBaHHs: bararomaposuii [Tepcentpon, Mepexa 3 Pani-
anpaMU 3acaganunmu OyHkuisivu 1 ImosipHicHa Hefiporna Mepexa. Kpim Toro, 3anpornoHOBaHO HOBY MEXKY PO3BHTKY
nedektiB. BoHa nociipkeHa IUISIXOM ITOPIBHSHHS 3 IBOMA iHIIIMMU BapiaHTaMHU KOP/IOHY.

Karwuosi cioBa: piarnoctuka ['T/], po3nizHaBaHHs 00pa3iB, rHy4Ka Kiacu(ikamis 1eQeKTiB, KOpJOH PO3BHT-
Ky e eKTiB.

I'MBKASI KTACCUOPUKALUA JEPEKTOB AJ151 JTUATHOCTUPOBAHUS I'T/]
X. JL. Ilepec Pyuc, H. H. JIo600a

JluarHocTuuecKue alnropuTMbl, OCHOBaHHBIE Ha M3MEPSEMBIX TapaMeTpax M MOJEISIX IIPOTOYHOH YacTH, CIIOCOOHBI
JIMarHOCTHUPOBAThH HE TOJNBKO JIePeKThl caMOi MPOTOYHON YacTH, HO ¥ HEMCIPABHOCTY CHCTEM U3MEPEHHUS U YIIPaBIICHHSL.
Tak xax pazHooOpazue nposiBienus aedextoB [Tl Benrko, OHU OOBEAMHSIOTCS B OTPAaHUUEHHOE YHCITO KIIACCOB eheK-
ToB. CyIIECTBYIOT pa3MyHbIe MPUHIMIBI (POPMHUPOBAHMUS KIIACCOB U MHOTO KOHKPETHBIX KIIACCU(HKALIUN, IPUMEHsIe-
MBIX Ha npakTuke. Ha crajnm nccnenoBaHuii TpyIHO MPEACKa3aTh Kakas IMEHHO KiaccuduKalms OyJeT MMOTOM IpUHSTa
B PEaILHON CHCTEME KOHTPOJISl, TO3TOMY MCCIIEI0BaTENH OOBIYHO SKCIIEPUMEHTUPYIOT C PA3HBIMU THIIAMHU KJIACCOB M UX
KOJIMYECTBOM. B NTaHHOH cTaThe mpezyiaraercsl MoAXoJ, KOTOPBIH IO3BOJSET CO3[aHHEe MHOTOYMCIICHHBIX BapUaHTOB
Kiaccu(UKalyy, BKIIOYAIONINX CIOKHBIE M Oojiee peanncuyHble Kiacchl Ne()eKToB. DTOT MOAXOM TAKKe ITO3BONISET
JIETKYI0 CMEHY aHAJIM3UPYEMOro BapuaHTa KIAacCH(HKAIMK M METOAA PACcIiO3HaBAHMs, TIPUMEHSEMOro TSl 9TOro Bapu-
anTa. st Kaxnod KiaccH(pUKaluy U KaKI0ro METOa ONpe/IeNsieTcsl BEPOSTHOCTh NMPABUIIBHOTO THAarHOCTHPOBAHUS U
BpeMsi pacyeTa, KOTOpbIE SIBISTIOTCS KpUTEPUSIMHU (P (EeKTHBHOCTH THArHOCTHPOBaHUs. TakuM o0pa3oM, NpeiaracMblil
TOIXOJT TIO3BOJISCT U3YYUTh BIMsHUC Kiaccupukaiun AeekToB Ha 3 dektuBHOCTH nuarHoctuposanus [ T/, ccnemo-
BaHUS B CTAaTh€ BBITIOJHEHBI ISl CUJIOBOM YCTAHOBKH, UCTIONB3YEMOH TSl TIEPEKauKy PUPOHOTO rasa. [Ipoanammsupo-
BaHO 12 BapuaHTOB KiacCH(HKAIMK C WUCIIONB30BAHMEM TPEX METONOB pacro3HaBaHus: MHorocioiHbli [lepcenTpos,
Certb ¢ PagunansaeiMu bazucHsivu @yskimsmu 1 BepostHoctHast Helipornas Cers. Kpome Toro, npeaioskeHa HOBas
rpaHuia pazsutus nedekro. OHa HCCIIeIOBaHa ITyTeM CPaBHEHHMS C ABYMSI IPYTHMMH BapUaHTaMH TPAHHUIIBL.

KiroueBnie ciioBa: nuarnoctuka I' T/, paciosHaBaHue o0pa3oB, THOKas Kiaccu(ukamus aeeKToB, TpaHUIa
pas3Butus nedexTos.
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