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GAS TURBINE DIAGNOSABILITY AT VARYING OPERATING POINTS

The parametric diagnostics of gas turbine engines has been improved in the last decades due to computer
technology development and better analysis methods such as artificial neural networks. It has demonstrated to
be a very powerful tool providing an insight into an actual engine health condition and predicting possible
future failures. On the basis of a thermodynamic model that relates monitored variables with operating
conditions and fault parameters, it is possible to obtain healthy and faulted engine performances. This model
allows calculating deviations between actual and baseline engine performances. Based on the deviations
computed for all monitored variables, the diagnosis is made by pattern recognition techniques. These
deviations include errors due to measurement uncertainty and model inadequacy. Since an engine operating
point changes, the deviation errors change as well, resulting in varying diagnostic inaccuracy. In the present
paper, two hypotheses on how the errors influence engine diagnosability at varying operating points are first

investigated on simulated data and then verified with real information.
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Introduction

Since the beginning of their practical application in
the decade of the 1940’s, gas turbine engines (GTE)
have proven to be very powerful machines. In the last
decades, the development of GTE has increased to
inconceivable limits and its usage has extended to
various areas such as civil and military aviation, electric
energy generation, natural gas and
propulsion for land and maritime vehicles [1-3].

GTE are quite complex machines with very high
operation parameters like temperature, pressure, and
rotation speed and improper maintenance can provoke a
catastrophic event. Because of these reasons, condition
monitoring systems for GTE are extensively used.
These systems are capable to monitor actual condition
of the engine, identify the kind and place of a possible
fault, predict its possible changes, and therefore reduce
the risk and the economic impact of a serious failure or
an unexpected engine stoppage [4].

The condition monitoring systems should use all
the available information of a diagnosed GTE to cover
the majority of its components and systems. Actually,
the diagnostic techniques embrace all the primary
systems of GTE, such as gas path, transmission,
measurement system, fuel system, oil system, starting
system, variable geometry systems, etc. Among all these
techniques, the algorithms of parametric diagnostics that
analyze gas path variables can be considered as
essential. They provide a deep vision about the
performance of the engine components and they also
reveal different mechanisms of degradation. Besides the

compression,

wear and faults in the gas path, these techniques can
also detect malfunctioning of the engine measurement
systems.

The gas path diagnostics embraces three mayor
components: monitoring of the engine conditions,
detailed diagnostics, and prognostic of the remaining
life of the engine. The possible faults alter the
monitored gas path variables but engine operating
conditions (variables that determine the engine regime
and ambient conditions) have a higher impact. For this
reason, the three components are preceded by a
preliminary phase where deviations, between actual and
baseline values of the monitored variables are
computed. These deviations will be explained in detail
further in this paper.

The deviations are computed with random errors
and measurement inaccuracy is one of their sources.
Since final diagnostic reliability depends on the
deviation accuracy and a gas turbine engine should be
diagnosed at varying operating conditions, it is of
practical interest to reveal how these conditions
influence the deviation accuracy. Some investigations
accept the hypothesis that the measurement random
errors are constant for all engine operating points. In
this case, as deviations and their errors have a relative
form, the deviation errors increase when the engine
descends and all variables go down.

In contrast, in basis of the analysis of real data-
based deviations, we consider that their errors do not
practically depend on operating points [10]. This is
partly explained by the fact that, apart from
measurement errors, the deviations have other and
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greater error components [5, 9].

On the basis of a gas path model, this paper
analyses the influence of operating points on diagnostic
reliability for both described error hypotheses.
Additionally, using real data-based deviations, the paper
tries to answer what the hypothesis is most likely.

The paper is structured as follows. A detailed
explanation of the gas path model is presented in
Section 1. Next, Section 2 summarizes the approach to
fault recognition by a detailed description of the
diagnostics process. Then, Section 3 describes in more
details the two error hypotheses and their influence on
diagnostic reliability. The hypotheses are verified on
real data in Section 4. Finally, Section 5 presents a
discussion of the results obtained.

1. Gas Path Model

A thermodynamic model of GTE can afford a lot
of information useful for diagnostics that would be very
difficult to obtain from a real engine. It is called
thermodynamic because in basis of the thermodynamic
laws, the model calculates the variables in the gas path
from the air inlet until the output. The model determines

5
how monitored gas path variables Y depend on engine

N
operating conditions U (control variables such as
rotation speed or fuel consumption and ambient
conditions: air pressure and temperature). In the other
hand, this model can simulate the degradation of each

component of the engine. The vector of state parameters

> o o
8 =0,+ A6 is included for describing an engine health

5
condition. A vector 0o corresponds to an engine

5
normal state, while a vector of fault parameters A0

shifts a little the performance maps of engine
components (compressor, combustion chamber, turbine,
etc.) and in this way allow simulating different
deterioration mechanisms and faults. Thus, the structure
of the thermodynamic model, which can be
characterized as nonlinear and component-based, can be
given by the following formula

Y =F(U,0). (1)
From a mathematical standpoint, model (1) is a

result of solving a system of nonlinear algebraic
equations reflecting engine operation at steady states.

2. Diagnostic Approach

ﬁ
If a vector 6 ¢ corresponds to a healthy engine, a

baseline model can be presented by an expression

- - > -
Yo =F(U,00)=F(U). 2

Using the thermodynamic model as a baseline, we
can calculate for every monitored variable the relative
change (deviation)

_ Yi—Yo;

5Y1'
Yoi

€)

between an actual value Y; and a baseline value Y.

The deviations are practically free of an influence
of operating conditions and may serve as good GTE
degradation indicators. That is why they are used for
detection, diagnosis, and failure prediction [6-8]. To
make the fault simulation process more realistic,
random errors €dY; are included to the simulated

deviations. The total deviation 6Y1-* is presented for

each monitored variable Y; as:
8Y; =3Y, +&dY;. (4)

The random error €8Y; for each variable has its

own amplitude This error has a normal

ag§yYi -
distribution and 99.7% of its values are inside the

interval I_—agyl" +a§YiJ~ To diagnose the engine in a

uniform space, to simplify the description of the faults,
and improve the diagnostic reliability, this deviations
are normalized as follows:

Z;k _ dY;
a5Yi

&dY;
+ —_—
ag§Yi

=Zi+ey;. 5)

The errors e7; are generated randomly for all

monitored variables according to the multidimensional
normal distribution.

The deviations Z;‘ of all monitored variables form

N
the vector Z*, that is considered a pattern. The fault
classification will be presented on the basis of these
patterns.

The GTE faults vary considerably and for the
purposes of diagnosis, numerous gas turbine faults are
divided into a limited number ¢ of classes
Dy,Dj.....Dq. Each class corresponds to one engine

-
module and is described by its fault parameters A .
Each class is determined by a representative
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N
sample of the deviation vector z" , obtained in basis of
expression (5). A totality Z1 of all classification’s
patterns is employed to train the used neural network,
multilayer perceptron and is therefore called a learning
set. It is illustrated by figure 1.

Afterwards, to validate the network, an additional
data simple called a validation set Z2 is created in the
same way as the learning set Z1 The only difference

between these sets is that another random numbers are
generated for the validation set. The network classifies
each pattern of the set Z2 producing the diagnosis dy .

Comparing di with a known class D; for all validation

set patterns, probabilities of correct classification ; are
estimated for all fault classes. A mean value P of these
probabilities characterizes engine diagnosis reliability
(diagnosability).

m

D3
D4

EE R I 3

73 - Compressor temperature

5

Z2 - Turbine pressure
P 10 5 71 - Compressor pressure

Fig. 1. Fault classification representation by patterns

3. Influence of operating points

Since the GTE monitored variables (pressures,
temperatures, rotation speeds, etc.) strongly depend on
an operating point, deviation errors can depend as well.
Therefore, it is practically important to determine what
happens with the engine diagnosability when the
operating point changes.

As shown in [5, 9], there are four main sources of
errors that affect the deviations. The first source of error

ﬁ
is caused by measurement errors (¢ Y) in the monitored
and registered variables. Second source of inaccuracy is
ﬁ
the error (e¢U,,) of the measured operating variables
which are baseline function arguments. The third source
is explained by the fact that the baseline function

arguments do not include some variables (air moisture,
valves positions, etc) that influence a real engine. The
fourth (last) source of error is the inadequacy of the
baseline function caused by some factors like algorithm
and data sample for determining the baseline function in
real conditions. All these error sources have a high
impact on the final deviations.

In this section, we will focus our efforts in
understanding the effects of the first source of error on
the diagnosability at different operating points. To this
end, eleven operating points given by successive
reduction of a compressor rotor speed are analyzed.
Point 1 (engine maximum power) is set by the rotation
speed 10700 rpm and the speed decreases until 9700
rpm for point 11.

For the purpose of a better analysis, the deviation
error from equation (4) can be expressed as a relative
error

eoY = 28 (6)

Yo

where Ag is an absolute error.
Using this expression, we will analyze two

schemes of error change along with the operating point.

5
The first scheme implies that the relative error €8Y

does not depend on the operating point i.e. it is constant
for all points. Figure 2 illustrating this scheme shows
the behavior of a monitored variable Y and its errors Ag
and €3Y for the eleven analyzed regimes. As can be
seen, when the relative error €8Y is constant, the
absolute measurement error Ae reduces along with
reduction of a monitored variable.

Y,E“

} Ae

edY

1 Operating points 11

Fig. 2. Constant relative error scheme

The second scheme means that the absolute
measurement error Ag is constant. Figure 3 illustrates
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this scheme using the same format as figure 2. It can be
seen here and follows from equation 2 that the relative
error €0Y increases when the absolute error is constant.

Summing up the analysis of figures 2 and 3, it can
be concluded that the analyzed schemes result in
significantly different errors at varying operating point.
Consequently, using an improper error scheme can
result in incorrect deviations and diagnostic inaccuracy.
Let us now assess how significant this inaccuracy can
be.

Using the two errors schemes, the respective
resulting probabilities P were obtained. They are
shown in figure 4 against the operating points. One can
see here that the probabilities corresponding to the error
schemes differ a lot. In this way it is of great importance
to know what scheme takes place in reality.

Y,E r's

ebY

1 Operating points 11

Fig. 3. Constant absolute error scheme
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Fig. 4. Behavior of the probabilities:
PD1o — Constant relative errors, learning set;
PD2o — Constant relative errors, validation set;
PD1m — Constant absolute errors, learning set;
PD2m — Constant absolute errors, validation set

4. Real Data

Now, when we have revealed great influence of
the deviation error scheme on the diagnostic reliability,
it is important to find out how this error really changes
due to operating conditions and what error scheme is
more probable. To solve this issue, the present section
uses deviations calculated on basis of real data.

Real data-based deviations have been computed

for a two shaft free turbine engine for driving a natural
gas centrifugal compressor. Its monitored variables
were recorded every hour under field conditions.

Figure 5 illustrates the deviations of the exhaust
gas temperature presented versus operation time. We
can clearly see systematic tendencies: two periods of
compressor fouling divided by the point of washing that
recovers the temperature. However, random errors are
also seen in the deviation plot presented.
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Given the computed deviations, their errors have
been determined using a degraded engine model as
described in [7]. Figure 6 shows the deviation errors of
the same exhaust gas temperature versus the operation
time.

The aforementioned degraded engine mode was
identified by the least square method using first 2608
data points. That is why the errors computed in this
interval are minimal and more accurate. From here we
will analyze only the errors of this interval. They are
plotted in a greater scale in figure 7.

When an engine operating point goes down, all the
monitored variables decrease as well. In this way an
absolute variable value shows how high or low the

0.03%

corresponding operating point is. Therefore, to see the
influence of the operating point, we can plot the same
variable deviation as before, but now versus the monitored
variable itself. Such a plot is given in figure 8. As can be
seen, an error spread is practically the same for low and
high temperatures, in other words, the deviation error does
not practically depend on operating points.

The same error distributions plotted for all other
monitored variables are given in figure 1A of Appendix
I. Observing these plots, one can arrive to the same
conclusion: in general, the hypothesis of the deviation
errors independent on an operating point seems to be
much more probable then the hypothesis of higher
errors for low operating points.
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Discussion tes that the diagnostic reliability does not change a lot

with the regime (See figure 4). This means that

Clearly, the selection of a proper hypothesis on  whichever operating point is equally important for

deviation error distribution will allow us to simulate the  diagnostics. The accepted hypothesis confirms the
diagnostic process with greater exactitude. importance of the multi-point option as well.

Additionally, the accepted hypothesis demonstra- This hypothesis also proves the manner of forming
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a fault classification described in [9]. Because the
deviation error is independent of operating points, it can
be extracted from real date recorded at different
operating point and added to fault-induced deviations in
class description.

Furthermore, the accepted hypothesis supports the
principle of a generalized classification introduced in
[11]. It unites fault manifestations obtained at different
operational conditions and allows diagnosis under any
conditions. The generalized classification is very useful
because it drastically simplifies the gas turbine
diagnosis because: once formed, this classification is
used later without changes. The deviation errors that are
independent of operating conditions present an
additional justification for applying the generalized
classification.

Conclusions

This paper examines two hypotheses for the
deviation calculus in the GTE parametric diagnosis.
They were analyzed with the thermodynamic model as a
basis for calculating the deviation. It was found that the
hypotheses result in very different diagnostic reliability
that is why it is important to choose the proper
hypothesis.

Also, an analysis is presented, in which errors were
extracted from real data-based deviations. The plots of
these errors have allowed us to choose the most
probable hypothesis that the deviation error is constant
(independent of operating point).

Not only acceptance of this hypothesis enhances
diagnosis reliability, but it also validates some useful
principles that make diagnostic algorithms more
realistic and vital.
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Fig. 1A. Deviation errors of all monitored variables
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aspokocmuueckuil yausepcureT uM. H. E. JKykoBckoro «XapbkoBCKU aBUAIIMOHHBIM HHCTUTYT», XapbKOB.

JIATHOCTOBAHICTD I'T/T HA SMIHHUX CTATUYHUX PEXXUMAX
L 1. Jlobooa, JI. A. Mupo Capame

[Mapamerpuuna miarmoctuka ['TJ] cyrreBo mokpamiama B OCTaHHI JECATHIITTS 3aBASKA PO3BUTKY
00YHMCITIOBAILHOT TEXHIKU 1 KpalluM METoIaM aHajli3y, TakuM SK HeHpoHHI Mepexi. BoHa mokaszana cebe JOCHUTh
e(QeKTUBHIM 3acO00M OIIIHKM BHYTPIIIHBOTO CTaHy ABHIYHA i IepeadadeHHs] Horo MOXJIMBUX BiaMoB. HeoOximHi
JUI  JIarHOCTUKM XapaKTepUCTHKH CIPAaBHOIO 1 HECIPaBHOrO JBUTYHa MOXKHa OTpHUMaTH Ha OCHOBI
TEpMOra30lMHaMiqHOI MOJIET1 IBUTYHA , SIKa TOB'sI3y€ KOHTPOJILOBAHI MapaMeTpH JIBUTYHA 3 TapaMeTpaMy PexKUMY
i mapamerpamu nedekti. Ll Mozmens no3Boisie po3paxoByBaTH BiIXHMICHHS IMOTOYHHX MapaMeTpiB JBUTYHA Bif
HOMiHaNbHUX mapameTpiB nBuryHa. JliarnocryBanusi ['TJl mpoBomuThCs METOJAaMHu pO3ITi3HABaHHS 00pasiB Ha
OCHOBI BIJIXHJIEHb, PO3PAaXOBAHUX IUISA BCIX KOHTPOJBbOBaHMX MapaMeTpiB. Lli BiAXWIEHHsS BKJIIOYAIOTh ITOMMJIKH,
BHUKJIMKaHI HETOYHICTIO BHUMIPIOBaHb 1 HEaJCKBATHICTIO Mojelni. J[aHi MOMWJIKM 3MIHIOIOTHCS Pa3oM i3 3MIHOIO
PEKUMY, ITPUBOJSYH 10 3MIHIOBAHOI JIOCTOBIPHOCTI JiarHOCTyBaHHs. Y JaHiil poOOTi MUTaHHS BIUIMBY MOMHUJIOK Ha
JIIarHOCTOBAHICTh JBHUT'YHA, IO MPALIOE HA 3MIHHUX PEKHUMaX, CIIOYATKY AOCTIKYETHCS HAa MOJIEIFOBAHUX AaHUX 1
TIOTIM IIepeBIPSETHCS HAa peasbHil iH(popMallii.

Karouosi ciioa: I'T/], mapamerpuyHa qiarHOCTHKA, TEPMOTa30IUHAMIYHA MOJIEITb, TIOMUIKA BiIXUJICHb.

JAUATHOCTUPYEMOCTD I'TI HA IEPEMEHHBIX CTATUYECKUX PEXXUMAX
U. U. jlobooa, 1. A. Mupo Capam)

[Napamerpuueckas nuarnoctuka I'TJ[ cylecTBEHHO yIy4INIWIACh B TIOCICIHUE IECATHICTUS Oiaromaps
PA3BUTHIO BBIUHCIUTEIBHON TEXHUKU W JYYIIAM METOIaM aHallki3a, TAKUM Kak HeHWpoHHbIe ceTH. OHa IMokaszaa
ce0s1 JOCTaTOuHO A(PPEKTHUBHBIM CPEICTBOM OICHKH BHYTPEHHET'O COCTOSHHS JBUTATENA U TMPENCKA3aHUSA €ro
BO3MOJKHBIX OTKa30B. HeoOXOomuMble I TUATHOCTHKH XapaKTEPUCTUKU UCIPABHOI'O W HEHCIPABHOTO JIBUTATEIIS
MOJKHO ITOJTyYUTh Ha OCHOBE TEPMOIa30MHAMUYECKOW MOJEIM JBUTATEIISA, KOTOpas CBS3BIBACT KOHTPOJIUPYEMBIC
MapaMeTphl JBUTATENSA C MapaMeTpaMHu peKuMa W mapameTpamu 1edekToB. DTa MoJEIb MO3BOJIIECT PACCUMTHIBATD
OTKJIOHEHHsI TEKYIIUX MapaMeTpOB JABUraTeas OT HOMHHAJIBHBIX MapamMeTpoB apurateis. JluarHocruposanue ['T]I
MPOM3BOIUTCS METONaMU pacrlo3HaBaHMsS OOpa30oB Ha OCHOBE OTKJIOHEHHH, pPACCUMTAHHBIX IS BCeX
KOHTPOJIMPYEMBIX IapaMeTpOB. DTH OTKIIOHCHHS BKIIIOYAIOT OIMMOKH, BBI3BAHHBIC HETOYHOCTHIO HM3MEPEHHU U
HEaJIeKBaTHOCThIO MojenH. J[aHHBIC OIMMOKKM MEHSIOTCS BMECTE CO CMCHOM peXUMa, MPHUBOIS K H3MEHIEMOM
JIOCTOBEPHOCTH JHUArHOCTUPOBaHUs. B JdaHHOW paboTe BOMPOC BIMSHHUA ONIMOOK HAa JIMATHOCTUPYEMOCTh
JIBUTATEIISA, pabOTAIONIEro Ha MEPEMEHHBIX PEKUMAaX, CHayala MCCICAYCSTCsS Ha MOICIUPYEMBIX JaHHBIX M ITOTOM
MIPOBEPSETCS HA peaybHOU MH(POpMAIIHH.

KiaroueBnie ciaoma: I'TJ[, mapamerpudeckas AMArHOCTHKA, TEPMOra30JWHAMHYECKAas MOJENb, OIIUOKH
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