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In gas turbine engine condition monitoring systems, diagnostic algorithms based on measured gas path vari-
ables constitute an important component. Not only gas path faults are diagnosed by these algorithms, but also 
malfunctions of sensors and an engine control system can be identified with gas path measurements. Many gas 
path diagnostic algorithms use pattern classification techniques. In particular, a specific neural network, Mul-
tilayer Perceptron (MLP), is mostly applied. Unfortunately, the MLP cannot provide confidence estimation for 
its diagnostic decisions. However, there are techniques that classify patterns on the basis of probability. For 
example, Parzen Window and K-Nearest Neighbor methods compute probabilities of the considered classes es-
timating their probability densities. Thus, every diagnosis made is accompanied by its probability that is a very 
useful property for real gas turbine diagnosis. In the present paper, these two techniques are compared with 
the MLP in order to determine the technique that provides the best diagnostic accuracy on average for all pos-
sible gas turbine faults. The mentioned advantage of the Parzen Windows and K-Nearest Neighbors is also 
taken into account. 
 
Key words: gas turbine, pattern classification, Multilayer Perceptron, Parzen Windows, K-Nearest Neighbors. 

 
Introduction 

 
It is a standard worldwide practice to apply health 

monitoring systems to detect, identify, and predict gas 
turbine faults. The diagnostic algorithms using gas path 
models and measured variables constitute an important 
integral part of these systems. Many of the algorithms 
apply pattern classification techniques, mostly different 
artificial neural networks [1-3]. 

Effectiveness of the monitoring system strongly 
depends on accuracy of its diagnostic decisions. That is 
why all system algorithms including the used classifica-
tion technique should be optimized. 

Among the neural networks applied to diagnose 
gas turbines, a multilayer perceptron (MLP) is the most 
widely used [3]. In our previous studies [4,5], diagnostic 
accuracy of the perceptron and some other classification 
techniques has been examined. It was found that on 
average four techniques including the MLP provide 
equally good results. Thus, to choose the best technique 
any additional criterion is required. The ability to ac-
company every diagnostic decision by a confidence 
measure is an important property of some classification 
techniques that can be accepted as such a criterion. 

The present paper deals with two classification 
methods, Parzen Windows (PW) and K-Nearest Neigh-
bors (K-NN) described, for example, in [6]. For a given 
pattern, they compute probability of each considered 
class and then classify the pattern according to the high-
est probability. The class probabilities are determined 
through class probability densities in the point of the 
pattern. In their turn, the densities are estimated count-

ing nearby patterns of each class.  
The paper compares the MLP, K-NN, and some 

variations of the PW under different diagnostic condi-
tions. To this end, they are embedded by turn into a 
special testing procedure that repeats numerous cycles 
of gas turbine diagnosis and finally computes an aver-
age probability of correct diagnostic decisions for each 
technique. The testing procedure has been developed 
and comparative calculations have been carried out in 
MATLAB® (MathWorks, Inc). 

A gas turbine driver for a natural gas pumping unit 
has been chosen as a test case to perform the compara-
tive calculations. A nonlinear mathematical model of 
this engine was employed for simulating faults and 
building fault classes. 

The next section describes the classification tech-
niques examined in the paper.  

 
1. Classification techniques 
 
Foundations of the chosen techniques can be found 

in many books on classification theory, for example, in 
[6]. The next subsections includes only their brief de-
scription required to better understand the present paper.  

 
1.1. Multilayer perceptron 
 
The MLP a feed-forward network i.e. signals 

propagate from its input to the output with no feedback. 
Figure 1 helps to describe this neural network.  

The MLP shown in the figure consists of two prin-
cipal layers: hidden layer and output layer. The input to 
each neuron of the hidden layer is a sum of perceptron 
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Fig. 1. Multilayer perceptron 
 

inputs (elements of vector Z


) multiplied by the weight 
coefficients of a matrix W1 with a bias (element of vec-

tor 1b


) added. The neuron input is transformed by an 
activation function f1 into a neuron output (element of 

vector 1a


). The output layer process signals in a simi-

lar manner considering the vector 1a


 as an input vec-
tor. Thus, signal processing in the perceptron is ex-

pressed as 2 2 2 1 1 1 2y a f {W f (W Z b ) b }
    
    . Each 

output yk is a closeness measure between the input pat-

tern Z


 and the class Dk and the pattern is assigned to 
the class with a maximal closeness. 

A back-propagation algorithm is usually applied 
for learning the MLP. In the algorithm, a network out-
put error is propagated backwards to change unknown 

perceptron’s quantities W1, 1b


, W2 and 2b


 in the direc-
tion that provides error reduction. The learning cycles 
repeat unless the process converges to a global error 
minimum. The back-propagation algorithm needs dif-
ferentiable activation functions and usually they are of a 
sigmoid type.  

The other techniques analyzed in the present paper 
are based on probability density estimation.  

 
1.2. Probability density estimation 
 

A conditional probability jP(D / Z )


 is a perfect 

criterion to classify the patterns Z


 because it mini-
mizes classification errors and also provides a probabil-

istic measure of confidence to a classification decision 

jD . We can compute the probability jP(D / Z )


 through 

the Bayess formula  

j j
j q

j 1,q
l l

l 1

ρ( Z /D )P(D )
P(D / Z )

ρ( Z /D )P(D )Σ









 .             (1) 

If a priori information on possible faults is not 
available and we accept that all a priori probabilities 

jP(D )  are equal each other, probability densities 

jρ( Z /D )


 are sufficient to determine a posteriori prob-

abilities jP(D / Z )


.  

Since common parametric distribution functions 
rarely fit real distributions, let us consider nonparamet-

ric procedures. For a given point (pattern) Z


 they use 
nearby class patterns (learning patterns) to estimate the 
necessary densities. The estimation formula is simple 

k nρ
V

 ,                                 (2) 

where n is a total number of class patterns, V is a vol-

ume of a selected region around the point Z


, and k is a 
number of learning patterns that fall into the region. 

If the estimation ρ is to converge to an exact den-
sity, the quantity n should increase ensuring that  

nn n
lim V 0; lim k ; lim k n 0.  

 
             (3)  

There two ways to determine V and k. The first 
way is to fix V and to look for k. This is a principle of 
the Parzen Window method. The second way is to spec-
ify k and seek for V. It is realized in the K-Nearest 
Neighbor method. 

 
1.3. Parzen Windows 
 
Different types of the region (window) for ac-

counting the patterns are employed in the PW. For each 
type a specific parameter, window spread s, characteriz-
ing a region volume can be introduced.  

To better describe the PW method, let us tempo-
rary assume that the region is a hypercube with a center 

situated at the point Z


 and length of cube edge as the 
spread parameter. Obviously, region volume in a m-
dimensional classification space will be mV s . 

To formalize counting the patterns, let us introduce 
the following window function 

j1,     u 1 2,j 1,m;
( u )

0,                otherwise.

     


             (4) 
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With this function the number of patterns inside 
the cube is 

n
i

i 1

Z Zk
s

 



 
   

 
 

                           (5) 

and the necessary density is given by 

n
i

i 1

1 Z Zρ Z
nV s

 




 
       
   

 
 ,                 (6) 

where iZ   i 1,n


  are training patterns. Although each 
window type has its own window function and spread 

parameter s, the function argument iZ Zu
s

 
 
  as well 

as computational equations (5) and (6) will remain the 
same. 

Since for the given point Z


 we intend to account 
the nearest patterns, a hypercube is not an ideal region 
because the points on its surface are in a variable dis-
tance from the center. Following this logic, we can 
consider a hypersphere as a better choice. For a sphere 
window, the spread parameter is radius and the window 
function is expressed as 

T1,        u u 1;( u )
0,      otherwise.

    


 
                (7) 

Thus, a variation of the PW with the sphere win-
dow may have a better classification performance be-
cause of more exact density estimation according to 
equation (6).  

As described above, for the considered cube and 
sphere window functions, the contribution of all inside 
patterns is equal to one while the outside patterns have 
zero contribution. Such rigid pattern separation looks 
like somewhat artificial. It seems more natural to as-
sume the following rule: the closer the pattern is situ-
ated to the window center, the greater the pattern contri-
bution will be. To realize this rule, a Gaussian window 
function  

Tu u 
2( u ) e

 
 

 

                        (8) 

is usually used in the PW. The spread parameter of the 
Gaussian window determines its action area. To esti-
mate probability density, the same equation (6) is em-
ployed. 

On the basis of the above reasoning, we can sup-
pose that the variation of the PW with the Gaussian 
window will provide the best classification perform-
ance. 

The last technique to analyze and compare is the 
K-NN method. 

 

1.4. K-Nearest Neighbors 
 
All PW variations use constant window size during 

classification process. If actual density is low, no pat-
terns may fall into the window resulting in zero density 
estimate and miss classifying. A potential remedy for 
this difficulty is to let the window be a function of train-
ing data. In particular, in the K-NN method we let the 
window grow until it captures k patterns called K-
Nearest Neighbors. 

The number k is set beforehand. Then for patterns 
of each class the sphere is determined that embraces 
exactly k patterns. The greater a sphere radius and vol-
ume are, the lower the density estimated by equation (2) 
will be. 

To examine and compare the classification tech-
niques described in this section, a special testing proce-
dure has been developed.  

 
2. Testing procedure 

 
This procedure simulates a whole diagnostic proc-

ess including the steps of fault simulation, feature ex-
traction, fault classification formation, making a classi-
fication decision, and classification accuracy estimation.  

 
2.1. Fault simulation 
 
Within the scope of the paper, faults of engine 

components (compressor, turbine, combustor etc.) are 
simulated by means of a nonlinear gas turbine thermo-
dynamic model 

Y ( U, Θ )
  

.                                  (9) 

The model compute monitored variables Y


 (tem-
perature, pressure, rotation speed, fuel consumption, 
etc.) as a function of steady state operating conditions 

U


 and engine health parameters 0
  
     . Nomi-

nal values 0

  correspond to a healthy engine whereas 

fault parameters 


  imitating fault influence by shift-
ing component performance maps. 

 
2.2. Feature extraction 
 
Although gas turbine monitored variables are af-

fected by engine deterioration, the influence of the op-

erating conditions U


 is much more significant. To 
extract diagnostic information from raw measured data, 
a deviation (fault feature) is computed for each moni-
tored variable as a difference between actual and base-
line values. With the thermodynamic model, the devia-
tions Zi i=1,m induced by the fault parameters are calcu-
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lated for all m monitored variables according to an ex-
pression 

0 0i 0i
i i i

00i

Y ( U , Θ Δ Θ ) Y ( U , Θ )Z ε a
Y ( U , Θ )

    

 

 
    

 
 

. (10) 

 

A random error iε  makes the deviation more real-
istic. A parameter ia  normalizes the deviations errors 
resulting that they will be localized within the interval [-
1,1] for all monitored variables. Such normalization 
simplifies fault class description. 

An (m×1)-vector Z


 (feature vector) forms a diag-
nostic space. A value of this vector is a point in this 
space and a pattern to be recognized. 

 
2.3. Fault classification formation 

 
Numerous gas turbine faults are divided into a lim-

ited number q of classes 1 2 qD , D ,...,D . In the present 

paper, each class corresponds to varying severity faults 
of one engine component. The class is described by 
component’s fault parameters j . Two class types are 

analyzed. A class of single faults is formed by changing 
one fault parameter. To create a class of multiple faults, 
two parameters of the same component are varied inde-
pendently.  

Each class is composed from numerous patterns 

Z


. They are computed according to expression (10) 
where the necessary quantities jΔΘ  and iε  are gener-

ated by the uniform and Gaussian distributions accord-
ingly. To ensure high computational precision, each 
class is composed from many patterns. A learning set 
Z1 uniting patterns of all classes presents a whole fault 
classification. 

 
2.4. Making a classification decision 
 

In addition to the given (observed) pattern Z


 and 
the constructed fault classification Z1, one of the chosen 
classification techniques is an integral part of a whole 
diagnostic process. 

To apply and test the classification techniques, a 
validation set Z2 is also created in the same way as the 
set Z1. The difference between the sets consists in other 
random numbers that are generated within the same 
distributions. 

In the considered testing procedure, an actually ex-
amined technique uses by turn one of the set Z2 patterns 

to set an actual point Z


 and set Z1 patterns iZ


 to 
compute the probability densities and to make classifi-
cation decision. 

2.5. Classification accuracy estimation 
 
Although the most of the  considered techniques 

provide a confidence estimate lP(d / Z )


 for every pat-

tern Z


 and classification decision (diagnosis) dl, it is of 
practical interest to know classification accuracy on 
average for each fault class and whole engine. To this 
end, the testing procedure consequently applies the 
classification technique to all patterns of the set Z2 
producing diagnoses dl. Since true fault classes Dj are 
also known, probabilities of correct diagnosis (true 
positive rates) j jP(d /D )  can be calculated for all 

classes resulting in a probability vector P


. A mean 

number 
__
P  of these probabilities characterizes accuracy 

of engine diagnosis by the applied technique. In the 

present paper, the probability 
__
P  is employed as a crite-

rion to compare the techniques described in section 1. 
 

3. Comparison conditions 
 
For comparative calculations within the present 

study, a gas turbine for driving a natural gas centrifugal 
compressor has been chosen as a test case. It is an aero-
derivative engine with a power turbine. Its thermody-
namic model necessary to compute fault patterns is 
available. An engine operating point is close to a maxi-
mum regime and is set by a gas generator rotation speed 
and standard ambient conditions.  

Apart from these operating conditions, the other 6 
measured variables can be monitored and are used to 
compute patterns. These variables and their normaliza-
tion parameters ai are specified in Table 1.  

 
Table 1 

Monitored variables 

№ Variable’s name ai 
1 Compressor pressure  0.015 
2 Exhaust gas pressure  0.015 
3 Compressor temperature  0.025 
4 Exhaust gas temperature  0.015 
5 Power turbine temperature  0.020 
6 Fuel consumption 0.020 

 
The faults are simulated through 9 fault parameters 

embedded into the model. They change from 0 to -5%. 
As shown in Table 2, 9 single fault classes and 4 multi-
ple fault classes are formed. Regardless of simulated 
faults, single or multiple, each class is presented by  
n = 1000 patterns. 
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4. Techniques Comparison 
 
According to the description in section 1, five clas-

sification techniques will be compared: Multilayer Per-
ceptron (MLP), three variations of the Parzen Window 
method (briefly called PW-cube, PW-sphere, and PW-
Gauss), and the K-Nearest Neighbor (K-NN) method. 

The true positive rate 
__
P  is a criterion to choose the 

best technique. 
Table 2 

Fault parameters and fault classes 

Fault classes № Parameter names 
Single Multiple 

1 Compressor flow parameter 
 D1 

2 Compressor efficiency 
parameter D2 

D1 

3 High pressure turbine flow 
parameter D3 

4 High pressure turbine effi-
ciency parameter D4 

D2 

5 Power turbine flow parameter 
 D5 

6 Power turbine efficiency 
parameter D6 

D3 

7 Combustion chamber total 
pressure recovery parameter D7 

8 Combustion efficiency 
parameter D8 

D4 

9 Inlet device total pressure 
recovery factor D9  

 
4.1. Technique adjustment 

 
For the sake of correct comparison, each technique 

should be tuned to the solved problem, diagnosis of the 
chosen engine. The MLP was tuned for a diagnostic 
application in our previous works [for example, 4]. In 
particular, a number 27 of hidden layer nodes and a 
resilient back-propagation training algorithm have been 
found the best and were accepted for the present study. 

Now, we need to tune the spread s for the varia-
tions of the PW and the nearest neighbor’s number k for 
the K-NN. The criterion to determine the best values of 

these parameters is the same, probability 
__
P . 

For the PW-cube technique and single fault 
classes, calculations with different values of the hyper-
cube edge length s have been performed. Three groups 
of calculations were executed with varying seeds: with 
Seed 1, with Seed 2, and with 10 different seeds and 

averaging the probabilities 
__
P . Seed means here a spe-

cific parameter that determines a series of random num-
bers of the used uniform and normal distributions. Fig-

ure 2 shows the resulting probabilities 
__
P  as a functions 

of the spread parameter and its optimal value s = 1.14.  

Similar tuning calculations were repeated for all 
the techniques and two classification types. The result-
ing optimal values are given in Table 3. To better imag-
ine the proportion between a window and a fault class 
region, remember that a maximum amplitude of pattern 
random errors is 1 and a total class patterns number is 
1000.  

 

 
Fig. 2. Tuning the Parzen Window method  

(single faults) 
 

Table 3 
Optimal values of tuning parameters 

Classes Technique Parameter 
Single Multiple 

PW-cube s 1.14 1.30 
PW-sphere s 0.86 0.95 
PW-Gauss s 0.30 0.35 
K-NN k 21 18 

 
One can see from the table data that the optimal 

spread values for the multiple faults are greater than the 
corresponding values of the single faults. Additionally, 
an optimal sphere diameters 2s is greater than the corre-
sponding cube edges s. From our point of view, these 
facts reflect a general rule that for all cases an approxi-
mately constant proportion is conserved between the 
number of patterns inside the optimal window and the 
total number of class patterns. 

 
4.2. Comparison results 
 
With the known tuning parameter values, the cal-

culations of the correct diagnosis probability have been 
executed once more by each technique and for both 
class types. The results are given in Table 4 where the 
techniques are arranged according to the probability 
increment. As can be seen, the PW-sphere technique is 
approximately equal to the PW-cube for the single faults 
and is more accurate for the multiple faults. In its turn, 
the PW-Gauss classifies fault pattern better than the 
PW-sphere for both class types. We can see that these 
conclusions about technique accuracy coincide with the 
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suppositions made in section 1. As to the K-NN tech-
nique, it is more or less equal to the PW-Gauss: for the 
single faults the K-NN gains, but it yields for the multi-
ple faults. However, these two best techniques using 
probability density perform worth than the MLP. 

 
Table 4 

Probabilities 
__
P  for different techniques 

Classes Technique Single Multiple 
PW-cube 0.8101 0.8648 
PW-sphere 0.8098 0.8698 
PW-Gauss 0.8131 0.8748 
K-NN 0.8160 0.8720 
MLP 0.8238 0.8760 

 
It is also can be seen that the techniques do not dif-

fer a lot: the maximum probability change within the 
same class type is only 0.014 (1.4%). On the other hand, 
it was shown in [4] that computational errors are pretty 
great, ±0.01. This means that the differences between 
the techniques can be partly explained by low computa-
tional precision. 

Preliminary, we can state that the PW-Gauss and 
K-NN techniques do not yield a lot to the MLP. Be-
cause these two classification techniques have an advan-
tage of providing a confidence measure for every classi-
fication decision, they can be recommended for real 
application. 

 
Discussion 

 
The present paper can be considered only as a pre-

liminary study. In spite of some results obtained, the 
paper revealed important issues to be solved in future.  

First, to draw final conclusion on techniques effi-
ciency, the comparative calculations should be repeated 
with higher precision. We find it possible to decrease 
computational errors in 10 times. 

Second, since estimating diagnostic decision con-
fidence is an important property of the analyzed tech-
niques, it seems to be of practical interest to determine 
the estimation precision. 

Third, in the present study, the techniques were 
examined at one static gas turbine operating point i.e. 
for one-point diagnosis. Because multipoint diagnosis 
and diagnosis at transients promise more accurate re-
sults, it seems important to examine the techniques for 
these perspective diagnostic options. 

 
Conclusions 

 
Thus, in the present paper four techniques have 

been examined that classify gas turbine faults through 

estimating probability densities for the considered 
classes. They were compared with each other and with 
the Multilayer Perceptron (MLP) using the criterion of 
mean probability of correct diagnosis. It was found that 
the best two techniques, Parzen Windows with Gaussian 
window and K-Nearest Neighbors, yield just a little to 
the MLP. These two techniques are recommended for 
gas turbine diagnosis because they provide confidence 
estimation for each diagnostic decision, the property 
very valuable in practice. 

The present study also revealed some issues to 
solve in future investigations. They are related with 
more precise probability computation and with study 
extension on multipoint and transient diagnosis. 
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АЛГОРИТМИ ОЦІНКИ ЩІЛЬНОСТІ ІМОВІРНОСТІ ДЛЯ ДІАГНОСТУВАННЯ ГТД 
І. І. Лобода 

Діагностичні алгоритми, засновані на вимірюваних параметрах проточної частини, становлять важли-
вий компонент систем контролю ГТД. Ці алгоритми не тільки діагностують дефекти проточної частини 
ГТД, але й дозволяють ідентифікувати несправності датчиків і системи управління двигуном. Багато з цих 
алгоритмів використовують методи класифікації образів. Зокрема, найбільш вживаним є Багатошаровий 
Персептрон (БП), один з основних типів нейронних мереж. На жаль, БП не дає оцінку довіри до своїх 
діагнозів. Однак, існують методи, які класифікують образи на основі ймовірності. Так, наприклад, методи 
Вікон Парзена і К-Найближчих Сусідів розраховують ймовірності розглянутих класів за допомогою оцінки 
їх щільності ймовірності. Таким чином, кожен їхній діагноз супроводжується його довірчою ймовірністю, 
що є досить корисною властивістю для реального діагностування ГТД. У даній статті ці два методи 
порівнюються з БП по критерію достовірності діагностування в середньому по всіх класах дефектів. Щоб 
визначити кращий метод, також враховується згадана перевага методів Вікон Парзена і К-найближчих 
сусідів. 

Ключові слова: ГТД, класифікація дефектів, Багатошаровий Персептрон, Вікна Парзена, К-
Найближчих Сусідів. 

 
АЛГОРИТМЫ ОЦЕНКИ ПЛОТНОСТИ ВЕРОЯТНОСТИ ДЛЯ ДИАГНОСТИРОВАНИЯ ГТД 

И. И. Лобода 
Диагностические алгоритмы, основанные на измеряемых параметрах проточной части, составляют 

важный компонент систем контроля ГТД. Эти алгоритмы не только диагностируют дефекты проточной 
части ГТД, но и позволяют идентифицировать неисправности датчиков и системы управления двигателем. 
Многие из этих алгоритмов используют методы классификации образов. В частности, наиболее применяе-
мым является Многослойный Персептрон (МП), один из основных типов нейронных сетей. К сожалению, 
МП не дает оценку доверия к своим диагнозам. Однако существуют методы, которые классифицируют об-
разы на основе вероятности. Так, например, методы Окон Парзена и К-Ближайших Соседей рассчитывают 
вероятности рассматриваемых классов посредством оценки их плотностей вероятности. Таким образом, 
каждый их диагноз сопровождается его доверительной вероятностью, что является весьма полезным свойст-
вом для реального диагностирования ГТД. В данной статье эти два метода сравниваются с МП по критерию 
достоверности диагностирования в среднем по всем классам дефектов. При определении лучшего метода 
также учитывается упомянутое преимущество методов Окон Парзена и К-Ближайших Соседей. 

Ключевые слова: ГТД, классификация дефектов, Многослойный Персептрон, Окна Парзена,  
К-Ближайших Соседа. 
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