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PROBABILISTIC NEURAL NETWORKS FOR GAS TURBINE FAULT
RECOGNITION

Fault identification algorithms based on measured gas path variables constitute an important component of a gas
turbine engine condition monitoring system. In addition to gas path faults diagnosis, these algorithms are capable
to identify malfunctions of sensors and an engine control system. The fault identification algorithms widely use
pattern recognition techniques, in particular, different artificial neural networks. Since monitoring system effi-
ciency depends on accuracy of all system’s components, the most exact mathematical technique should be chosen
for every component. To recognize gas turbine faults, a specific network type, multilayer perceptron (MLP), is
mostly applied. However, other network type, probabilistic neural network (PNN), can be applied as well. It uses
a probabilistic measure to recognize the faults. In the present paper, the PNN is firstly tailored to a gas turbine
diagnosis application and then compared with the MLP. The comparison has shown that both networks yield
practically equal accuracy. The PNN is recommended for real gas turbine monitoring systems because, in addi-
tion to a diagnostic decision, this network provides confidence estimation for this decision.
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Introduction

To keep high reliability of gas turbines and reduce
maintenance costs, many monitoring and diagnosis
systems have recently been developed. Benefits from
their application above all depend on the accuracy of
diagnostic algorithms constituting the system.

Gas turbine fault identification algorithms based
on measured gas path variables (temperature, pressure,
rotation speed, fuel consumption, etc.) present an impor-
tant monitoring system component. With the gas path
variables not only gas path abrupt faults and gradual
deterioration mechanisms [1] are diagnosed, but also
sensor faults [2, 3] and control system malfunctions [4]
can be identified. The fault identification algorithms
widely use the pattern recognition theory. In the last
three decades, the use of many recognition techniques
has been reported: first of all, Artificial Neural Net-
works [5-9], but also Bayesian Approach [5, 6], Support
Vector Machines [7], Genetic Algorithms [10], and
Correspondence and Discrimination Analysis [11].

The neural networks present a fast growing tech-
nique for gas turbine diagnostics. Among the neural
networks, the Multilayer Perceptron (MLP) is the most
frequently used technique [9]. Nevertheless, other net-
work type, Probabilistic Neural Network (PNN), is also
applied to diagnose gas turbines [3, 12, 13]. It recog-
nizes (classifies) the faults using the criterion of fault
probability. In this way, the PNN has an advantage that
every diagnostic decision is accompanied with a prob-
abilistic confidence measure.

The present paper tests the PNN and compares it

with the MLP in order to choose the best technique for
real gas turbine monitoring systems. To the end of com-
parison, both networks were included into a special
testing procedure. It simulates numerous cycles of the
diagnosis and computes for each network an averaged
probability of a correct diagnosis (true positive rate).
The procedure is realized in Matlab (MathWorks, Inc),
which includes a neural networks toolbox that simpli-
fies network creation, training, and use. The procedure
was adapted and the calculations of network comparison
were made for an industrial gas turbine intended for
driving a centrifugal compressor.

The paper is structured as follows. The compared
networks are described in Section 1. Next, Section 2
outlines the approach to fault recognition and network
comparison realized in the testing procedure. Compari-
son conditions are then specified in Section 3. Finally,
Section 4 presents comparison results.

1. Networks compared

Foundations of the compared networks, MLP and
PNN, can be found in many books on recognition theory
or neural networks, for example, in [14]. The next two
subsections give only a brief network description, which
is necessary for better understanding the present paper.

1.1. Multilayer perceptron

The MLP is intended for solving both approxima-
tion and recognition (classification) problems. It is a
feed-forward network in which signals propagate from

© I. Loboda, E. Rios Urban, E. Sanchez Cruces



54  ISSN 1727-7337. ABUAITUOHHO-KOCMHNYECKAS TEXHUKA U TEXHOJIOT'HUA, 2012, Ne 6 (93)

its input to the output with no feedback. The structural
scheme given in Fig.1 helps to better explain perceptron
operation.

Input Output

Hidden

Fig. 1. Multilayer perceptron

The input of each hidden layer neuron is the sum
-
of perceptron inputs (elements of a pattern vector p )

multiplied by the corresponding coefficients of a weight

BN
matrix W, with a bias (element of a vector b;) added.

This neuron input is transformed by a hidden layer
transfer function f; into a neuron output (element of a
-
vector a ;). Such computation is reiterated for all hid-
den layer neurons. The perceptron output layer operates
-

in the same way considering the vector a; as an input
vector. Thus, a network output vector can be given by
> - -> > o

y =ay =H{Wofj (W) p+by)+by}.
When the perceptron is applied to a classification prob-
lem, each output y, gives a closeness measure between

the expression

the input pattern ;)) and a class Dy. The pattern is usu-
ally assigned to the closest class and such classification
can be considered deterministic.

During the learning, unknown perceptron’s quanti-
ties Wy, l;l) , W, and b_; are generally determined by a
back-propagation algorithm, in which the network out-
put error is propagated backwards to correct these quan-
tities. They change in the direction that provides error
reduction unless the learning process converges to a
global error minimum. The back-propagation algorithm
needs the transfer functions to be differentiable and
usually they are of a sigmoid type.

The other network analyzed in the present paper

is a probabilistic neural network (PNN). It differs from
the MLP by the application, structure, and the transfer
functions employed.

1.2. Probabilistic neural network

The PNN is intended for classification problems.
It is a specific type of networks based on radial basis
functions. The scheme in Fig. 2 illustrates probabilistic
network's operation. Like the perceptron, this network
consists of two layers.

Input

Hidden Output

Layer

Fig. 2. Probabilistic neural network

The hidden layer (a.k.a. radial basis layer) is
quite different from the perceptron’s layers. It is
formed in the basis of learning patterns united in a

-
matrix W;. Each learning pattern wi; specifies a cen-
ter of a radial basis function (RBF) of one hidden neu-
ron therefore a hidden layer dimension equals a total
number of the learning patterns. A neuron input L; is
firstly computed as a Euclidean distance between the
- -
function center wij and an input pattern p . A hidden

neuron output a; is then calculated through the radial
2
L

. . . . R2
basis function fj; resulting in a;=fj;=¢ B” | The

parameter B called a spread determines an action area
of the RBFs. The closer the input vector is situated to
the neuron center, the greater the neuron output will
be. These outputs, elements of a hidden layer output

BN
vector ajp, indicate how close the input vector is to the

learning patterns.
For each class the corresponding neuron of the
output layer sums the signals a i related with the learn-
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ing patterns of the same class. To this end, a matrix W,
is composed in a particular way from 0- and 1-
elements. A product W, :1 is then computed resulting
in a vector of probabilities of the considered classes.
Finally, the output layer transfer function f, produces a
1 corresponding to the largest probability, and 0's for
the other network outputs. Thus, the PNN classifies the

-

input vector p into a specific class because of its

highest probability. Given that this network makes
probabilistic rather than deterministic decisions, such
classifying is closer to reality than the perceptron-based
classifying.

2. Procedure to test and compare
the networks

The network testing procedure mentioned in the
introduction embraces all the stages of gas turbine fault
classification, namely, feature extraction, construction
of fault classes, classifying an actual fault pattern, and
estimation of classification accuracy. They are briefly
described below.

Feature extraction. Some measured variables set a
gas turbine operation point and are united in a vector of

N
operating conditions U . The rest of measured gas path

variables are available for engine condition monitoring

N
and form an (mx1)-vector of monitored variables Y .

Since they much more depend on the operating point
than on engine health, not variables themselves but their

N
deviations from an engine baseline Y|, are fault features

to be monitored. In the present study, the faults are
simulated and m features

- > - - >
Z- _ Yi(U,®0+A®)—YOi(U,®0) +8i

1

55 a; (D)
Y0 (U, 00)
are computed through a gas turbine thermodynamic

model
- > >
Y(U,0). 2
The model computes the monitored variables as a
nonlinear function of steady state operating conditions

- - -
and engine health parameters ® = ®9+ A ® . Nominal

BN
values ®¢ correspond to a healthy engine whereas

changes Ag called fault parameters slightly shift per-
formance maps of engine modules (compressors, com-
bustor, turbines, etc.) allowing fault simulation. A ran-
dom error € makes the deviation more realistic and a

parameter a; normalizes the errors of different devia-

tions simplifying fault class description. The deviations

BN
given by expression (1) constitute an (mx1)-vector Z ,

which is a pattern to be classified.
Construction of fault classes. For the purposes of
diagnosis, numerous gas turbine faults are divided into a

limited number q of classes Dl,Dz,...,Dq. Each class

corresponds to one engine module and is described by
its fault parameters A®;, flow parameter and efficiency

parameter. Two class types are considered: a class of
singular faults is constructed by changing one fault
parameter while for a class of multiple faults two pa-
rameters of the same module are varied independently.
For each class, singular or multiple, numerous patterns

BN
Z are generated according to expression (1) setting the

necessary quantities A® i and g; by the uniform and

Gaussian distributions accordingly. A totality Z1 of all

classification’s patterns is employed to train the used

neural network and is therefore called a learning set.
Classifying fault patterns. In addition to the ob-

served pattern Z and the constructed fault classifica-
tion Z1, a neural network (MLP or PNN) for classifying
fault patterns is an integral part of a whole gas turbine
diagnostic algorithm. Unknown network coefficients are
determined with data of the learning set Z1 as described
in Section 1. Once the coefficients have been deter-
mined, the network is ready for use, but before real
network application it is important to estimate net-
work’s classification accuracy.

Estimation of classification accuracy. To test and
validate the network, an additional data sample Z.2
called a validation set is created in the same way as the
set Z1. The only difference is that other random num-
bers are generated within the same distributions. The
network classifies each pattern of the set Z2, producing
the diagnosis d;. Comparing d, with a known class D; for
all validation set patterns, probabilities of correct classi-
fication (a.k.a. true positive rates) are estimated for all

fault classes. A mean number P of these probabilities
determines total accuracy of engine fault classification

by the used network. Applying the probability P as a
criterion, two analyzed networks, MLP and PNN, are
tuned and compared in the sequel.

3. Comparison test case

A gas turbine power plant for natural gas pumping
has been chosen as a test case. It is an aeroderivative
two shaft engine with a power turbine. In the paper gas
turbine diagnosis is analyzed at two operating modes
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called Mode 1 and Mode 2. They are close to engine
maximal and idle regimes and are set in the thermody-
namic model by the corresponding gas generator rota-
tion speeds and standard ambient conditions.

Apart from these operating conditions, other 6 gas
path variables measured in the power plant are available
for monitoring and are used to compute fault patterns.
These gas path monitored variables and their normaliza-
tion parameters a; are specified in Table 1.

Table 1
Monitored variables

Ne Variable’s name a

1 Compressor pressure p*c 0,015

2 Exhaust gas pressure p*HpT 0,015

3 Compressor temperature T 0,025

4 Exhaust gas temperature T*HpT 0,015

5 Power turbine temperature T | pr 0,020

6 Fuel consumption 0,020

The faults are simulated through 9 fault parameters
embedded into the model. As shown in Table 2, faults
of four main engine modules (compressor, high pressure
turbine, power turbine, and combustion chamber) are
described by two parameters and an inlet device is pre-
sented by one parameter. Maximal change of each pa-
rameter equals 5%.

Table 2
Fault parameters

Parameter’s name
Compressor flow parameter
Compressor efficiency parameter
High pressure turbine flow parameter
High pressure turbine efficiency parameter
Power turbine flow parameter
Power turbine efficiency parameter
Combustion chamber total pressure recovery pa-
rameter
Combustion efficiency parameter
Inlet device total pressure recovery factor

\OOO\IO\UI-PWN'—‘%

Two classification variations are considered in the
present paper. The first classification embraces 9 single
fault classes formed by the parameters of Table 2. The
second classification consists of 4 multiple fault classes
corresponding to 4 main power plant modules. The class
of each module is created by independent variation of
two module fault parameters (see Table 2). Regardless
of simulated faults, single or multiple, each class is
presented by 1000 patterns.

According to the described structures of monitored
variables and fault classes, both compared networks
have 6 nodes on the input layer and 9 or 4 nodes on the
output layer. As to the hidden layer, the PNN have 9000
or 4000 nodes in accordance with the learning set vol-
umes. For the MLP an optimal hidden node number 27

chosen in study [15] is accepted for the present study.
Thus, for two classification variations, the MLP struc-
tures are written as 6xX27x9 and 6x27x4 while the PNN
structures are described by 6x9000%9 and 6x4000%4.

4. Comparison results
4.1. Networks tuning

For the sake of correct results each network should
be tailored before the comparison. The MLP was tuned
for a diagnostic application in our previous works. In
particular, a number 27 of hidden layer nodes and a
resilient back-propagation training algorithm have been
found the best and were accepted for the present study.
As to the newly analyzed technique, PNN, its tuning is
described below.

Since practically all PNN's coefficients are deter-
mined with the learning set data, the only parameter to
tailor the network is the spread B (see Section 1). Al-
though Matlab provides an initial value B = 1, it is not
obvious that it will be acceptable for the analyzed diag-
nostic application. That is why the PNN directly applied
to gas turbine diagnosis was tailored. Different spread

values were employed and the mean probability P (see
Section 3) has been computed for each value. It was
found that the value ensuring the highest probability
depends on classification variation. These values,
B=0,35 for the singular fault classification and B=0.40
for the multiple one, were used in the comparative cal-
culations described below.

4.2. MLP and PNN comparison

Two engine operation modes and two classifica-
tion variations, when changed independently, result in
four comparison cases. The network comparison under
such different conditions will allow drawing more gen-
eral conclusions on the networks’ accuracy and applica-
bility.

Within each comparison case the same input data
were fed to both networks and the mean probabilities

P were computed for each network. Due to a stochastic
nature of the computation, these probabilities are known
with some uncertainty. Preliminary studies (see, for
example, [13]) have shown that the uncertainty interval
can be greater than the probability difference for the
compared networks. That is why in the present contribu-
tion, the probability computation for each comparison
case was repeated 100 times, each time with a new seed
(parameter that determine a random number series). The
obtained probability values are then averaged resulting

in an averaged probability Pay. These probabilities

computed for the analyzed networks under all compari-
son conditions are included in Table 3.
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Table 3
Averaged networks diagnostic accuracy
(Probabilities Pay )

Single fault classification Multiple fault

Network classification
Mode 1 Mode 2 Mode 1 Mode 2
MLP 0,8184 0,8059 0,8765 0,8686
PNN | 0,8134 0,8004 0,8739 0,8653

It can be seen in the table that the application of
the PNN to gas turbine diagnosis instead of the MLP
causes losses of diagnostic reliability for all comparison

cases. These losses of the averaged probability P .y are

0,0050-0,0055 for single faults and 0,0026-0,0033 for
multiple faults. It was estimated in [15] that with the

confidence of 97,7% an uncertainty interval for P ay is

+0,00094 (0,094%). Consequently, the observed losses
of diagnostic reliability are statistically significant. On
the other hand, the observed in Table 3 losses (0,0041
on average) is not too great against the background of

total diagnostic inaccuracy (1- Pay), which is about
0,21 for single faults and 0,13 for multiple faults.

Conclusions

This paper examines the probabilistic neural net-
work in an application to gas turbine diagnosis. To
assess diagnostic efficiency and applicability of this
network, it is compared with the multilayer perceptron.

A power plant for natural gas pumping has been
chosen as a test case. It was presented in the paper by a
nonlinear thermodynamic model, with which numerous
fault patterns for fault classification were generated.

The networks have been tuned for diagnosing
the power plant under analysis. They were then tested
under different comparison conditions, using an aver-
aged probability of correct diagnosis as a criterion to
choose the best network.

By way of summing up comparison results, the
conclusion is that although the perceptron is a little
more accurate than the probabilistic network, the latter
is recommended for gas turbine diagnosis because it
provides confidence estimation for each diagnostic
decision, the property very valuable in practice. Thus,
the probabilistic neural network can be considered as a
perspective technique for real gas turbine monitoring
systems. The investigations will be continued to better
investigate this new diagnostic technique and to draw a
final conclusion on its applicability for gas turbine diag-
nosis.
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PemeHseHT: KaHI. TEXH. HayK, mpodeccop Kadempsl KOHCTpyKimu apuamsuratencii F0.A. I'yceB, HarmoHanbHbBIN
aspokocmmdeckuil yanusepcureT uM. H.E. JKykoBckoro « XapbKOBCKH aBUALIMOHHBIM HHCTUTYT», XapbKOB.

IMOBIPHICHI HEMPOHHI MEPEXI J1J151 PO3IIIBHABAHHS JIE®@EKTIB I'T/]]
L1 Jlobooa, E. Pioc ¥Ypoan, E. Canuec Kpycec

AunroputMu ineHTH]iKamii 1edekTiB, 3aCHOBaHI Ha BUMIpIOBaHHUX MapaMeTpax MPOTOYHOI YACTHUHHU, € BaXKIIU-
BHUM KOMITOHEHTOM CHCTEM KOHTPOJIIO I'a30TYpOIHHUX IBUTYHIB. Y JOTOBHEHHI J0 AiarHOCTYBaHHS Je(eKTiB Mpo-
TOYHOI YaCTHHH IIi aJITOPUTMH TaKOX 3J1aTHI ieHTH(IKYBATH MOPYLIEHHS B POOOTI JATYMKIB 1 CHCTEMH KOHTPOJIIO
neuryHa. B anropurmax inentudikaunii gedexris ['T/] mmpoko BUKOPUCTOBYIOTHCS METOM PO3ITi3HABaHH 00pa3iB,
30KpeMa, pi3Hi HEHpOHHI Mepexi. E(EeKTHBHICTH CHCTEMH KOHTPOIIO 3aJICKUTh BiJ JTOCTOBIPHOCTI pPE3YJbTATiB
Juns posmizHaBanHs aedexrtiB [T/l HaliOiIbII 4acTO 3aCTOCOBYEThCS OaraToIIapOBHH MEPCENTPOH, OAHMH 3 THIIB
HelpoHHUX Mepex. OnHak, iHIIMH TUT, IMOBIpHICHA HEHpPOHHA MepeXka, TaKoK Moxke OyTH 3acrocoBaHui. J[aHa
Mepeka BHUKOPHCTOBYE IMOBIpHICHY Mipy, mo0 kiacudikyBatu aedektd. Y TIpeacTaBiCHIN CTAaTTi iIMOBIpHICHA
Mepexa CIOYaTKy HAaCTPOIOETHCS ISl 3aCTOCYBaHHs 110 niarHoctyBaHHs ['TJ[ i MOTIM MOpPiBHIOETHCS 3 IEPCENTPO-
HoM. [lopiBHSHHS MOKa3ajo, o, B CEPeAHLOMY, 00UABI MepeKi 3a0e3NeUyI0Th TPAKTUYHO OJHAKOBY JOCTOBIPHICTH
pe3ynbrariB. IMOBipHICHa Mepeka peKOMEHIYEThCS Vsl pealbHUX CHCTEM JIIarHOCTYBaHHSI TOMY, IIO B IONOBHEHHI
JI0 IIarHOCTHYHOTO PillIEHHS JaHa Mepeka JIa€ OLIHKY IOCTOBIPHOCTI OO PIIICHHSI.

Karwuosi caoBa: I'T/l, miarHocTyBaHHS NMPOTOYHOI YaCTHHU, PO3Ii3HABaHHS Je(EKTiB, HEHPOHHI MeEpexi,
IMOBIpHiCHa HEHPOHHA MepeKa.

BEPOSITHOCTHBIE HEMPOHHBIE CETH JIJISI PACITIO3HABAHUSI JED®EKTOB I'T/],
H.H. jlobooa, 3. Puoc Ypoan, 3. Canusc Kpycac

Anroput™bl uaeHTH(GUKAIUK J1epEeKTOB, OCHOBAaHHBIE Ha M3MEPSEMbIX MapaMeTpax HMPOTOYHON YacTH, SIBIIS-
I0TCSI BA)KHBIM KOMITOHEHTOM CHCTEM KOHTPOJISl Ta30TypOWHHBIX JABHTaTelied. B HOMOMHEHNH K THarHOCTUPOBaHUIO
JiepeKTOB MPOTOYHON YaCTH ITH aITOPUTMBI TAKXKE CITOCOOHBI HISHTH()HUIIMPOBATh HAPYILIEHUS! B pa0OTE TaTYMKOB
W cucTeMe KOHTpousi aBuratens. B anropurmax maeHtndukaumu nedexros ['TJ] MMpPOKO MCHONB3YIOTCS METOIBI
pacrio3HaBaHusi 00pa3oB, B YACTHOCTHU, Pa3JIMYHbIE UCKYCCTBEHHbIE HEHpPOHHBIE ceTd. D(PPEKTHBHOCTH CUCTEMBI
KOHTPOJISL 3aBHCHUT OT JIOCTOBEPHOCTH PE3YJbTaTOB PadOTHI BCEX €€ KOMIIOHEHT, IIO3TOMY JUIS KOl ee KOMIIO-
HEHTBI JIOJDKEeH OBbITh BHIOpaH Haubosee TouHbld MeToa. s pacnoznaBanus aedexroB I'T/] Haubosee wacto mnpu-
MEHSIETCSI MHOTOCJIONHBIH IEePCeNTPOH, OIUH M3 THIIOB HEHpOHHBIX cerell. OqHaKo, Ipyrod THII, BEPOSATHOCTHAS
HEeWpOHHAs CeTh, TAK)KE MOXKET ObITh NPUMEHEH. J[aHHasi CeTh MCIONIb3YET BEPOSTHOCTHYIO MEpY, YTOOBI KJIACCH-
¢unupoBath AedeKThl. B npencraBieHHON cTaThe BEPOSITHOCTHAS CETh CHadalla HACTPauBaeTCsl Ul MPUMEHEHHS K
nquarHoctupoBanuto I'T/] u moToM cpaBHUBaeTcs ¢ nepcenTpoHoM. CpaBHeHHE OKa3alo, 4To, B CpelHeM, 00e CeTH
00€eceunBarOT MPAKTUIECKH OJMHAKOBYIO TOCTOBEPHOCTh PE3Y/IbTAaTOB. BepoATHOCTHAS CeTh PEKOMEHIYETCS JIs
peaJbHBIX CHCTEM IHAarHOCTUPOBAHHS IIOTOMY, YTO B JIOIMOJHEHUHM K JHArHOCTHYECKOMY PEUICHHUIO IaHHAs CETh
JIaeT OLEHKY JIOCTOBEPHOCTH 3TOT'0 PEIIECHHS.

Karwouessie ciioBa: I'T/l, nuarHocTupoBaHue IPOTOYHOH YacTH, paclio3HaBaHue e(eKTOB, HEHPOHHbIE CETH,
BEPOSTHOCTHAS! HEHPOHHAS CETh.
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