100 ISSN 1727-7337. ABUAIIUOHHO-KOCMHNYECKAS TEXHUKA U TEXHOJIOI'UA, 2013, Ne 4 (101)

YK 004.82 + 004.89
0.V. PROKHOROYV, O.M. PAKHNINA

National Aerospace University named after M.Ye. Zhukovsky «Kharkiv Aviation Institutey,
Ukraine

THE APPROACH TO ORGANISING INFERENCE ON ONTOLOGIES
IN MULTIAGENT SYSTEMS

1t’s provided to use multiagent system’s technologies and ontologies for solving problems, directly relating to
analyses, diagnostic, evaluation and identification of situations, forecasting of outcomes, information fusion,
coordination of unmanned aerial vehicle’s group operation. An approach is suggested, which allows analysing
the correctness of ontology and its completeness, searching for disturbances in semantic links, agreement of
representations about the subject area and the semantics of objects described in terms of different ontologies
during their merging. Issues of mapping the elements of the OWL and SWRL-languages to a knowledge base of
a decision support system based on the first-order predicate logic are discussed. The key principles of imple-
menting an effective inference algorithm on ontologies for different strategies of search reduction are de-
scribed.

Key words: multiagent system, inference, knowledge base, decision support system, predicate logic, ontology,

simulation modeling, knowledge-oriented system, agent approach.

Introduction

The enhancement of scope of solvable tasks and its
complication, substantial increase of autonomy and im-
proving reliability of unmanned aerial vehicles (UAV)
necessitate the development of aircraft control systems
of new generation, based on multipurpose use of mod-
ern intelligent information technologies. Such systems
make it possible to operate under the conditions when
air situation is rapidly changing, if random environ-
mental disturbances and another uncertainties appear.
Viz multiagent system’s technologies are used for solv-
ing problems, directly relating to analyses, diagnostic,
evaluation and identification of situations, forecasting of
outcomes, information fusion, coordination of un-
manned aerial vehicle’s group operation.

The key element of a program agent in a multi-
agent system, allowing it to make decisions, plan ac-
tions, and interact with other agents is a knowledge base
containing models of conceptual notions, relations and
rules for analysis and situational orientation. Ontologies
are used as a tool for structuring and representing in-
formation in such systems [1].

Since an ontology defines the terms in a specific
knowledge area, it should be described by a formal lan-
guage based on mathematical logic principles. Then,
clear, detailed and complete definitions can be formu-
lated for classes of objects, their properties and interre-
lations. In turn, ontology processing tools can automati-
cally infer certain conclusions by being based on ma-
thematical logic principles.

Analysis of Recent Research
and Publications

Plenty of papers are dedicated to intelligent aircraft
control systems’ development based on adaptive con-
trollers with self-organization and predictive algo-
rithms’ implementation. However intelligent systems
that actively use experts’ knowledge and experience and
focuse on immediate operation in UAV’s and its subsys-
tems’ performance (based on analyses of ever changing
external and internal environment model) are of special
interest. The key tool for structuring and representing
knowledge in multiagent systems are ontologies.

Presently, the most widespread ontological model
recommended by the W3C consortium is the OWL lan-
guage [2]. Three sublanguages are defined in this lan-
guage:

- OWL Lite — a classification hierarchy of things
and simple conditions of consistency of things;

- OWL DL (Description Logic — a decidable subset
of first-order logic predicates) — maximum language
expressiveness without loss of computational complete-
ness (meaningful interpretation of conclusions received
by formal logic methods) and decidability (computa-
tions will be completed in finite time);

- OWL Full — very high expressiveness (meta-
classes, classes as values) and complete syntactical free-
dom RDF (Resource Description Framework) with a
loss of guaranteed computational completeness and de-
cidability.

When processing ontologies, two close problems

© 0O.V. Prokhorov, O.M. Pakhnina

Hughopmayuonnvie mexnonozuu

101

are considered: knowledge elicitation in the ontology by
formation of queries (asking, querying), and application
of reasoning to available knowledge (reasoning, entail-
ment).

To solve the first problem, the most widespread
tool is SPARQL [3], a language for querying RDF,
which accepts RDF-data as a set of statements or triplets
rdf(Subject, Predicate, Object).

The OWL DL level is the one that is focused to
currently existing knowledge description systems, and
logical programming and inference systems. They solve
the following problems: check ontology correctness,
process queries in terms of ontology, and map and inte-
grate ontologies.

The open applied programming interface API Jena
[4] is used to work with OWL ontologies. However,
neither of the reasoning engines existing in Jena (7ran-
sitive reasoner, RDFS rule reasoner, OWL Mini, OWL
Micro Reasoners) completely support OWL DL.

For complete OWL DL inference support, external
reasoning engines are required, such as FaCT (an open-
source DL reasoning engine developed by Prof.Ian Hor-
rocks, with the Manchester University), RacerPro (a
commercial development of Racer Systems GmbH &
Co., Germany), Pellet (an open-source reasoning engine
developed by the MIND LAB of the Maryland Univer-
sity) and other ones supporting the DIG (DL Implemen-
tation Group) interface.

Besides working directly with OWL, an approach
based on extending or transforming the OWL ontology
into other languages and systems is often used.

There are other more complex reasoning engines
using such languages as RuleML (Rule Markup Lan-
guage), which is a subset of the declaration language
Datalog, and SWRL[5] (Semantic Web Rule Language),
which combines OWL DL and RuleML. Owing to such
an extension, SWRL acquires the capability of adding
and using Horn disjunctions (Horn-like rules) for ex-
plicit indication of the method for inferring new facts
from RDF statements. Rules in SWRL can be written as
part of an ontology. The delivery package of one of the
widely used tools for creating and editing ontologies,
Protégé-OWL 3.3.1 [6], includes as a component the
plug-in SWRLTab for working with rules in this lan-
guage. Language SWRL has certain constraints, among
which is the impossibility to use negations and disjunc-
tions.

Transformers are available, allowing to transform
ontologies in OWL and SWRL to a knowledge base of a
shell for developing expert systems JESS [7] (Java Ex-
pert System Shell), which uses the language of scenarios
consistent with the CLIPS knowledge representation
language.

KAON?2 (The KArlsruhe ONtology and Semantic
Web tool suite) is a development of the Karlsruhe Uni-

versity in collaboration with the Manchester University.
It is a system for management of ontologies. KAON?2 is
capable of importing ontologies in the OWL DL lan-
guage and organizing reasoning with output of re-
sponses to queries on composition and properties using
its own internal language based on Horn clauses. From
the viewpoint of structure, a matter of principle is sepa-
rating the ontology into a terminological part (TBox)
and data part (ABox, “A” means assertions) [8]. In the
process of responding to queries, the T-part of the on-
tology is transformed to a logic-type program, which is
then executed using the A-part (axioms) as data.

Thea is a library for the Prolog language [9],
which provides generation and processing of OWL on-
tologies. It includes the OWL-parser, OWL-generator,
SQL-to-OWL translator and reasoning engine Thea
OWL for translating OWL ontologies to Prolog based
on the DLP (Description Logic Programs) concept. The
OWL ontology processed as RDF triplets is used in the
SWI-Prolog environment.

Paper [10] suggests mapping an ontological model
on an AMN (4bstract Machine Notation) of the B-
Toolkit system.

Objective of the Study

Hence, analysis has shown that though some de-
velopers have their own reasoning engines operating in
various subsets of First-Order Logic Predicates, among
which are Prolog, DL and others, the most widespread
approach is the one that involves transforming ontolo-
gies to the internal formats of these systems. The limita-
tion of some of these ontological projects, the impossi-
bility of their embedding in other applications (for in-
stance, stand-alone usage of the reasoning engine in
intellectual agent structures) and absence of convenient
visualising tools for working with reasoning make the
development and usage of an in-house decision support
system (DSS) on ontologies, that will be included in
UAYV software system structure, a challenge within the
framework of this study.

Decision Support System on Ontologies

The system is based on logical calculus of first-
order predicates. When creating knowledge models, a
special internal expert knowledge description language
is used. The reasoning engine is a modified resolution
method for predicate calculus.

The system suggested has the following features:

- the decision support system shell is built using
the ActiveX technology and it can easily interact in the
client-server intranet environment;

- system performance is ensured by implementing

102 ISSN 1727-7337. ABUAIIUOHHO-KOCMHNYECKAS TEXHUKA U TEXHOJIOI'UA, 2013, Ne 4 (101)

the deductive reasoning engine with different strategies
of search reduction;

- the possibility to use facts received by inference;

- a built-in library of functions and an effective
tool of connecting various computational program
modules;

- a convenient graphical environment, providing
different operation modes;

- ultimate automation of knowledge base
adjustment, including hints and syntaxis check tools;

- dialog interaction and forming answers to ques-
tions is done in a natural language;

- various forms of generating answers: diagnoses,
recommendations, and urgent messages;

- the possibility of building a chain of events, facts,
criteria and rules for explaining the solutions offered.

Fig. 1 shows the structure of the ontology-based
DSS being developed.

To transform from OWL and SWRL ontology
formats based on the XML space of names, an extensi-
ble stylesheet transformation language XSLT [11] (eX-
tensible Stylesheet Language for Transformations) is
used. The ontology parser transforms directly to the
internal format of the system knowledge base in the
predicate calculus language.

This module uses a special meta-model (metak-
nowledge about rules of selection, detecting syntactical
and semantic errors, and using and transforming onto-
logical knowledge) for transformation. It includes rules
for transferring OWL and SWRL ontological knowl-
edge to DSS rules and facts. One of the tasks of the
parser is detecting inconsistency of elicited rules and
facts.

The system knowledge base includes the rule base
and the question base. The rule base serves for formalis-

ing the description of logical problems in the system
knowledge representation language. The questions base
serves for acquisition, storage and use of lists of possi-
ble questions for each logical problem.

The key component of the system is the reasoning
module intended for inference of conclusions (answers)
from a set of rules stored in the KB using the modified
resolution method.

The data access module or the universal attribution
procedure serves for forming a base of facts (the source
and intermediate data of the logical problem being cur-
rently solved) for the selected system of axioms by the
primary (base) relations to the data in the KB, which are
partial instances of respective ontology concepts.

The explanation subsystem provides exhaustive in-
formation about the reasons of receiving a specific an-
swer (facts and rules) involved in reasoning. This facili-
tates system testing and increases confidence in the re-
sult received.

The systems functions in the following basic mod-
es:

- adjustment and acquisition of the knowledge
base;

- consulting or the question-answer mode (the sys-
tem outputs answers — diagnoses, recommendations,
messages — to specific questions in a natural language in
real-time decisioning);

- automatic (formation and archiving of answers to
previously formulated questions — parameter control
with issuance of urgent messages and formation of rec-
ommendations); and

- explanation of results (exhaustive information is
output about the reasons of receiving the given answer —
facts and rules involved in the reasoning process).

Decision Support System
o | Knowledge Question- Automatic mode
| Base Editor answer mode supporting
Knowledge Base supporting
OWL/SWRL Reasoning Message
Ontology Base Metaman Sehedler <J L g formin%
~—
Y *
Ortology XSLT Y) P .
in OWL P Engine W - Reasqrnng -t Answers archive
- e -¢ Engine
>
- Trace
AT
Ontology Y Calculation Internal
in SWRL Ontology o | Questions | predicates Functions
Parser o base h forming Library v
S A
- o Explanation
T DataAccess subsystem
<J_ Manager
B RDBMS
S

Fig. 1.0Ontology-based DSS structure

Hughopmayuonnvie mexnonozuu

103

In the knowledge base, each predicate shall have
an indication of its type (primary is attributed with facts,
the seondary is defined by a formula, and the
computational is attributed with facts recieved by
reasoning), an internal representation in a special for-
malised language, a semantic content, the predicate
computation formula (for the secondary type), the fact
determination formula (for the computational type), and
the semantic content of recommendations. The semantic
content of the predicate is a text of the answer to the
question. The semantic content shall contain variables
(which will be substituted with values found by
reasoning).Besides these predicates, there is one more
type of predicates, viz. order predicates (GREATER
THAN, LESS THAN, EQUAL TO and others), the
trueness of which is calculated by the internal program
module of the inferencing algorithm after terms have
been substituted with predicates of actual values.

The Features of Representation of OWL
and SWRL Ontologies on the Knowledge
Base of the System Suggested

From the viewpoint of OWL, ontology

O=<T, A, R, Dom, C, F>
is a description of concepts (classes) T owl:Class in the
subject area being considered, and of properties
owl:ObjectProperty for each concept, which describe
different attributes A and relations R of the concept
with account of a set of admissible values defined by
domain Dom and restrictions C owl:Restriction im-
posed on properties. An arbitrary group of ontology
elements can form fragment F. There are two a priori
defined classes: owl: Thing — the most general class con-
taining all concepts; and owl:Nothing — an empty class.
Each class being created is a subclass of owl:Thing and
a superclass owl:Nothing. OWL has two kinds of prop-
erties: object properties — link objects with other ob-
jects; datatype properties — link objects with data type
values.

In general, element owl:Restriction contains ele-
ment owl:onProperty and one or more declarations of
restrictions. The following types of restrictions exist:
restrictions on the type of property values:
owl:allValuesFrom (describes the class of possible val-
ues, which can be taken by a property specified by ele-
ment owl:onProperty), owl:hasValue (a property speci-
fied by element owl:onProperty should have a concrete
value) and owl:someValuesFrom (describes a class of
possible values, which at least one of the properties can
take); and cardinality restrictions (value numbers) [1].

The elements of languages OWL and SWRL were
mapped. Table 1 shows the elements of the OWL lan-
guage, their respective constructs of the SHIQ descrip-

tive logic, the internal representation of primary predi-
cates and their semantic content in the KB, as well as
facts to be written in the KB system. For the key ele-
ments of the SWRL language, the meta-model also in-
cludes the rules of representation in the DSS knowledge
model.

Table 2 shows the predicate formulas of the meta-
model, which are formed based on logic and assertions
about ontological concepts, and properties and relations
in OWL. The result of reasoning by these rules will be
the formation of new facts used in subsequent queries
(computational predicates). Besides, the meta-model
describes rules, using which the problem of detecting
inconsistencies of rules and facts elicited from the on-
tology can be solved. Among them the following can be
found: a class cannot be antithetical to itself, two classes
cannot be antithetical and equivalent at the same time,
not all instances have been found, not all links between
instances have been confirmed, and others. Hence, dur-
ing reasoning, the system allows establishing the fol-
lowing: ontology correctness, whether it is complete and
are there any disturbances in semantic links, i.e. whether
all elicited facts are confirmed by facts from the ontol-
ogy.

Such a problem occurs often when it is necessary
to align different representations about the subject area
and semantics of objects described in terms of different
ontologies. When translating ontologies to the DSS
knowledge base, relations between ontological concepts
of different ontological contexts are searched for; it is
ascertained which concepts of another ontology can be
equivalent, and which are superconcepts or subconcepts
of an ontology that has been loaded a priori into the KB.
If a conflict is identified, recommendations are given for
feasible options of resolving it.

Table 3 shows an illustrative variant of questions
to the DSS. When specifying a constant, the name of the
respective variable is enclosed by the symbol «”». To
receive all possible answers, indicate the keyword all in
the system; otherwise, the first answer found will be
returned.

The secondary predicates in the DSS knowledge
base indicate the necessity to solve reallogical-analytical
problems on the ontology of a concrete subject area.

Let the following rule be written in the knowledge
base, area of which is related to land object recognition
by UAV:

- internal representation: ACTION(V1),

- formula:

OBJECT(V1,V2) A TYPE(V1,V3) A
A EQUAL(V3,100) > ACTION(V2).

The base of facts received from the ontology con-
tains the following primary predicates:

OBJECT(5,TP), TYPE(5,100).

The question to the system: ACTION(VX).

104 ISSN 1727-7337. ABUAIIUOHHO-KOCMHNYECKAS TEXHUKA U TEXHOJIOI'UA, 2013, Ne 4 (101)

Table 1
Primary predicates for the OWL ontology
OWL element desf:f‘lii)%on Predicate inte‘rnal Semantic content Facts
logic representation
class C isClass (v1) vl is a class isClass(rdf:1D)
Thing T - Thing is a class isClass(Thing)
Nothing 1 - Nothing is a class isClass(Nothing)
subClassOf ClcC2 isSubClassOf (v1,v2) vl is a subclass of v2 isSubClassOf (rdf:ID,
rdf:resource)
type I.C isMemberOf (v1,v2) vl is a member of class v2 isMem-
berOf(rdf:ID,rdf resource)
oneOf C=Ilu2u... | isMemberOf (vl,v2) vl is a member of class v2 isMem-
berOf(rdf:ID,rdf :resource)
domain <RcC hasDomain (v1,v2) Property v1 has a domain re- hasDomain(rdf:ID, rdf: re-
stricted by class v2 source)
range TC<VR.C hasRange (v1,v2) Property vl is s elected from hasRange(rdf:ID, rdf: re-
the range of class v2 source)
ObjectProp- R hasProperty (vl,v2) Class v1 has property v2 hasProperty(rdf:ID,
erty rdf:resource)
hasValue C:=3R.I Property- Property v1 of the member of Property-
Inst (vl,v2,v3) class v2 has value v3 Inst(rdf:ID,rdf:resource,rdf:
resource)
intersectionOf | C3:=C1nC2 | Intersection- Class v1 is an intersection of IntersectionClass(rdf:ID,

Class(vl,v2,..,VN) classes v2 and ... VN rdf:resource,...)
unionOf C3:=CluC2 Union- Class v1 is a merger of classes UnionClass(rdf-ID,

Class (vl,v2,..,vN) v2and... vN rdf:resource,...)
subProper- RICR2 hasSubProp- Property v1 is a subproperty of | hasSubProperty(rdf:ID,
tyOf erty(vl,v2) v2 rdf:resource)
complemen- C2=-C1 Complement-— Class v1 does not belong to v2 ComplementClass(rdf-ID,
tOf Class (v1,v2) rdf-resource)
equivalentCla Cl=C2=. .. Equivalent- Class vl is equivalent to class EquivalentClass(rdf:ID,
ss Class (vl,v2) v2 rdf:resource)
disjointWith Clc—C2 DisjointClass(vl,v2) | Classes vl and v2 are non- DisjointClass

ClnC2=1 intersecting ones (rdf*ID,rdf resource)
equivalent- R1=R2=... Equivalent- Property v1 is equivalent to EquivalentProp(rdf:ID,
Property Prop (vi,v2) property v2 rdf:resource)
inverseOf RI=R2 InverseProp (vl,v2) Property vl is opposite to InverseProp(rdf:ID,

property v2 rdf:resource)
Transi- R’Q;R TransitiveProp (vl) Property vl is transitive TransitiveProp(rdf-1D)
tiveProperty
Symmet- R=R" SymmetricProp (vl,v2) Property vl is symmetrical to Symmet-
ricProperty property v2 ricProp(rdf:ID,rdf:resource)
Functional- Tc<R FunctionalProp (v1) Property vl is functional FunctionalProp(rdf-ID)
Property
InverseFunc- Tc<R IFunctionalProp (vl) Property vl is inversely func- IFunctional Prop(rdf:1D)
tionalProperty tional
sameAs I1=I2=... isSameAs (v1,v2) Instance v1 is identical to v2 is-

SameAs(rdf:ID,rdf resource)

different- 1#D2%... isDifferent (vl,v2) Instance v1 differs from v2 isDiffer-
From, ent(rdf:ID,rdf :resource)
AllDifferent
allValues- C2:=VR.C1 AllValues- In class v1, property v2 takes AllValuesFrom(rdf:ID,
From From(vl,v2,v3) the values of class v3 rdf-resource, rdf-resource)
someValues- C2:=3R.C1 SomeValues- In one of the members of class SomeValuesFrom(rdf:ID,
From From(vl,v2,v3) v1, property v2 takes the value rdf-resource, rdf-resource)

from class v3

Hughopmayuonnvie mexnonozuu

Table 2

Computational predicates reflecting the logic of ontological concepts and relations

Description

Formula

Transitivityof classes

isSubClassOf (vl,v2)& isSubClassOf (v2,v3)-> isSubClassOf (vl,v3)

Transitivityof properties

hasSubProperty (vl,v2) &éhasSubProperty (v2,v3)-> hasSubProperty(vl,v3)

Transitivityof a property

TransitiveProp(vl) & PropertyInst(vl,v2,v3)& Property-
Inst(vl,v3,v5) &~PropertyInst (vl,v2,v5)-> PropertylInst(vl,v2,v5)

Inheritance of instances of
classes

isMemberOf (vl,v2) & isSubClassOf (v2,v3) &~ isMemberOf (vl,v3)->
->isMemberOf (vl, v3)

Inheritance of instances of
properties

PropertyInst(vl,v2,v3) &hasSubProperty(vl,v4) &~PropertyInst (v4d,v2,v3)->
->PropertylInst (v4,v2,v3)

Transitivityof a domain

hasSubProperty(vl,v2) &hasbDomain (v2,v3) &~hasDomain (vl,v3) ->
->hasDomain (v1,v3)

Transitivityof a range

hasSubProperty (vl,v2) &éhasRange (v2,v3) &~hasRange (vl,v3) ->hasRange (vl,v3)

Symmetry of properties

SymmetricProp (vl,v2)&~SymmetricProp (v2,vl)->SymmetricProp (v2,vl)

Opposition of properties

InverseProp(vl,v2) &~ InverseProp(v2,vl)-> InverseProp(v2,vl)

Inversely functional property

InverseProp(vl,v2) & FunctionalProp
->IFunctionalProp (v2)

(vl) &~ IFunctionalProp(v2)->

Functional property

InverseProp(vl,v2) & IFunctionalProp
->FunctionalProp (v2)

(vl) &~ FunctionalProp (v2)->

Instances of equivalent classes

EquivalentClass (vl,v2) &isMemberOf (v3,vl) &~isMemberOf (v3,v2) ->
->isMemberOf (v3,v2)

Instances of nonintersecting
classes are different

DisjointClass (vl,v2) & isMemberOf (v3,vl) & isMemberOf (v4,v2) &~
&~ isDifferent (v3,v4)-> isDifferent (v3,v4)

Two classes including each
other are equivalent

isSubClassOf (vl,v2) &isSubClassOf (v2,vl) &~EquivalentClass (vl,v2)->
->EquivalentClass (vl,v2)

Properties of equivalent
classes

isSameAs (vl,v2) & PropertylInst(v3,vl,v4)&~PropertylInst(v3,v2,v4)->
->PropertylInst (v3,v2,v4)

Instances of equivalent
properties

EquivalentProp (vl,v2) &PropertylInst (vl,v3,v4) &~PropertylInst (v2,v3,v4)->
->PropertylInst (vl,v3,v4)

Two properties including each
other are equivalent

isSubPropertyOf (vl,v2) &isSubPropertyOf (v2,vl) &~EquivalentProp (vl,v2)->
->EquivalentProp (vl,v2)

Equivalency of instances with
identical functional properties

FunctionalProp(vl) & PropertyInst(vl,v2,v4)& PropertylInst(vl,v3,v4) &~
isSameAs (v2,v3) -> isSameAs (v2,v3)

Restriction of class properties

PropertyInst (vl,v2,v3) &isMemberOf (v2,v4) &AllValuesFrom(v4,vl,v5)->
->isMemberOf (v3,v5)

Relation of instances by a
domain-restricted property

hasDomain (vl,v2)& PropertyInst(v2,v3,v4)&~isMemberOf (v3,vl)->
->isMemberOf (v3,vl)

Relation of instances by a
range-restricted property

hasRange (vl,v2) & PropertylInst (v2,v3,v4) &~isMemberOf (v3,vl)->
->isMemberOf (v3,vl)

Each definite class if a
subclass of owl:Thing

isClass (vl) &~isSubClassOf (vl, Thing)-> isSubClassOf (vl, Thing)

Table 3
Variants of questions to the inference system on ontologies

Semantic content of the question Internal representation
Is the given object an instance of a class? all isMemberOf (?vx1?,?2vx2?)
What objects are instances of the given class? all isMemberOf (vxl, ?vx2?)
In what classes is the given object an instance? all isMemberOf (?vx1?,vx2)
Is this class a subclass of the given class? all isSubClassOf (?vx1l?,?2vx2?)
What subclasses does the given class have? all isSubClassOf (vxl, ?vx2?)

105

After being transformed to the clausal form (re-
quired for the resolution method),we receive the follow-
ing set of disjuncts:

~ACTION(V1,V2)v~TYPE(V1,V3)v
vEQUAL(V3,100) v ACTION(V2),
OBJECT(5,TP),

TYPE(5,100),

~ ACTION(VX).

The inference process continues until the graph

root yields a statement containing constants as terms,
the constants being the solution of the problem (Fig. 2).

The complexity of existing proof methods in
predicate calculus consists in their undecideability and
the necessity of exhausting a big number of variants of
proofs when searching for a solution. Hence, the time
consumption in certain implementations of these meth-
ods can cel their practical value. The system suggested
has implemented an effective inferencing algorithm for
different strategies of reducing exhaustion. Its flow
chart is shown in Fig. 3.

106 ISSN 1727-7337. ABUAIIUOHHO-KOCMHNYECKAS TEXHUKA U TEXHOJIOI'UA, 2013, Ne 4 (101)

~OBJECT (V1,V2) v ~ TYPE(V1,V3) v
v EQUAL (V3,100) v ACTION (V2)

~ ACTION (VX) v ACTION (VX)

~OBJECT (V1,V2) v ~ TYPE (V1,V3) v
v EQUAL (V3,100) v ACTION (V2)
substitution V2/ VX

OBJECT (5,TP)

~ TYPE (5,V3) v EQUAL (V3,100) v
ACTION(TP)
substitution 5/ V1, TPV2

TYPE (5,100)

EQUAL (100,100) v ACTION (TP)
substitution 100/ V3

Answer: ACTIO|

Fig. 2.Example of inference tree

(Begin)

v -
First statement — the disjunct from input set of rules
Select problem Second statement — the resolvent formed at the previous step (at the
v first step, the question)

Select t1 o . . .
clect question Shortest statements are considered first

v Tree search is conducted — a modified depth search is used (only one
resolvent is formed at each step)

Parsing rules and DB
P1vP2 P1vP2
+ Plv~P2 ~P1v P2 Plv~P2
Sel dida P2
elect candidate —PIVP2
statement
~P2
v ~P2 ~P2
Unification P1
N Substitution:
0 - if terms P1 and P2 match, go to next resolvent
- if terms P1 and P2 do not match, then substitute
Yes - if both terms are constants, proceed to select next candidate
Resolvent Formation
* The resolvent is formed of the remaining parts of the previous resolvent and
Determining Trueness of candidate statement with account of the unification
Order Predicates
The predicate is considered true if it is attributed
S order predicat®
value true?
No -
Empty resolvent? At each step, statements are retained to be able to return to the

previous level

Answer output in the form of:

Eliminating Deadlocks - new facts for the base
i - a diagnosis
- - mmendati
Returning Answer or recommencations
. - amessage
Failure Message

- messages about an error in case of a deadlock or failure

2

(End)

Fig. 3.Outline flowchart of the logic inference algorithm

Hughopmayuonnvie mexnonozuu

107

Basic DSS modules (in particular, the reasoning
module) without the graphic environment are adapted
for being including in the intelligent agents construct
that functions based on the JADE (Java Agent Devel-
opment Framework) platform. Using ontologies during
interaction of agents allows transferring highly struc-
tured information and dramatically simplifying opera-
tions with agents and programming them.

Conclusion

The paper suggests an approach for mapping ele-
ments of ontological languages OWL and SWRL on a
knowledge base in a decision support system based on
first-order predicate logic. It has several advantages that
distinguish it from existing ontology reasoning engines.
The logical inference rules, when working with ontolo-
gies, allow manipulating concepts and data far more
effectively for elicitation of new knowledge. Practical
implementation of the ontological approach is designed
as a prototype of a knowledge-oriented system for simu-
lation of production processes based on an agent ap-
proach on a JADE platform. It includes functioning in-
tellectual agents, which make decisions and interact
with the help of an ontological knowledge base and a
reasoning engine of the system suggested. This allows
solving the problem of joint use of ontologies by pro-
gram agents for accumulation and repeated use of
knowledge, and creation of simulation models and pro-
grams, which operate with ontologies, rather than with
rigidly specified data structures for analysing knowl-
edge in a subject area.

Developed integrated framework provides support
of all stages for intelligent decision support systems’
implementation and their adaptation for handling of
applied problems for the purposes of UAVs.

References

1. Prokhorov, A.V. Features of using ontologies
during interaction of agents in a production process
simulation system [Text] / A.V. Prohorov,
O.M. Pakhnina // Proceedings of the Kharkiv Air Force
University: Sci. Periodical Edition. — Kh.: 1. Kozhedub
Kharkiv Air Force University. — Kharkiv (Ukraine). —
2008. —Issue 3 (18). —P. 164-170.

2. McGuinness, D.L. OWL web ontology lan-
guage overview, W3C Recommendation. [Electronic
resource] / D.L. McGuinness. — 2004. — Access mode:
http://www.w3.org/TR/owl-features/— 16.06.201 3.

3. Prudhommeaux, E. SPARQL Query Language
for RDF, W3C Candidate Recommendation [Electronic

resource] / E. Prudhommeaux. — 2007. — Access mode:
http://www.w3.org/TR/rdf-sparql-query/ — 16.06.2013.

4. McBride, B. An Introduction to RDF and the
Jena RDF API. [Electronic resource] / B. McBride. —
2008. — Access mode: http://jena.sourceforge.net/
tutorial/RDF _API. — 16.06.2013.

5. Horrocks, I. SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML. [Electronic re-
source] / I Horrocks. — 2004. — Access mode:
http://www.daml.org/rules/proposal/ — 16.06.201 3.

6. Ovdey, O.M. Review of ontology engineering
tools [Electronic resource] / O.M. Ovdey // Proc. 6"
All-Russian Scientific Conference Electronic Libraries:
Perspective Methods and Technologies, Electronic Col-
lections - RCDL’2004. — Pushchino (Russia). —2004. —
Access mode: http://www.impb.ru/~rcdl2004/ —
16.06.2013.

7. Friedman-Hill, E. Jess in Action: Java Rule-
Based Systems [Text] / E. Friedman-Hill// Manning
Publications. — Greenwich, CT (USA). — 2003.
—P. 356-410.

8. Motik, B. A Comparison of Reasoning Tech-
niques for Querying Large Description Logic ABoxes
[Text] / B. Motik // Proc. of the 13th International Con-
ference on Logic for Programming Artificial Intelli-
gence and Reasoning (LPAR 2006). — Phnom Penh
(Cambodia). — 2006. — P. 236-247.

9. Vassiliadis, V. Thea: A Web Ontology Lan-
guage — OWL Parser for SWI-Prolog. [Electronic re-
source] / V. Vassiliadis. — 2005. — Access mode:
http://www.semanticweb.gr/TheaOWLParser/ —
16.06.2013.

10. Skvortsov, N.A.. Hcnonv3osanue cucmemoi umn-
MepaKkmueHozo 0oKazameibcmsea OJisi OmMoOPAdICeHUs.
oumonoeuti (Using interactive proof systems for ontol-
ogy mapping) [Text] / N.A. Skvortsov // Proc. 8" All-
Russian Scientific Conference Electronic Libraries:
Perspective Methods and Technologies - RCDL’2006. —
Suzdal (Russia). —2006. — P. 268-273.

11.Clark, J. XSL Transformations (XSLT), W3C
Recommendation. [Electronic resource] / J. Clark. —
1999. — Access mode: http://www.w3.org/TR/ —
16.06.2013.

108 ISSN 1727-7337. ABUAIIUOHHO-KOCMHNYECKAS TEXHUKA U TEXHOJIOI'UA, 2013, Ne 4 (101)

Hocmynuna 6 pedaxyuio 6.06.2013, paccmompena na peoxonneeuu 12.06.2013

PenenzenT: 1-p TexH. Hayk, npod., 3aB. Kad. HWHOOPMALMOHHBIX TEXHOIOTHH mpoekTupoBanus JIA
E.A. Ipyxunun, HaronaneHssiit a3pokocmudeckuid yausepcuteT uM. H.E.JKykoBckoro « XA», XapbpkoB.

HIJIXIA 10 OPTAHIBAIIL JIOTTYHOTI'O BUBEJIEHHSI HA OHTOJIOTISIX
B MYJIBTUAT'EHTHUX CUCTEMAX

O.B. IIpoxopos, O.M. Ilaxnina

Jlis BupilieHHs 3aBliaHb, 0€3110cepeTHbO OB’ SI3aHNX 3 aHANI30M, JIarHOCTHKOIO, OLIHIOBAHHIM Ta PO3Ii3Ha-
BaHHSM CHTYaIliif, IPOrHO3YBAaHHSAM PO3BHUTKY ITOJiH, y3araisHEHHsIM iH(OpMaIlil, KOOPMHAIIEIO Ta Y3TOPKEHHIM
CyMICHHUX Iiii TpynH Oe3ninoTHuX jitanbHux anapatiB (BI1JIA) 3anponoHoBaHO BUKOPUCTOBYBATH TEXHOJIOTIT MY-
JIbTUAT€HTHUX CUCTEM Ta OHTOJIOTII. 3alponoHOBaHO MiAXiJ, IO J03BOJISIE IPOBOJUTH aHai3 KOPEKTHOCTI OHTOJIO-
rii Ta ii MOBHOTH, MOUTYK NOPYILIEHb Y CEMAaHTUYHHX 3B’S3KaX, y3TO/KEHHS ysBJIEHb PO MPEIMETHY 00JacTh i ce-
MaHTUKY 00’€KTIB, III0 OMMCAHI y TepMiHaX Pi3HUX OHTOJOTIH NpH iX 00’exHaHHI. Po3rissHyTO MMTaHHS BigoOpa-
xeHHs eneMenTiB MoB OWL ta SWRL y 6a3i 3HaHb cHCTEMU HIATPUMKH MPUHHATTS PillieHb, 110 0a3yeThCs HA JIO-
riui npeaukaTiB nepuoro nopsaky. OnrcaHo OCHOBHI NPHHIMIM peaiizaiii epeKTUBHOTO ajJrOpUTMY JIOTIYHOTO
BUBEJICHHSI Ha OHTOJIOTISIX IIPH Pi3HUX CTPATETisX CKOPOUEHHs I1epedopy.

Karou4osi cioBa: MynpTHareHTHa cucrema, 0asa 3HaHb, CHCTEMA ITIATPUMKH IPUHUHSTTS PillleHb, JIOTiKa mpe-
JTUKATIB, OHTOJIOTIS, IMiTallifHe MOJICITIOBAHHS, 3HAHHI-OPIEHTOBaHA CUCTEMa, areHTHUH ITiIXi1.

noaxoa K OPrTAHU3AIIMA JIOTHYECKOI'O BBIBOJIA HA OHTOJIOT UAX
B MYJIBTUAT'EHTHBIX CUCTEMAX

A.B. Ilpoxopos, EEM. ITaxnuna

Jlis penienus 3a/1a4, HETIOCPEACTBEHHO CBS3aHHBIX C aHAJIM30M, JUArHOCTUKOM, OIEHUBAaHUEM M PacliO3HABa-
HHUEM CHUTYyaliii, IPOrHO3UPOBAHHEM PAa3BHUTHsI COOBITHH, 0000IIeHeM NH(OpMaIK, KOOpIMHAIMEH 1 coriacoBa-
HHEM COBMECTHBIX JAEHCTBUI IpyMITbl OeCIMIOTHBIX JieTaTenbHbIX anmnaparoB (BI1JIA) npemnaraercs ucmons3oBath
TEXHOJIOTUH MYJIbTHATEHTHBIX CHCTEM M OHTOJIOTHH. [IpeyioxkeH MOoAXo/, MO3BOJISIONIMN MPOBOJUTH aHAIN3 KOP-
PEKTHOCTH OHTOJIOTHH U €€ MOJHOTHI, TOMCK HapYIIEHHH B CEMAaHTHUECKHX CBSI35X, COTVIACOBAHHUE MTPEACTABICHUI O
MpeIMETHON 00JIaCTH U CEMaHTHKY OOBEKTOB, ONMMCAHHBIX B TEPMHHAX Pa3HBIX OHTOJOTHH MPHU UX OOBEIMHEHHH.
PaccMmoTpens! Bompockl oToOpaskeHus 3aeMeHToB s1351koB OWL 1 SWRL B 6a3e 3HaHHI CHCTEMBI MOAICPKKH TTPH-
HSTHUS PELIeHUI, OCHOBAHHOM Ha JIOTHMKE IPEJANKATOB MepBOro nopsiaka. OmucaHbl OCHOBHBIE MTPUHIIMIBI peain3a-
1K 3¢ (GEKTUBHOTO AITOPUTMA JIOTUYECKOTO BBIBOJA Ha OHTOJIOTUSIX MPH PA3IMYHBIX CTPATETHAX COKpPAIICHHS Iie-
pedopa.

KaroueBbie cioBa: MyJabTHareHTHas cucTeMa, 0a3za 3HaHHM, CUCTEMa MOAJICPIKKHU NPUHSTHS PEIIeHUH, JIOTUKa
MIPEIMKaTOB, OHTOJIOTUSI, UMHUTAIIMOHHOE MOJIETIMPOBaHKE, 3HAHHEOPUEHTUPOBAHHAS CUCTEMA, areHTHBIA TIOIXOI.

IIpoxopoB Anexcannp BajgepbeBM4 — KaHA. TE€XH. HayK, JOLEHT, JOUEHT Kadeapbl MHPOPMAIMOHHBIX
yIpaBIAoOnMX cucreM, HanuoHnansHbIM a’poxocmuueckuii yHuepcurer uM. H.E. XKykoBckoro «XapbKoBckuit
aBUAIMOHHBIA HHCTHTYT», XapbKoB, YKpauna, e-mail: avprohorov@yahoo.com.

Maxnuna Enena MuxaiijioBHa — nmkeHep kadenpbl MH(OPMAIMOHHBIX YIPABISIOMUX cucTeM, Hamwo-
HaJNbHBIA aspokocMuueckuil yausepcuteT, M. H.E. J)KykoBckoro «XapbKkoBCKUI aBUAIIMOHHBIN HHCTUTYT», Xaph-
KOB, YKpauHa, e-mail: elena.pakhnina@khai.edu.

