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EFFICIENCY ANALYSIS OF COMBINED DESPECKLING
OF SINGLE-LOOK SAR IMAGES

Efficiency of Synthetic Aperture Radar (SAR) image despeckling is assessed using model data that take into
account basic properties of real-life single-look images, in particular non-Gaussian probability density
function of fully-developed speckle and its spatial correlation. Analysis is performed for a wide set of well-
known despeckling techniques and for recently proposed locally adaptive filters that combine a Level Set
method used to detect small-sized objects and Discrete Cosine transform based denoising. The despeckling
performance is evaluated in terms of standard criterion (output MSE) and two other criteria — local MSE in
heterogeneous regions and integral MSSIM. The experiments have demonstrated that the locally adaptive

filters outperform the well-known ones.

Key words: single-look SAR image; combined despeckling; Level Set method, DCT, efficiency analysis.

Introduction

Synthetic aperture radars have become a standard
imaging tool installed on-board of airborne and
spaceborne carriers [1, 2]. The main advantage of SAR
(Synthetic Aperture Radar) systems is their ability to
acquire data in different weather conditions, during day
and night, and with high spatial resolution. However,
high resolution can be provided if a SAR sensor operates
in single-look mode for which acquired images are
characterized by the presence of a noise-like
phenomenon also called speckle [1, 3].

Speckle can be treated as a special kind of
multiplicative noise that has several peculiarities. First,
its probability density function (PDF) is not Gaussian for
single-look and multi-look modes (if the number of
looks is not too large [1, 4]). Second, the spatial
correlation of the speckle is often observed for real-life
SAR images [5, 6], which is usually ignored in image
modeling and at the stage of SAR data processing [1, 4-
7]. By data processing, we mean here such operations as
edge and target detection as well as SAR image pre-
filtering. Note that SAR image pre-filtering (often called
despeckling) is a standard operation in dealing with SAR
data [1, 3-9]. It allows more accurate estimation of radar
cross-section in homogeneous regions, provides easier
segmentation, ensures more reliable  solving
classification tasks, simplifies visual analysis of SAR
images by human experts [1, 3, 10], etc.

Numerous techniques for SAR image despeckling

have been already proposed (see [3-7, 9-12] and
references therein). These techniques are based on
different principles including scanning window filtering,
orthogonal transforms, total variation, non-local
approaches, etc. Most of these methods provide rather
efficient speckle suppression in homogeneous image
regions and quite good preservation of edges. Most of
them are also able to preserve texture features and small-
sized objects to some extent although texture/detail
preservation is still worth improving.

One problem in designing new techniques for SAR
image despeckling as well as the performance
assessment for them is the absence of commonly
accepted test (noise-free) and simulated (noisy) SAR
images. A similar problem was actual for researchers
dealing with optical image processing. They solved it by
accepting a standard set of grayscale and color images
that includes benchmark images (e.g. Lena, Baboon,
Barbara, Peppers, etc.). Meanwhile, SAR image
processing community still adopts the following three
practices. The first practice simulates speckle for
standard optical images as Lena, Boats, etc. [11, 13]. The
second one generates speckled images on the basis of
optical images of natural scenes acquired from airborne
platforms [11]. Finally, the third practice applies and
analyses real-life images before and after despeckling
[11, 14].

The first practice provides quantitative evaluation
of the filtering efficiency although speckle spatial
correlation is often ignored in this case. Besides, this
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approach has been criticized in the sense that noise-free
optical characteristics and true SAR images are different.
From this viewpoint, the second practice provides more
adequate properties of noise-free and speckled images.
Some typical effects in SAR data as, e.g., shadowing can
not be still represented and, thus, taken into account. A
drawback of the third practice is that it allows to
calculate only particular parameters characterizing
filtering efficiency as, e.g.,, increase of equivalent
number of looks (ENL). However, estimates of such
parameters can be not accurate enough and
edge/detail/texture preservation is analyzed mostly
visually, i.e., subjectively.

These shortcomings have stimulated the design of
more sophisticated SAR image models [12, 15, 16].
They are able to simulate spatially correlated speckle
[15] and other more complex phenomena in single- and
multi-look SAR images [12, 16].

The goal of this paper is to carry out quantitative
performance analysis and comparison for a wide set of
modern despeckling techniques. Peculiarities of our
study consist in using more adequate models of single-
look SAR images that take into account spatial
correlation of the noise as well as in exploiting three
quantitative criteria, namely, integral output mean
squared error (MSE) calculated for entire image, local
MSE determined for locally active areas of the test
images, and the metric MSSIM [17] that is able to
adequately characterize visual quality of original (noisy)
and despeckled images. Whilst the first quantitative
criterion is traditional, the two latter ones are less often
used in analysis. Meanwhile, both are important since
heterogeneities and visual quality are of great importance
in SAR image processing [1, 18]. One more peculiarity
is that heterogeneity areas are detected using the Level
Set approach [19] that has recently demonstrated it
effectiveness in processing SAR and other types of noisy
images [14, 20-23].

2. Model test images and criteria
of filtering efficiency

This paper focuses on filtering single-look SAR
images. This is the most complex and challenging case
because of the highest intensity of the speckle. There are
two possibilities to model noisy test SAR images. In
both cases, the noisy model is expressed as [1]:

LHES i TH (1)

where Iitjme

stands for the true image value in ij-th pixel
and M is the multiplicative noise with unitary mean. In

the first case, one considers amplitude data for which

speckle variance cﬁ =0.273 and follows a Rayleigh

distribution. In the second case, intensity images are
considered where PDF is negative exponential and
2 _
W=

study the former case (original and filtered images for
the two cases can be easily converted from one to
another representation by simple homomorphic
transforms [1]).

A specific feature of the model (1) in our study is
that speckle is modeled as spatially correlated
multiplicative noise. Spatial correlation properties of the
speckle are modeled is such a way that they are
practically the same as for single-look SAR images
produced by TerraSAR-X spaceborne sensor [24]. The
simulation algorithm is presented in [25]. The noise-free
test image # 1 is presented in Fig. 1.a whilst the obtained
noisy version is shown in Fig. 1.b. Noise-free test images
are in 8-bit bitmap format whilst noisy images are
represented as 16-bit 2D data arrays to avoid clipping
effects. Filtered images have been presented in the latter
format as well to diminish the influence of rounding-off
errors on estimates of filtering efficiency criteria.

Output (integral) MSE is calculated as

o;, =1.0. In our paper, without loosing generality, we

Dy f true2
MSEqy = D > (=1 /Iy =D > ()
io1 =1

where Iifj stands for a filtered image value in ij-th pixel,

Iy and Jpy define the image size (both considered

test images are of size 512x512 pixels).
In addition to the traditional output MSE, local
MSE MSE, has been determined for heterogeneous

image regions as

f
MSEg = > (I =I1") /(Ngpet|-D.  (3)
i’jeGhet

where Gy denotes a set of pixels that belong to
heterogeneous regions, Ngpe is the number of pixels

in this set.

These heterogeneous regions have been detected
using the Level Set method that locates small-sized
objects and delimits their boundaries. This approach is
based on the Hamilton-Jacobi equation [22, 23]. Its
ability to detect heterogeneities in single-look SAR
images has been studied for simulated and real-life data
in [14]. After detecting region contours, we perform a
post-processing to produce a binary map. Fig. 2.a
illustrates an example of this map for the test image # 1
(Fig. 1). In fact, small-sized objects, edges and their
neighborhoods are detected well.
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Fig. 1. A test noise-free image #1 (a)
and the corresponding noisy image (b)

The third considered metric is MSSIM [17]
determined for the entire test image. The reasons for
using it are that it is one of the best visual quality
metrics for grayscale images [26], since it takes into
account several valuable aspects of human visual
system. Moreover, the MSSIM metric encompasses the
Weber-Fechner law that describes different sensitivity
of humans to distortions in image fragments with
different local mean (brightness). Thus, in this paper
this is a relevant aspect for the speckle noise.

Speckle filtering was first introduced over 30 years
ago and, since then, filtering methods as the local
statistic Lee and Frost filters [7, 27, 28] have undergone
a continuous refinement. The obtained data are presented
in Table 1 for both test images. As it is known, the
performance of these filters depends on the scanning
window size. Thus, we applied several window sizes in
order to determine the optimal one according to the used
criteria. The refined Lee filter implementation available
at [http://www.mathworks.com/matlabcentral/fileex-
change/9456-1ee-filter] has been used. It is worth noting
that better efficiency of noise suppression in
homogeneous regions for both filters is provided by
larger scanning window sizes. According to the data
analysis, the optimal scanning window size for the Lee
filter is 7x7 pixels usually recommended for practical
application.

Meanwhile, scanning window size of 5x5 pixels
provides better edge and detail preservation. Concerning
the Frost filter, a 17x17 scanning window achieves the
smallest (the best) output MSE whilst the best visual
quality is accomplished by a 13x13 pixel scanning
window. Finally, the smallest MSE,; is observed for

9x9 scanning window size. In general, the results for the
Frost filter (e.g., with the scanning window 13x13
pixels) are sufficiently better than for the local statistic
Lee filter. Moreover, the Frost filter performs superior
when compared to other, more sophisticated, filters as it
will be seen from further analysis.

Table 1
Performance of the local statistic Lee and Frost filters

Scann- Test image # 1 Test image # 2
ing MSE MSE MSSIM MSE MSE MSSIM
window out het out het
size
Lee 5x5
620 783 0.778 640 831 0.766
Lee 7x7
567 843 0.780 598 988 0.767
Lee 9x9
589 958 0.761 625 1176 0.747
Frost
5x5 630 729 0.777 643 712 0.764
Frost
9x9 479 663 0.810 503 703 0.799
Frost
13x13 460 670 0.817 485 722 0.806
Frost
17x17 459 677 0.816 484 734 0.805

Another denoising technique used for comparison
is the integro-differential filter [29]. Actually, this filter
also depends on the scanning window size and the
results for windows from 5x5 to 15x15 are presented
(denoted as Vozel 5,..., Vozel 15). The obtained data are
presented in Table 2. As it can be seen, the minimal local
MSE was observed for 7x7 scanning window whilst
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optimal integral MSE and the best visual quality was
provided for 9x9 scanning window.

Fig. 2. Heterogeneity detection map (a)
and the noise-free test image # 2 (b)

Table 2 also displays data for the BM3D (block
matching 3-dimensional) filter [30] equipped by the
corresponding variance stabilizing transformations
(VST) [13]. This denoising technique has provided the
output MSE and local MSE sufficiently larger than for
the Frost filter with optimal parameters, and the MSSIM
metric achieved the worse value. Note that the BM3D
filter is considered to be the state-of-the-art nowadays in

suppressing additive white Gaussian noise. Possible
reasons why it has not performed well enough for the
considered application are the following. First, the noise
in images after direct homomorphic (variance
stabilizing) transform is not white and not Gaussian [1].
This makes the task of similar patch search more
complicated [31]. Second, the found similar patches are
processed by the DCT based denoising not adapted to
spatial spectrum of the noise. This additionally makes
performance of the denoising worse. Then, it can be
expected that performance of the BM3D based filtering
can be improved if these drawbacks are undertaken and
the corresponding modifications are employed.

The Level set based despeckling method
encompasses a target detection algorithm that adopts a
measure of homogeneity/heterogeneity to discriminate
small-sized objects surrounded by large homogeneous
areas [23]. Then, the speckle filtering method performs
in blocks over homogeneous regions and furthermore
preserves edges and details. Table 3 presents the
performance assessment of this filtering scheme. In fact,
its performance depends on the number of iterations and
the higher iterations produce better results in the sense
of MSE; and MSE, . However, the obtained results

are considerably worse than for the Frost filter and the
technique [29] with optimal parameters.

Table 2
The performance of the integro-differential filter
and BM3D with VST
Scanning Test image # 1 Test image # 2
window | MSE | MSE | MSSI | MSEout | MSE | MSSIM
size out het M het
Vozel 3 732 313 | 0.764 736 763 0.751
Vozel 5 510 651 0.807 526 520 0.795
Vozel 7 452 627 | 0.821 477 672 0.810
Vozel 9 438 634 | 0.824 167 692 0.812
Vozel 11 439 652 | 0.821 469 714 0.809
Vozel 13 | 446 672 | 0816 477 735 0.803
Vozel 15 | 457 693 | 0.809 486 754 0796
BM3D
with VST | 746 872 | 0.756 762 809 0.743
Table 3

The performance of the Level Set based despeckling

Number Test image # 1 Test image # 2
of MSE MSE MSSIM MSE MSE MSSI
iteration out het out het M
s
1 1521 1519 0.710 1523 1377 0.696
2 952 1087 0.756 974 1101 0.743
3 765 957 0.773 793 1015 0.762
4 694 920 0.777 724 985 0.765
5 668 913 0.773 696 987 0.762

Consider the DCT based filtering. This despeckling
approach presents many variants. Here, we specify the
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one considered in the proposed approach. We assume the
processing of fully overlapping blocks and adapt this
filtering process to spatial DCT spectrum of the noise by
applying the following combined thresholding [14, 32]:
Dt (ms n, ks l) =
D(m,n,k,1),if|D(m, n,k, )| > Bo, ™ y Wi ; 4)
D (m,n,k,1) / (Bo, Ime™ /Wy )? otherwise,

where D(m,n,k,l) is the kl-th DCT coefficient of the
block with left upper corner and indices m and n. Here,
I denotes the mean for the mn-th block, Wy is

the normalized DCT spectrum of the speckle, k and | are
indices in the DCT domain, 3 is a parameter which the

recommended value is equal to 4.5. A typical block size
is 8x8 pixels and furthermore, we evaluate data obtained
for each block and several different values of the
parameter [ . The results are presented in Table 4 and

from the analysis of them, we conclude:

1) there are minima for both (entire image) output
MSE and local MSE (determined for pixels that belong
to map);

2) these minima are observed for different f,
minimal local MSE is observed for smaller  (about 4.6)
since smaller B in DCT based filtering provides better
preservation of edges and details;

3) there are also maximum values for the MSSIM
metric (that characterizes visual quality) observed
practically for the same [ as minimum of the local
MSE;

4) the best provided criteria values are almost the
same as for the Frost filter with the optimal parameter
settings and slightly worse than for the filtering
technique [29].

Table 4
The performance of the DCT-based despeckling
combined with frequency dependent thresholding and

8x8 pixel blocks
B Test image # 1 Test image # 2
MSEout MSE MSSIM MSEout MSE MSSIM
het het

3.8 547 729 0.810 562 734 0.801
4.0 519 704 0.813 537 715 0.804
4.2 499 688 0.815 518 703 0.806
4.4 485 678 0.816 504 698 0.807
4.6 475 673 0.816 495 698 0.808
4.8 468 672 0.816 489 701 0.807
5.0 464 674 0.816 486 708 0.807
52 462 678 0.815 484 717 0.806
54 462 684 0.814 484 728 0.805
5.6 463 691 0.813 486 741 0.803

Based on the result analysis presented in [33] for
intensive noise, one might expect that better results for
the considered application can be provided by the DCT-
based filters with 16x16 pixel blocks. To check this
hypothesis, we have obtained simulation data for this
version of the DCT-based despeckling which are
displayed in Table 5. Although the obtained values of the
studied criteria are satisfactory, they are worse than those
ones presented for the Frost, Vozel’s and 8x8 block DCT
filters with optimal parameters. The main problem is
with edge/detail preservation for image processing in
16x16 blocks.

The studies have been also performed for the hard
frequency dependent thresholding with block sizes of
8x8 and 16x16 pixels. The difference between them
both is that optimal B values are about 3 according to

output MSE (minimum) and about 2.8 according to
local MSE minimum and MSSIM maximum.

Table 5
The performance of the DCT-based despeckling
combined with frequency dependent thresholding,

16x16 pixel blocks
B Test image # 1 Test image # 2
MSEout MSE MSSIM MSEout MSE MSSIM
het het

4.0 527 721 0.809 547 755 0.798
4.2 510 713 0.809 530 758 0.799
4.4 498 712 0.809 520 766 0.798
4.6 492 717 0.807 515 780 0.796
4.8 489 725 0.805 513 796 0.793
5.0 490 736 0.801 514 816 0.790

It is worth noting that local MSE for all studied
despeckling approaches is always larger than output
MSE for the entire image. This is due to the fact that
any filter better suppresses noise in homogeneous image
regions than in heterogencous ones [27, 28, 34, 35].
Moreover, heterogeneity regions usually correspond to
pixel areas with large local mean and, therefore, large
local (input) MSE due to multiplicative nature of
speckle.

Fig. 3 exemplifies two examples of filtered
images. As it can be seen, the DCT-based filter has
succeeded in suppressing speckle considerably and
provided better edge/detail preservation although it is
still worth improving.

4. Performance analysis for combined
approaches to despeckling

Summarizing the simulation results presented in
the previous section, one can expect that further
improvement of despeckling efficiency can be provided
due to the better preservation of fine details (targets)
and edges, i.c. better processing of single-look SAR
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Fig. 3. Output images (# 1) for the 7x7 refined Lee filter
(a) and the DCT based filter (combined frequency
dependent thresholding with $=4.9 ) (b)

images in heterogeneous regions. Note that the area that
corresponds to such heterogeneous regions is quite
large. For the noisy test image in Fig. 1.b, the
percentage of such pixels is about 44% in the
mappresented in Fig. 2.a (white pixels). We assume that
heterogeneous regions can be detected by the Level Set
method. Then, the task is to attain the local MSE as
small as possible.

Improvement for edge/detail preservation has been
earlier proposed in [14] and its efficiency has been
demonstrated qualitatively but not quantitatively. Thus,
below we focus on the MSE;.; and MSSIM criteria for

several versions of the combined (locally adaptive)
despeckling techniques.

Our assumption is that the 8x8 block DCT-based
filter combined with frequency dependent thresholding
(Bp=4.9) is proper for processing homogeneous image

regions. Thus, we have to check which filter is more
suitable to apply to the detected heterogeneous regions.

In [14], it is proposed to apply the DCT-based
filtering combined with frequency-independent hard
thresholding:

Dt (m, n, ks 1) =
_ | D(m,n,k, 1), if [D(m,n,k,D| > B, Imed;  (5)
0, otherwise,
where 1M is the median value in mn-th block. In fact,

there are two main approaches to exploit. First,
adaptation to speckle spatial spectrum is used in
homogeneous regions due to (4). Second, adaptation to
local content is applied due to detecting heterogeneous
areas by the Level Set method and adjusting better
edge-detail preservation for these areas.

We have checked this locally adaptive version and
the provided results are presented in Table 6. As it can
be seen, the obtained values of MSE;, MSE,, and

MSSIM are better than for any DCT-based filter studied
above for both test images.

The other option was proposed in [14] and applies
the 8x8 block Haar wavelet based thresholding in
detected heterogeneous areas. We have first analyzed
performance of the Haar wavelet denoising itself. It has
been established that approximately the same (optimal)
results are obtained if the hard threshold is set either as

: mean :
expression T(m,n) = Bculmn ,B = 3.5 or as expression

T(m,n) = Bculmreld,ﬁ ~4.0. The obtained simulation

data for the latter variant are given in Table 6. The
results are slightly better than for the first version of
adaptive filter.

Since very good results have been provided by the
Frost filter, it inspired the idea that DCT-based
denoising with frequency-dependent thresholding can
be combined with the Frost filter. The corresponding
locally adaptive filter output can be expressed as

arlper (i, j) +aslp (0, ), if M(, j) =0;
asIper (i j) +a4lp (i, j), otherwise,

i | ©

where for non-negative weights a; +a, =1,a;+a4 =1,
a; 2a3, Ipcr(@,])), Ig(1,j) are the DCT and Frost

filter outputs for an ij-th pixel, M(, j) =0 denotes local
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activity map values for locally passive areas (where
heterogeneities are not detected by the Level Set
technique). In addition, we employed another
mechanism to improve the despeckling scheme here.
We assume that the outputs of the two filters are
correlated, although the correlation factor is not equal to
unity. Then, some partly averaging of residual noise can
be provided.

We have studied the combined filtering for 8x8
block DCT with combined thresholding with B~ 4.9

and the 9x9 Frost filter.
(a; =0.6,a3 =0.4) are presented in the lowest row of

Table 6 (denoted as DCT+Frost). Although there is
some improvement compared to the basic DCT and
Frost filters, the benefit is not sufficient. The reason is
that residual noise is highly correlated for these filters.
Similarly to (6), we have combined the DCT-based
denoising with the filter introduced in [29]. The only
difference is that in this case

The obtained results

The

presented in the lowest row of Table 6. In general, these
results are better than for any other considered
denoising method considered in this study.

a;=a, =05, a3=03,a,=0.7. results are

Table 6
Performance of the adaptive despeckling techniques

Combined Test image # 1 Test image # 2
filter MSE | MSE | MSSIM | MSE MSE | MSSIM
description out het out het
and
parameters
DCT: 4.9 449 666
(comb) + 4.0
(hard
frequency
independent)
DCT 4.9 445 667
(comb) + 3.0
Haar wavelet
(hard)
Adapt
(DCT+Frost) 454 648
Adapt
(DCT+Vozel
9) 429 617

0.823 470 696 0.814

0.823 466 688 0.817

0.819 474 699 0.809

0.825 457 654 0.814

Note that for all locally adaptive filters described
here, the correspondence to the first or the second type
of region is determined by the position of a block
central pixel in edge map.

By visually checking the results, one can see that
the filter preserved details in heterogeneous regions for
simulated images. For this purpose, we applied the DCT
based filter combined with frequency dependent
thresholding with B =4.9 for homogeneous regions and

the DCT based filter with frequency independent

threshold T(m,n)zﬁoulnmrgd for the detected

heterogeneous regions. First, we have used (=4.0
according to Table 6. The output image is presented in
Fig. 4a and we observe edge-detail preservation
compared to the non-adaptive variant (see output image
in Fig. 3.b). One can expect that edge sharpness can be
even better if B is smaller than 4 for the filter applied to
heterogeneous regions. Fig. 4.b illustrates the case of
setting f=3.0 which leads to even better edge/detail
preservation but artifacts become more visible.

Fig. 5 shows the output images for two other
adaptive versions. The output image obtained for
DCT+Haar filter is presented in Fig. 5.a. An important
feature is that many high-contrast small sized objects
are preserved very well if they have been detected by
the Level set method. The output for the combination of
the DCT-based denoising and the filter introduced in
[29] is shown in Fig. 5.b. The filter performed better
noise suppression but edges and fine details are less
sharp.

Fig. 4. Output images for DCT based adaptive filters
with parameter switching in blocks depending upon
edge (heterogeneity) map: a— f=4.0, b— f=3.0
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Fig. 5. Output images for adaptive filters DCT+Haar (a)
and DCT+integro-differential filter [29] (b)

Conclusions

A wide set of despeckling techniques is verified
for two test images corrupted by spatially correlated
speckle. It is shown that the main problem is to provide
good edge/detail preservation. To solve this task, it is
proposed to apply the Level Set method for detecting
heterogeneities in SAR images and then to locally use
filters that produce the best edge/detail preservation.
Among the best methods to gain this purpose, we
mention Haar wavelet filter adapted to multiplicative
noise and the integro-differential method [29]. This is
demonstrated by both quantitative data and some visual

examples. This work has been partly supported by
French-Ukrainian program Dnipro (PHC DNIPRO
2013, PROJET N° 28370QL).
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AHAJIN3 9OPEKTUBHOCTU KOMBUHUPOBAHHOT O ITIOJABJIEHUSA CIIEKJIA
B OTHOB3I'JIAAOBBIX PCA-U30BPAKEHUAX

P.A. Koscemakun, C.C. Kpugenxo, B.B. /lykun, P. Mapkec, @. Meoeiipoc, b. Bo3zens

B nmaHHO#1 cTaThe MPOBOAUTCS OLIEHKA 3(PPEKTUBHOCTU (DMIIBTPALIMU CIEKIIA T U300paskeHui, (hOPMHUPYEMbIX
PaJIMOJIOKATOPOMH C CHUHTE3UpOBaHHOW anepTypoii (PCA), ¢ moMompi0 MOICTH JaHHBIX, KOTOpas YYHUTHIBAET
OCHOBHBIE CBOMCTBa PealbHBIX OJHOB3IISIOBBIX HM300pa)KCHHMH, B YAaCTHOCTH, HEraycCoBY (DYHKIIMIO IIOTHOCTH
BEPOSATHOCTH CIIEKJIa M €r0 MPOCTPAHCTBEHHYIO KOPPENALNIO0. AHAJIU3 MPOBOAUTCS YISl IIUPOKOTO MHOXKECTBA
XOpOIIIO M3BECTHBIX METOAOB (DMIIBTPALUU CICKIIA, a TAKKE I HENABHO MPEIIOKECHHBIX JIOKAIbHO-adalTHBHBIX
(WIBTPOB, COUETAIOIIUX METOJ| YPOBHEBBIX MHOXKECTB, HCIOJIB3YIOUIMIACA I OOHApY)KEHHsI MajiorabapUTHBIX
00BEKTOB, U IMCKPETHOE KOCHHYCHOE MpeoOpa3oBaHHe. Pe3ynbTaThl OLIEHHUBAIOTCS MPH IOMOIIM CTAaHAAPTHOTO
kputepus MSE, nokansHoro MSE, paccunTbiBaeMOro Ha HEOJHOPOJHBIX YUacTKax, U HHTETPATbHOTO MOKa3aTess
MSSIM. Pe3ynbTaThl MOKa3aiH, YTO JOKAIbHO-aIalTUBHAS (DHIBTPAIS 110 Py NMapaMeTpPOB IMPEBOCXOIWUT BCE
M3BECTHBIC METOIbI (DMITBTPAITUH.

KiaroueBnle cioBa: omHoB3rsinoBoe PCA u3o0pakeHHe; KOMOMHUpOBaHHAs (DUIbTpAIMs CIICKIa; METOI
ypoBHEBBIX MHOecTB, JIKII, ananus 3¢(heKTHBHOCTH.

AHAJII3 EOEKTUBHOCTI KOMBIHOBAHOI'O ITPUAYIIEHHA CIIEKJIA
B OJHOIIOTI'JIAAOBUX PCA-305PAKEHHAX

P.O. Kosiwcemaxin, C.C. Kpusenxo, B.B. JIykin, P. Mapxec, ®@. Meoeiipoc, b. Bozeno

VY nmaHifi CcTaTTi NMPOBEACHO OINHKY e(peKTUBHOCTI (impTpallii crmekiaa uis 300pakeHb, M0 CHOPMOBaHI
pamionokatopaMu i3 CHUHTe30BaHOI0 amepryporo (PCA), 3a m0OmMOMOror Mojeli NaHHX, sKa BPaxOBYE OCHOBHI
BJIACTUBOCTI PeaJIbHUX OIHOIOIIISIIOBUX 300pakeHb, 30KpeMa, HeraycoBy (hyHKIIIFO MIUIEHOCTI HIMOBIPHOCTI CIIEKIIa
Ta HOro MpOCTOPOBY KOPEJISILIit0. AHANI3 MPOBOANTHCS /sl HAHOLIBII BiJOMHUX METONIB (iIbTpallii CreKiIa, a TAKoXK
JUISL HEUIONABHO 3alPONIOHOBAHUX JIOKAJIbHO-aIaTUBHUX (PUIBTPIB, IO MOEAHYIOTh METO/ PiBHEBHUX MHOXHH, IO
BHUKOPHCTOBYETHCS /ISl BUSIBIIEHHSI MaiorabapuTHUX 00'€KTIB, Ta AUCKPETHE KOCHHYCHE MepeTBOpEHHs. Pe3ynbratn
OIIIHIOIOTHCS 3@ JOIMOMOIOI0 CTaHAapTHOro kpurepito MSE, mokamsHOoro MSE, mo po3paxoByeThcs Ha
HEOJHOPITHUX IUIAHKAX, 1 1HTerpaJbHOro nokasHuka MSSIM. PesynmbraT moka3aju, IO JIOKaJIbHO-aJdallTHBHA
(inbTpalist o psay napameTpiB IepeBepIIye BCi BioMi MeToau (inbTpartii.

Karwuosi cioBa: omnonornsgoBe PCA 300paxkeHHs; KOMOiHOBaHa (inbTpalisi CIIEKIa; METOJ PiBHEBHX
MuoxuH, JIKII, aHasi3 eeKTUBHOCTI.
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