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FOR GAS TURBINE DIAGNOSIS

In gas turbine engine condition monitoring systems, diagnostic algorithms based on measured gas path vari-
ables constitute an important component. Not only gas path faults are diagnosed by these algorithms, but also
malfunctions of sensors and an engine control system can be identified with gas path measurements. Many gas
path diagnostic algorithms use pattern classification techniques. In particular, a specific neural network, Mul-
tilayer Perceptron (MLP), is mostly applied. Unfortunately, the MLP cannot provide confidence estimation for
its diagnostic decisions. However, there are techniques that classify patterns on the basis of probability. For
example, Parzen Window and K-Nearest Neighbor methods compute probabilities of the considered classes es-
timating their probability densities. Thus, every diagnosis made is accompanied by its probability that is a very
useful property for real gas turbine diagnosis. In the present paper, these two techniques are compared with
the MLP in order to determine the technique that provides the best diagnostic accuracy on average for all pos-
sible gas turbine faults. The mentioned advantage of the Parzen Windows and K-Nearest Neighbors is also
taken into account.
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Introduction

It is a standard worldwide practice to apply health
monitoring systems to detect, identify, and predict gas
turbine faults. The diagnostic algorithms using gas path
models and measured variables constitute an important
integral part of these systems. Many of the algorithms
apply pattern classification techniques, mostly different
artificial neural networks [1-3].

Effectiveness of the monitoring system strongly
depends on accuracy of its diagnostic decisions. That is
why all system algorithms including the used classifica-
tion technique should be optimized.

Among the neural networks applied to diagnose
gas turbines, a multilayer perceptron (MLP) is the most
widely used [3]. In our previous studies [4,5], diagnostic
accuracy of the perceptron and some other classification
techniques has been examined. It was found that on
average four techniques including the MLP provide
equally good results. Thus, to choose the best technique
any additional criterion is required. The ability to ac-
company every diagnostic decision by a confidence
measure is an important property of some classification
techniques that can be accepted as such a criterion.

The present paper deals with two classification
methods, Parzen Windows (PW) and K-Nearest Neigh-
bors (K-NN) described, for example, in [6]. For a given
pattern, they compute probability of each considered
class and then classify the pattern according to the high-
est probability. The class probabilities are determined
through class probability densities in the point of the
pattern. In their turn, the densities are estimated count-

ing nearby patterns of each class.

The paper compares the MLP, K-NN, and some
variations of the PW under different diagnostic condi-
tions. To this end, they are embedded by turn into a
special testing procedure that repeats numerous cycles
of gas turbine diagnosis and finally computes an aver-
age probability of correct diagnostic decisions for each
technique. The testing procedure has been developed
and comparative calculations have been carried out in
MATLAB® (MathWorks, Inc).

A gas turbine driver for a natural gas pumping unit
has been chosen as a test case to perform the compara-
tive calculations. A nonlinear mathematical model of
this engine was employed for simulating faults and
building fault classes.

The next section describes the classification tech-
niques examined in the paper.

1. Classification techniques

Foundations of the chosen techniques can be found
in many books on classification theory, for example, in
[6]. The next subsections includes only their brief de-
scription required to better understand the present paper.

1.1. Multilayer perceptron

The MLP a feed-forward network i.e. signals
propagate from its input to the output with no feedback.
Figure 1 helps to describe this neural network.

The MLP shown in the figure consists of two prin-
cipal layers: hidden layer and output layer. The input to
each neuron of the hidden layer is a sum of perceptron
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Input

Fig. 1. Multilayer perceptron

N
inputs (elements of vector Z ) multiplied by the weight
coefficients of a matrix W, with a bias (element of vec-

BN
tor bj) added. The neuron input is transformed by an

activation function f] into a neuron output (element of

BN
vector a ). The output layer process signals in a simi-

N
lar manner considering the vector a; as an input vec-

tor. Thus, signal processing in the perceptron is ex-

> - > > o
pressed as y =a, =, {W,f;(W; Z+b;)+b,}. Each

output vy is a closeness measure between the input pat-

tern Z and the class Dy and the pattern is assigned to
the class with a maximal closeness.

A back-propagation algorithm is usually applied
for learning the MLP. In the algorithm, a network out-
put error is propagated backwards to change unknown

- -
perceptron’s quantities Wy, b; , W, and b, in the direc-
tion that provides error reduction. The learning cycles
repeat unless the process converges to a global error
minimum. The back-propagation algorithm needs dif-
ferentiable activation functions and usually they are of a
sigmoid type.

The other techniques analyzed in the present paper
are based on probability density estimation.

1.2. Probability density estimation

BN
A conditional probability P(D j/ Z) is a perfect

BN
criterion to classify the patterns Z because it mini-

mizes classification errors and also provides a probabil-

istic measure of confidence to a classification decision

-
D;. We can compute the probability P(D j/ Z) through
the Bayess formula
N
- Z /D:)P(D:
o, 7)o PP
. q -
Fla o 3p(Z/D)P(Dy)
1=1
If a priori information on possible faults is not
available and we accept that all a priori probabilities

(D

P(Dj) are equal each other, probability densities
-
p(Z/D;) are sufficient to determine a posteriori prob-

N
abilities P(D;/ Z).

Since common parametric distribution functions
rarely fit real distributions, let us consider nonparamet-

BN
ric procedures. For a given point (pattern) Z they use
nearby class patterns (learning patterns) to estimate the
necessary densities. The estimation formula is simple
LY @
\Y%
where n is a total number of class patterns, V is a vol-

BN
ume of a selected region around the point Z , and k is a
number of learning patterns that fall into the region.

If the estimation p is to converge to an exact den-
sity, the quantity n should increase ensuring that

limV =0; limk =o; lim k/n=0. 3)
n—oo n—oo n—oo

There two ways to determine V and k. The first
way is to fix V and to look for k. This is a principle of
the Parzen Window method. The second way is to spec-
ify k and seek for V. It is realized in the K-Nearest
Neighbor method.

1.3. Parzen Windows

Different types of the region (window) for ac-
counting the patterns are employed in the PW. For each
type a specific parameter, window spread s, characteriz-
ing a region volume can be introduced.

To better describe the PW method, let us tempo-
rary assume that the region is a hypercube with a center

N
situated at the point Z and length of cube edge as the
spread parameter. Obviously, region volume in a m-
dimensional classification space will be V =s™.

To formalize counting the patterns, let us introduce
the following window function

- 1, |u;[£1/2j=1m;
o(u)= [ <y , @)
0, otherwise.
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With this function the number of patterns inside
the cube is

R - -
Z—-7;i
k=>0 ' ®)
i=1
and the necessary density is given by
R - -
- 1 Z—Zi
7Z|=— , 6
p{ j ~ ;,q) : (6)

BN
where Zi i=1,n are training patterns. Although each

window type has its own window function and spread

- -
b d -7
parameter s, the function argument u = L as well

s
as computational equations (5) and (6) will remain the
same.

N
Since for the given point Z we intend to account

the nearest patterns, a hypercube is not an ideal region
because the points on its surface are in a variable dis-
tance from the center. Following this logic, we can
consider a hypersphere as a better choice. For a sphere
window, the spread parameter is radius and the window
function is expressed as

— =T .
<p(u)={1’ v sk ™)
0, otherwise.

Thus, a variation of the PW with the sphere win-
dow may have a better classification performance be-
cause of more exact density estimation according to
equation (6).

As described above, for the considered cube and
sphere window functions, the contribution of all inside
patterns is equal to one while the outside patterns have
zero contribution. Such rigid pattern separation looks
like somewhat artificial. It seems more natural to as-
sume the following rule: the closer the pattern is situ-
ated to the window center, the greater the pattern contri-
bution will be. To realize this rule, a Gaussian window

function
T

o(u)=c 2 ®)

is usually used in the PW. The spread parameter of the
Gaussian window determines its action area. To esti-
mate probability density, the same equation (6) is em-
ployed.

On the basis of the above reasoning, we can sup-
pose that the variation of the PW with the Gaussian
window will provide the best classification perform-
ance.

The last technique to analyze and compare is the
K-NN method.

f=1)
f=1)

1.4. K-Nearest Neighbors

All PW variations use constant window size during
classification process. If actual density is low, no pat-
terns may fall into the window resulting in zero density
estimate and miss classifying. A potential remedy for
this difficulty is to let the window be a function of train-
ing data. In particular, in the K-NN method we let the
window grow until it captures k patterns called K-
Nearest Neighbors.

The number k is set beforehand. Then for patterns
of each class the sphere is determined that embraces
exactly k patterns. The greater a sphere radius and vol-
ume are, the lower the density estimated by equation (2)
will be.

To examine and compare the classification tech-
niques described in this section, a special testing proce-
dure has been developed.

2. Testing procedure

This procedure simulates a whole diagnostic proc-
ess including the steps of fault simulation, feature ex-
traction, fault classification formation, making a classi-
fication decision, and classification accuracy estimation.

2.1. Fault simulation

Within the scope of the paper, faults of engine
components (compressor, turbine, combustor etc.) are
simulated by means of a nonlinear gas turbine thermo-
dynamic model

Y (U,0). )

BN

The model compute monitored variables Y (tem-
perature, pressure, rotation speed, fuel consumption,
etc.) as a function of steady state operating conditions

- - - -
U and engine health parameters ® = ®9+ A © . Nomi-

BN
nal values ®¢ correspond to a healthy engine whereas

BN
fault parameters A® imitating fault influence by shift-

ing component performance maps.
2.2. Feature extraction

Although gas turbine monitored variables are af-
fected by engine deterioration, the influence of the op-

N
erating conditions U is much more significant. To

extract diagnostic information from raw measured data,
a deviation (fault feature) is computed for each moni-
tored variable as a difference between actual and base-
line values. With the thermodynamic model, the devia-
tions Z; i=1,m induced by the fault parameters are calcu-
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lated for all m monitored variables according to an ex-
pression

- - - - >
Yi(U.00+A0) Yy (U,00)

Z: = i a; . (10)

1

N
Y (U,00)

A random error g; makes the deviation more real-
istic. A parameter a; normalizes the deviations errors

resulting that they will be localized within the interval [-
1,1] for all monitored variables. Such normalization
simplifies fault class description.

BN

An (mx1)-vector Z (feature vector) forms a diag-
nostic space. A value of this vector is a point in this
space and a pattern to be recognized.

2.3. Fault classification formation

Numerous gas turbine faults are divided into a lim-
ited number q of classes Dl,Dz,...,Dq. In the present

paper, each class corresponds to varying severity faults
of one engine component. The class is described by
component’s fault parameters A® i- Two class types are

analyzed. A class of single faults is formed by changing
one fault parameter. To create a class of multiple faults,
two parameters of the same component are varied inde-
pendently.

Each class is composed from numerous patterns

BN
Z . They are computed according to expression (10)

where the necessary quantities A®; and g; are gener-

ated by the uniform and Gaussian distributions accord-
ingly. To ensure high computational precision, each
class is composed from many patterns. A learning set
71 uniting patterns of all classes presents a whole fault
classification.

2.4. Making a classification decision

BN

In addition to the given (observed) pattern Z and
the constructed fault classification Z1, one of the chosen
classification techniques is an integral part of a whole
diagnostic process.

To apply and test the classification techniques, a
validation set Z2 is also created in the same way as the
set Z1. The difference between the sets consists in other
random numbers that are generated within the same
distributions.

In the considered testing procedure, an actually ex-
amined technique uses by turn one of the set Z2 patterns

- -
to set an actual point Z and set Z1 patterns Zj to
compute the probability densities and to make classifi-
cation decision.

2.5. Classification accuracy estimation

Although the most of the considered techniques

BN
provide a confidence estimate P(d;/Z) for every pat-

tern Z and classification decision (diagnosis) d,, it is of
practical interest to know classification accuracy on
average for each fault class and whole engine. To this
end, the testing procedure consequently applies the
classification technique to all patterns of the set Z2
producing diagnoses d;. Since true fault classes D; are
also known, probabilities of correct diagnosis (true
positive rates) P(d j/Dj) can be calculated for all

BN
classes resulting in a probability vector P . A mean

number P of these probabilities characterizes accuracy
of engine diagnosis by the applied technique. In the

present paper, the probability P is employed as a crite-
rion to compare the techniques described in section 1.

3. Comparison conditions

For comparative calculations within the present
study, a gas turbine for driving a natural gas centrifugal
compressor has been chosen as a test case. It is an aero-
derivative engine with a power turbine. Its thermody-
namic model necessary to compute fault patterns is
available. An engine operating point is close to a maxi-
mum regime and is set by a gas generator rotation speed
and standard ambient conditions.

Apart from these operating conditions, the other 6
measured variables can be monitored and are used to
compute patterns. These variables and their normaliza-
tion parameters a; are specified in Table 1.

Table 1
Monitored variables

Ne Variable’s name a;

1 Compressor pressure 0.015

2 Exhaust gas pressure 0.015

3 Compressor temperature 0.025

4 Exhaust gas temperature 0.015

5 Power turbine temperature 0.020

6 Fuel consumption 0.020

The faults are simulated through 9 fault parameters
embedded into the model. They change from 0 to -5%.
As shown in Table 2, 9 single fault classes and 4 multi-
ple fault classes are formed. Regardless of simulated
faults, single or multiple, each class is presented by
n = 1000 patterns.
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4. Techniques Comparison

According to the description in section 1, five clas-
sification techniques will be compared: Multilayer Per-
ceptron (MLP), three variations of the Parzen Window
method (briefly called PW-cube, PW-sphere, and PW-
Gauss), and the K-Nearest Neighbor (K-NN) method.

The true positive rate P is a criterion to choose the
best technique.

Table 2
Fault parameters and fault classes
Fault classes
Ne Parameter names - -
Single | Multiple
| Compressor flow parameter D
1
C ffici Dy
5 |Compressor efficiency D
parameter 2
3 High pressure turbine flow D
parameter 3 D
4 High pressure turbine effi- D :
ciency parameter 4
Power turbine flow parameter
5 Ds
- - D
6 Power turbine efficiency D 3
parameter 6
7 Combustion chamber total D
pressure recovery parameter !
Combustion effici Ds
g |Combustion efficiency D
parameter 8
Inlet device total pressure
9 Dy
recovery factor

4.1. Technique adjustment

For the sake of correct comparison, each technique
should be tuned to the solved problem, diagnosis of the
chosen engine. The MLP was tuned for a diagnostic
application in our previous works [for example, 4]. In
particular, a number 27 of hidden layer nodes and a
resilient back-propagation training algorithm have been
found the best and were accepted for the present study.

Now, we need to tune the spread s for the varia-
tions of the PW and the nearest neighbor’s number k for
the K-NN. The criterion to determine the best values of

these parameters is the same, probability P .

For the PW-cube technique and single fault
classes, calculations with different values of the hyper-
cube edge length s have been performed. Three groups
of calculations were executed with varying seeds: with
Seed 1, with Seed 2, and with 10 different seeds and

averaging the probabilities P . Seed means here a spe-
cific parameter that determines a series of random num-
bers of the used uniform and normal distributions. Fig-

ure 2 shows the resulting probabilities P as a functions
of the spread parameter and its optimal value s = 1.14.

Similar tuning calculations were repeated for all
the techniques and two classification types. The result-
ing optimal values are given in Table 3. To better imag-
ine the proportion between a window and a fault class
region, remember that a maximum amplitude of pattern
random errors is 1 and a total class patterns number is
1000.

082 : : : : :
) ) H V| —#%— Seed 1
0815 f--n-mnn-- . boeoo o S i| —+—Seed2
' | 1 1| —— 10 Seeds
0.81

Probability
f==]
[==]
[ =]
o

0.8

0.795
§

0.79 i i i i

0.9 1 11 12 13 1.4 15
Spread

Fig. 2. Tuning the Parzen Window method

(single faults)

Table 3
Optimal values of tuning parameters
Technique | Parameter - Classes -
Single Multiple
PW-cube ] 1.14 1.30
PW-sphere ] 0.86 0.95
PW-Gauss S 0.30 0.35
K-NN k 21 18

One can see from the table data that the optimal
spread values for the multiple faults are greater than the
corresponding values of the single faults. Additionally,
an optimal sphere diameters 2s is greater than the corre-
sponding cube edges s. From our point of view, these
facts reflect a general rule that for all cases an approxi-
mately constant proportion is conserved between the
number of patterns inside the optimal window and the
total number of class patterns.

4.2. Comparison results

With the known tuning parameter values, the cal-
culations of the correct diagnosis probability have been
executed once more by each technique and for both
class types. The results are given in Table 4 where the
techniques are arranged according to the probability
increment. As can be seen, the PW-sphere technique is
approximately equal to the PW-cube for the single faults
and is more accurate for the multiple faults. In its turn,
the PW-Gauss classifies fault pattern better than the
PW-sphere for both class types. We can see that these
conclusions about technique accuracy coincide with the
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suppositions made in section 1. As to the K-NN tech-
nique, it is more or less equal to the PW-Gauss: for the
single faults the K-NN gains, but it yields for the multi-
ple faults. However, these two best techniques using
probability density perform worth than the MLP.

Table 4

Probabilities P for different techniques

. Classes
Technique Single Multiple
PW-cube 0.8101 0.8648
PW-sphere 0.8098 0.8698
PW-Gauss 0.8131 0.8748
K-NN 0.8160 0.8720
MLP 0.8238 0.8760

It is also can be seen that the techniques do not dif-
fer a lot: the maximum probability change within the
same class type is only 0.014 (1.4%). On the other hand,
it was shown in [4] that computational errors are pretty
great, =0.01. This means that the differences between
the techniques can be partly explained by low computa-
tional precision.

Preliminary, we can state that the PW-Gauss and
K-NN techniques do not yield a lot to the MLP. Be-
cause these two classification techniques have an advan-
tage of providing a confidence measure for every classi-
fication decision, they can be recommended for real
application.

Discussion

The present paper can be considered only as a pre-
liminary study. In spite of some results obtained, the
paper revealed important issues to be solved in future.

First, to draw final conclusion on techniques effi-
ciency, the comparative calculations should be repeated
with higher precision. We find it possible to decrease
computational errors in 10 times.

Second, since estimating diagnostic decision con-
fidence is an important property of the analyzed tech-
niques, it seems to be of practical interest to determine
the estimation precision.

Third, in the present study, the techniques were
examined at one static gas turbine operating point i.e.
for one-point diagnosis. Because multipoint diagnosis
and diagnosis at transients promise more accurate re-
sults, it seems important to examine the techniques for
these perspective diagnostic options.

Conclusions

Thus, in the present paper four techniques have
been examined that classify gas turbine faults through

estimating probability densities for the considered
classes. They were compared with each other and with
the Multilayer Perceptron (MLP) using the criterion of
mean probability of correct diagnosis. It was found that
the best two techniques, Parzen Windows with Gaussian
window and K-Nearest Neighbors, yield just a little to
the MLP. These two techniques are recommended for
gas turbine diagnosis because they provide confidence
estimation for each diagnostic decision, the property
very valuable in practice.

The present study also revealed some issues to
solve in future investigations. They are related with
more precise probability computation and with study
extension on multipoint and transient diagnosis.
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PeneH3eHT: KaH/. TeXH. HayK, podeccop kadeapsl KoHCTpyKImu aBuaasurareneii 0. A. I'yceB, HanmoHabHbIH
aspokocmuueckuil yausepcureT uM. H. E. JKykoBckoro «XapbkoBCKU aBUAIIMOHHBIM HHCTUTYT», XapbKOB.

AJITOPUTMHU OUIHKH IIIJIBHOCTI IMOBIPHOCTI JJIAd JIATHOCTYBAHHA I'T/,
L I JlIo6ooa

JliarHOCTHYHI anropuTMH, 3aCHOBaHI Ha BHMiPIOBaHUX MapaMeTpax MPOTOYHOI YaCTHHH, CTAHOBJISITH BasKIIH-
Buil kommoHeHT cucteM KoHTpoiro I'T/l. Ili anropurMu He TiIBKM OiarHOCTYIOTH Ae(EeKTH MPOTOYHOI YaCTHHU
I'TH, ane it n03BONSAIOTH iNeHTH(]IKYBaTH HECIIPABHOCTI AATYHKIB 1 CHCTEMH YIPaBIiHHS ABUI'YHOM. baraTo 3 mux
aJITOPUTMIB BHKOPHCTOBYIOTH METOAM Kiacudikamii oOpasiB. 30kpema, HalOUIbII BKUBaHUM € barartomapoBuit
[epcentpon (BII), onvH 3 OCHOBHHMX THUMIB HeHpOHHMX Mepex. Ha sxamb, BII He nae omiHKy JOBipH 0 CBOiX
niarHo3iB. OnmHaK, iCHYIOTh METOAH, sIKi Kiacu(ikyoTh 00pa3u Ha OCHOBI WMOBipHOCTI. Tak, HampuKia:, METOIU
Bikon Ilap3ena i K-Haiiommwkunx CyciniB po3paxoByIOTh HMOBIPHOCTI pO3IVITHYTHX KJIACIB 32 TOMIOMOTOI0 OLIHKH
iX minpHOCTI HMOBIpHOCTI. TakuM 4MHOM, KOXKEH IXHIH JiarHO3 CYIPOBOKYETHCS HOro JOBIpUOI0 HMOBIPHICTIO,
0 € JOCUTh KOPHCHOK BIIACTHMBICTIO Ui peajbHOro miarHoctyBanHs I'TJ[. ¥V mawmifi craTTi mi JBa METOAH
nopiBHIOIOTHCA 3 BII Mo KpuTepiro JOCTOBIPHOCTI JiarHOCTYBaHHS B CEpeHbOMY IO Bcix kiacax nedexrtis. 1106
BU3HAUUTU Kpalluii METOJN, TaKOX BPaxXOBYEThCs 3rajaHa mnepeBara meroaiB Bikon Ilapsena i K-naiOmmxumx
CycimiB.

KawuoBi cimoBa: I'T/l, wnacudikauisi nedexriB, bararomaposuit Ilepcentpon, Bikna Ilapsena, K-
Haitommxanx Cycimis.

AJITOPUTMBI OHEHKHU IIJIOTHOCTU BEPOSITHOCTHU AJISA IMATHOCTUPOBAHUA I'T
H. H. jlobooa

JluarHocTuueckue ajiropuTMbI, OCHOBaHHbIE Ha H3MEPSEMBIX MapaMerpax MPOTOYHOW YacTH, COCTaBISIOT
BKHBIA KOMITOHEHT cucTeM KoHTpois I'TJI. DTH anropuTMbl HE TOJIBKO MUATHOCTHPYIOT ASPEKTHI MPOTOUHON
gactu ['T/], HO ¥ MO3BONAIOT MACHTH(OUIIUPOBATH HEUCIIPABHOCTH JATYUKOB M CHCTEMBI YIIPABIICHUS IBUTATCICM.
MHorue U3 3TUX aJIrOPUTMOB HCIOIB3YIOT METOMABI KiacCH(pHKAIMU 00pa3oB. B wacTHOCTH, HanboJee MpUMEHse-
MbIM siBIsieTcst MHorocnoiusiid [lepcentpon (MII), omuH U3 OCHOBHBIX THIIOB HEHMpPOHHBIX ceTeid. K coxanenuto,
MII He naer OlEHKY JOBEpHSA K CBOMM JauarfosdaM. OJHAKO CYIIECTBYIOT METOMBI, KOTOpPhIE KIacCUQHUITUPYIOT 00-
pasbl Ha OCHOBE BeposATHOCTH. Tak, Hanmpumep, Metoasl OkoH Ilapzena u K-bamxkaitmux Cocezneit paccuuThIBatoT
BEPOSTHOCTH PACCMAaTPUBAEMBIX KJIACCOB IOCPEACTBOM OICHKH HX ILIOTHOCTEH BEpOSTHOCTH. Takum oOpasom,
KaKJIBIM UX TUAarHO3 COMPOBOXKIAETCS €r0 TOBEPUTEIHLHOM BEPOSITHOCTHIO, UTO SIBISIETCS BEChbMa MOJIE3HBIM CBOMCT-
BOM 1 peasibHoro auarnoctuposanust I'T/I. B nanHoii cratbe 5TH aBa MeToja cpaBHUBaroTCs ¢ MII mo kputepuio
JIOCTOBEPHOCTH THATHOCTUPOBAHMS B CPEIHEM IO BCeM KiaccaM jedekro. IIpu ompeneieHuu JydIIero Meroaa
TaK)Ke YUYUTBIBaeTCs yIoMsaHyToe npenmMyectBo MeronoB OkoH Ilap3ena u K-bamxkaiimux Coceneit.

KiaroueBnie cioBa: I'T/, knaccudukarms naedexroB, Muorocnoinsiii Ilepcentpon, Oxna IlapseHa,
K-Bmwxkaiimmx Cocena.
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