УДК 533.662.64: 621.548.4

В.Г. ЛЕБЕДЬ, С.А. КАЛКАМАНОВ

Харьковский университет Воздушных Сил им. И. Кожедуба, Украина

МЕТОД АЭРОДИНАМИЧЕСКОГО РАСЧЕТА ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С КОНЦЕНТРАТОРОМ ВОЗДУШНОГО ПОТОКА

Предложен численный метод расчета аэродинамических характеристик ветроэнергетических установок с концентраторами воздушного потока. Метод основан на теории вязко-невязкого взаимодействия. Предложенный метод позволяет определить геометрические параметры ветроколеса, обеспечивающие оптимальный режим работы ветряка с диффузором, оснащенным системой управления отрывом потока. Приведены результаты расчетов, которые показывают преимущества использования концентраторов воздушного потока в ветроэнергетических установках.

Ключевые слова: турбина, концентратор воздушного потока, среднегодовая скорость ветра

Введение

Современное развитие энергетики характеризуется ростом объема использования экологически чистых и возобновляемых источников энергии, в частности энергетического потенциала ветра. По оценкам международных ветроэнергетических организаций, прогноз развития ветроэнергетики на 2020 г — это достижение 10% доли ветровой энергии в мировом производстве электроэнергии [1].

Развитие теоретических основ расчета ветродвигателя (ВД) берет свое начало с работ Н.Е. Жуковского [2, 3], Г.Х. Сабинина [4, 5]. Николай Егорович Жуковский в работе [3] обосновал максимальный коэффициент использования энергии ветра в ветроэнергетических установках (ВЭУ), который составил $16/27\approx0,593$.

В основу существующих методов расчета аэродинамических характеристик ВД положена вихревая теория винтов, разработанная Н.Е. Жуковским, ставшей ныне классической. На базе этой теории разработаны методики расчета ВД [2,3].

Сабинин Г.Х. разработал [4, 5] импульсную теорию ВД основанную на изменении законов сохранения не для всей струи, проходящей через диск ВД, а для составляющих ее малых элементов, соответствующих конечному числу концентрических колец на диске ВД. В своей работе [5] Сабинин Г.Х. уточнил максимальное значение коэффициента использования энергии ветра, которое составило 0,687.

В 1928 году появилась теория Глауэрта-Лока[6, 7], основанная на теории элемента лопасти, в которой тяга и момент винта определяется суммированием сил и моментов, возникающих на элементах лопастей винта.

Все эти теории получили в дальнейшем свое

развитие. Вихревая теория трансформировалась в метод дискретных вихрей (МДВ), с помощью которого успешно моделируются обтекания винтов [8]. Метод позволяет учесть неравномерность распределения индуктивной скорости и циркуляции по диску винта, концевые потери и взаимовлияние лопастей. Но в МДВ не учитывается поляра профиля лопасти при расчете крутящего момента и перепада давления на диске винта. Поэтому для расчета характеристик винтов нашла применение лопастная теория в сочетании с импульсной [9].

Попытка объединить эти теории привела к проблеме нахождения места на диске винта, в котором определяется угол атаки профиля, так как индуктивные скорости по диску распределены неравномерно [10].

Наряду с усовершенствованием ВЭУ с использованием более высокого уровня развития методов аэродинамического расчета ВД, в последнее время все большее внимание уделяется развитию высокоэффективных методов отбора энергии из ветрового потока. Решение этой проблемы привело к созданию аэродинамических компоновок ВЭУ, состоящих из концентратора воздушного потока (КВП) и ветротурбины (ВТ). КВП предназначен для вовлечения в рабочий процесс ВТ дополнительной массы воздуха с целью повышения располагаемой скорости потока и увеличения выходной мощности ВЭУ.

В работе [11] анализируются методы концентрации, основанные на усилении энергии ветрового потока в вихревых полях треугольных крыльев (увеличение мощности 3...5 раз) и в башнях со щелями для образования тангенциального потока и тем самым вихря (увеличение мощности в 100 и более раз). Но эти методы не нашли широкого применения из-за целого ряда проблем. Практическое примене-

ние нашли аэродинамические компоновки ВЭУ с использованием атмосферных диффузоров [1,11]. Наличие диффузора приводит к большому снижению давления за ВТ, находящейся в самом узком сечении диффузора, и увеличению массы воздуха протекающей через нее. Благодаря ограждению потока, создаваемому диффузором, можно значительно уменьшить концевые потери.

По данным работы [12] для ветродвигателей с КВП 1-го поколения относительная мощность турбины, определяемая как:

$$\overline{N} = \frac{0.5 \cdot \rho \cdot V_t^3 \cdot S_t \cdot C_D}{0.593 \cdot 0.5 \cdot \rho \cdot V_{\infty}^3 S_t} = \frac{27}{16} \cdot \left(\frac{V}{V_{\infty}}\right)^3 \cdot C_D, \quad (1)$$

где
$$C_D = \frac{(P_{2,1} - P_{2,2})}{(0,5 \cdot \rho \cdot V_t^2)}$$
 - коэффициент за-

грузки турбины;

 S_t - ометаемая площадь турбины;

 $V_{\infty},\,V_{t}\,$ - скорости набегающего потока и потока за турбиной;

 $P_{2,1}$, $P_{2,2}$ - давление, соответственно, перед и за турбиной,

составляет $\bar{N} \approx 3,5$ при отношении длины КВП к диаметру турбины L/d_t≈7. Однако, несмотря на повышение мощности на валу без увеличения диаметра турбины, ветроэнергетические установки с концентраторами воздушного потока 1-го поколения не получили широкого распространения вследствие громоздкости и высокой стоимости конструкции.

В 60-е годы XX столетия начались разработки КВП второго поколения, достаточно компактных и недорогих. Это было достигнуто за счет использования щелевых диффузоров [12, 13]. Относительная мощность ветротурбины с КВП второго поколения составляет $\bar{N} \approx 2.6$ [12] при L/d_t=3 и отношении выходного диаметра диффузора d_3 к диаметру турбины d_3/d_t =2,5. Усовершенствование диффузоров привело к созданию КВП с L/d_t \approx 1,0 d₃/d_t=2,0 и \overline{N} =2 [13].

Третье поколение КВП, основанное на использовании управления внутренним и внешним течениями воздуха в КВП, в настоящее время находится на стадии разработок.

В работе [14] на основе численного интегрирования осредненных уравнений Навье-Стокса в двумерной постановке рассчитаны параметры течения около диффузора. В работе [13] на основе численного интегрирования уравнений газовой динамики представлены структура течения около диффузора со щелями и изменения коэффициентов мощности, давления в зависимости от удельной нагрузки. Сравнение с экспериментальными данными показало недостаточную точность расчетных данных и необходимость коррекции расчетной модели.

В тоже время использование численных методов решения осредненных уравнений Навье-Стокса при расчете обтекания КВП с турбиной наталкивается на сложности в задании расчетной сетки около трехмерных тел с протоком и на огромные вычислительные затраты. Поэтому не потеряли свою актуальность и методы, основанные на идеи Прандтля разделение области течения на внешнюю, где используется модель идеального газа, и на пограничный слой (ПС).

Целью данной работы является разработка численного метода расчета аэродинамических характеристик ВЭУ с КВП, основанного на модели вязко-невязкого взаимодействия.

Основной материал

Для определения мощности турбины $N_{\scriptscriptstyle T}$ составим уравнение импульсов для двух выделенных контрольных объемов (рис. 1). Принимая во внимание, что сила давления на срезе контрольного объема $P_{\infty}(S_0 - S_1)$ уравновешивается силой на поверхности спутной струи, для контрольного объема с конфузором имеем

$$\begin{split} P_{\infty}S_{_{T}} + \int\limits_{S_{_{K}}} \left(P - P_{\infty}\right) cos\left(\vec{n}i\right) dS - P_{2,1}S_{_{T}} - \int\limits_{S_{_{K}}} \tau cos\left(\vec{e}i\right) dS = \\ = \rho\left(V_{6,_{T}} - \vartheta_{i}\right) \left(V_{6,_{T}} - \vartheta_{i} - V_{\infty}\right) S_{_{T}}, \end{split} \tag{2}$$

где P_{∞} – атмосферное давление;

 п – единичная нормаль к внутренней поверхности КВП;

і – орт оси ох;

 S_{T} – площадь турбины;

 S_{κ} – внутренняя площадь конфузора;

τ – напряжение трения;

е - единичный вектор касательной в точках внутренней поверхности КВП;

 $\vec{V}_{\text{б.т}}$ – скорость внутри КВП в месте установки турбины (когда турбина еще не установлена).

9; - индуктивная скорость в плоскости турбины;

 V_2 – скорость в плоскости 2-2 (рис. 1) при установке турбины.

Для контрольного объема с диффузором
$$\begin{split} P_{2,2}S_{_{T}} + \int\limits_{S_{_{\mathcal{I}}}} \left(P - P_{_{\infty}}\right) \cos\left(\vec{n}i\right) dS - \int\limits_{S_{_{\mathcal{I}}}} \tau \cos\left(\vec{e}i\right) dS - P_{_{\infty}}S_{_{T}} = \\ = -\rho V_{2}S_{_{T}}V_{2} + \rho V_{2}S_{_{T}}\left(V_{_{\infty}} - \vartheta_{_{2}}\right) = \\ = \rho \left(V_{6,_{T}} - \vartheta_{_{1}}\right) \left[\left(V_{_{\infty}} - \vartheta_{_{2}}\right) - V_{6,_{T}} + \vartheta_{_{1}}\right] S_{_{T}}. \end{split} \tag{3}$$

Сложим уравнения (2), (3) и разделив обе части

полученного равенства на $\frac{\rho V_{\infty}^2}{2} S_{_T}$, получим

$$\Delta \overline{P}_{T} - 2(\overline{V}_{\delta,T} - \overline{\vartheta}_{i})\overline{\vartheta}_{2} = C_{x\rho} - C_{x\tau}, \qquad (4)$$

где
$$\Delta \overline{P}_{T} = \frac{2(P_{2,1} - P_{2,2})}{\rho V_{\infty}^{2}};$$
 (5)

$$\overline{\vartheta}_2 = \frac{\vartheta_2}{V_\infty} \; ; \; \overline{\vartheta}_i = \frac{\vartheta_i}{V_\infty} \; ; \; \; \overline{V}_{\delta,\mathrm{T}} = \frac{V_{\delta,\mathrm{T}}}{V_\infty} \; ; \;$$

$$C_{x \rho} = \frac{1}{S_{T}} \int_{S_{tr} + S_{Tr}} C_{p} \cos(\vec{n}i) dS;$$

$$C_{x\tau} = \frac{1}{S_{T}} \int_{S_{\kappa} + S_{T}} C_{f} \cos(\vec{e}i) dS;$$

$$C_{\rho} = \frac{2\left(P - P_{\infty}\right)}{\rho V_{\infty}^2} -$$
коэффициент давления;

$$C_f = \frac{2\tau}{\rho V_{\infty}^2}$$
 — коэффициент трения.

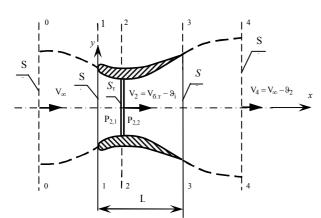


Рис. 1. Общий вид КВП с турбиной площадью $S_{\scriptscriptstyle T}$

Записывая уравнение Бернулли для двух контрольных объемов, после несложных преобразований получим [15]

$$\Delta \overline{P}_{T} = 2\overline{\vartheta}_{2} - \overline{\vartheta}_{2}^{2} - \xi, \qquad (6)$$

где $\xi = \xi_{\rm K} + \xi_{\rm J} = \xi_{\rm Tp} + \xi_{\rm M}$ — коэффициент потери давления в КВП;

 $\xi_{\text{тр}}$ – потери за счет трения;

 ξ_{M} – местные потери.

Подставим полученное значение $\Delta \overline{P}_{\scriptscriptstyle T}$ в формулу (4), тогда

$$\overline{9}_2^2 + 2(\overline{V}_{6,T} - \overline{9}_i - 1)\overline{9}_2 + B = 0, \qquad (7)$$

где $B = C_{x \rho} - C_{x \tau} + \xi$.

Решая уравнение (7), получим

$$\overline{\vartheta}_2 = - \Big(\overline{V}_{6,\scriptscriptstyle T} - \overline{\vartheta}_i - 1 \Big) \pm \sqrt{ \Big(\overline{V}_{6,\scriptscriptstyle T} - \overline{\vartheta}_i - 1 \Big)^2 - B} \ . \tag{8}$$

При B = 0 (КВП отсутствует) $\vartheta_2 = 2\,\vartheta_i$, что соответствует известной связи между ϑ_2 и ϑ_i [16].

Таким образом, перепад давления на турбине

определяется выражением

$$\Delta \overline{P}_{T} = 2(\overline{V}_{6,T} - \overline{9}_{i})\overline{9}_{2} + C_{x\rho} - C_{x\tau}.$$
 (9)

Мощность турбины равна

$$N_{T} = \Delta \overline{P}_{T} \overline{V}_{2} \frac{\rho V_{\infty}^{3}}{2} S_{T}, \qquad (10)$$

где $\overline{V}_2 = \frac{V_2}{V_\infty}$ — безразмерная скорость протока через

турбину.

Параметры течения воздуха около ВЭУ определяются на основе совместного решения уравнений движения идеального газа и интегральных соотношений теорий пограничного слоя.

Для определения параметров течения идеального газа и вычисления коэффициента $C_{x\,\rho}$ решается граничное интегральное уравнение относительно потенциала возмущенных скоростей

$$\phi = \frac{1}{2\pi} \int_{S+S_T} \left(\frac{1}{r} \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} \frac{1}{r} \right) ds - \frac{1}{2\pi} \int_f \Delta \phi \frac{\partial}{\partial n} \frac{1}{r} df , \quad (11)$$

где $r_{.}$ – расстояние от точки интегрирования до точки, где определяется потенциал ϕ ;

S – поверхность КВП;

f – поверхность вихревой пелены за КВП;

 $\Delta \phi$ – перепад потенциала на пелене;

 $\vec{n} = n_x \, i + n_y \, j + n_z k \, - \,$ единичная нормаль в точках поверхностей S, f, Sт.

На поверхности S ставится граничное условие непротекания

$$\frac{\partial \phi}{\partial n} = -\vec{V}_{\infty} \vec{n},$$

где \vec{V}_{∞} – вектор скорости набегающего потока.

Турбина моделируется активным сечением по аналогии с работой [17]. Так как поверхность турбины $S_{\rm T}$ проницаемая, то условие непротекания записывается для той части скорости, на какую уменьшается скорость потока, проходя через турбину. Если обозначить эту скорость $\chi V_{\rm 6.T}$, то на поверхности $S_{\rm T}$

$$\frac{\partial \phi}{\partial n} = -\chi \vec{V}_{\delta,T} \vec{n},$$

где χ – коэффициент торможения потока турбиной.

Для определения коэффициентов $C_{x\tau}$, ξ проводится расчет параметров пограничного слоя (ПС). С использованием интегральных соотношений уравнение ПС можно записать в виде [18]:

$$\begin{split} \frac{d\delta_{00}}{dx} + \frac{1}{V_{\delta}} \frac{dV_{\delta}}{dx} \delta_0 + & \left(\frac{2}{V_{\delta}} \frac{dV_{\delta}}{dx} - \frac{1}{V_{\delta}} \frac{dV_{\psi}}{d\psi} \right) \delta_{00} = \\ & = \frac{\tau_0}{\rho V_{\delta}^2} - \frac{V_0}{V_{\delta}}, \end{split} \tag{12}$$

$$\delta_0 = \int\limits_0^\delta \left(1 - \frac{V_x}{V_\delta}\right) dr$$
 — толщина вытеснения;

 V_{δ} – скорость на границе пограничного слоя;

V_x - текущее значение скорости в пограничном

δ – толщина ПС;

 V_0 – скорость выдува или отсоса ПС;

 V_w – азимутальная составляющая скорости.

Координата r отсчитывается от поверхности КВП до верхней границы ПС. Для определения характеристик ламинарного ПС уравнение (12) решается при следующих граничных условиях:

$$\begin{split} r &= 0, \ \tau = \tau_0 \,, \ \frac{\partial \tau}{\partial r} = \frac{\partial P}{\partial x} \,; \ \frac{\partial^2 \tau}{\partial r^2} = 0, \ V_x = V_y = 0; \\ r &= \delta, \ \tau = 0, \ V_\chi = V_\delta \,; \ \frac{\partial P}{\partial x} = -\rho V_\delta \frac{\partial V_\delta}{\partial x} \;. \end{split}$$

Профиль скорости представляется в виде

$$\frac{V_x}{V_\delta} = A_1 \eta + A_2 \eta^2 + A_3 \eta^3$$
,

где
$$A_1 = \frac{\lambda + 6}{4 + \beta}$$
, $A_2 = \frac{3\beta - 2\lambda}{4 + \beta}$, $A_3 = \frac{\lambda - 2\beta - 2}{4 + \beta}$,

$$\lambda = \frac{\delta^2 V_{\delta}}{v}, \ \beta = \frac{\delta V_0}{v}, \ \eta = \frac{r}{\delta}.$$

Для расчета турбулентного ПС используется двухслойная модель, предполагающая наличие ламинарного подслоя, где напряжение трения определяется по формуле Ньютона:

$$\tau = \mu \frac{dV_{x}}{dr} \,,$$

и турбулентного ядра, в котором напряжение трения представлено в виде полинома [19]:

$$\sqrt{\frac{\tau}{\tau_0}} = 1 + \frac{1}{2} A \eta - \left(1 + \frac{1}{2} A\right) \eta^2$$

где τ_0 – напряжение трения на поверхности КВП;

$$A = \frac{\delta}{\tau_0} \frac{dP}{dx}.$$

Если полученное значение напряжения трения подставить в формулу Прандтля

$$\tau = \rho l^2 \left(\frac{dV_x}{dr}\right)^2,\tag{13}$$

тогда профиль скорости в турбулентном ядре будет иметь вид:

где
$$\delta_{00} = \int\limits_0^\delta \frac{V_x}{V_\delta} \left(1 - \frac{V_x}{V_\delta}\right) dr$$
 — толщина потери коли- $\frac{V_x}{V_\delta} = 1 + \frac{V^*}{KV_\delta} \left[\ln \eta - \frac{A}{2} \left(1 - \eta\right) + \frac{1}{2} \left(1 + \frac{A}{2}\right) \left(1 - \eta^2\right)\right],$ (14) чества движения;
$$\delta_0 = \int\limits_0^\delta \left(1 - \frac{V_x}{V_\delta}\right) dr$$
 — толщина вытеснения;
$$K = 0,4.$$

Из формул (13) и (14) определить τ_0 достаточно сложно, потому целесообразно воспользоваться способом, предложенным в [19], то есть профиль скорости представить в виде

$$\frac{V_{x}}{V_{\delta}} = \left(\frac{\eta}{\delta}\right)^{\frac{1}{n}},\tag{15}$$

где
$$n = \frac{12KV_{\delta}}{(8+A)V^*} - 1$$
.

Значение п получено из условия, что толщины вытеснения, определенные с использованием формул (14) и (15), одинаковые.

В результате параметры ПС определяются таким образом:

$$\begin{split} \delta_0 = & \, \delta \frac{n}{n+1}; \, \delta_{00} = \delta \frac{n}{\left(n+1\right)\left(n+2\right)}; \\ \tau_0 = & \, \rho V_\delta^2 \left(Re_{_H}\right)_{n+1}^{\frac{1-n}{n+1}} \, Re_\delta^{\frac{2}{n+1}} - \frac{\delta}{2} \frac{dP}{dx} \left(Re_{_H}\right)_{n+1}^{\frac{n}{n+1}} \, Re_\delta^{-\frac{n}{n+1}} \, , \end{split}$$

где Re_н - число Рейнольдса перехода ламинарного подслоя в турбулентное ядро (в соответствии с работой [19] Re_н =21n);

 $Re_{\delta} = (V_{\delta}\delta)/v$ – число Рейнольдса, определенное по толщине ПС.

Подставив полученные параметры ПС в уравнение (12) будем иметь уравнение с одним неизвестным, которое решается методом Рунге-Кутта.

За точку перехода ламинарного ПС в турбулентный принимается точка, в которой выполняется

$$\begin{split} \text{Re}_{00}\left(x\right) &= \text{Re}_{\kappa p}\;, \\ \text{где } \text{Re}_{00}\left(x\right) &= \frac{V_{\delta}\delta_{00}}{\nu};\;\; \lambda_{00} = \frac{V_{\delta}' - \delta_{00}^2}{\nu};\;\; V_{\delta}' = \frac{dV_{\delta}}{dx}\;; \\ \text{Re}_{\kappa p} &= \frac{0,3\big(0,085 + \lambda_{00}\big)^{0,666}}{\epsilon^{1,66}} + 140 \; - \; \text{критическое} \end{split}$$

число Рейнольдса:

ε – степень турбулентности потока.

Точка отрыва ПС определяется по значению напряжения трения, если $\tau_0 \le 0$ пограничный слой считается оторванным. Вязко-невязкое взаимодействие моделируется путем коррекции значения возмущенного потенциала с учетом толщины вытеснения ПС. К значению потенциала, определенного из решения уравнения (11), добавляется величина [18]

$$\phi_{\scriptscriptstyle B} = \pm \frac{1}{4\pi} \int\limits_{S_{_{TIC}}} \Delta \phi_{_{TIC}} \, \frac{\partial}{\partial n} \frac{1}{r} ds \; , \label{eq:phiB}$$

где S_{nc} — площадь вихревой пелены, удаленной от тела на величину δ_0 .

В области ПС $\Delta \phi_{nc}$ определяется из уравнения

$$\frac{d\Delta\phi_{\Pi c}}{de} = \frac{\delta_0}{\delta} \, V_\delta \; \text{ или } \Delta\phi_{\Pi c} = \phi_0 + \int\limits_0^L \frac{\delta_0}{\delta} \, V_\delta de \; .$$

В области отрыва потока возникает цепочка вихрей с циркуляцией [19]

$$\Gamma = \frac{V_{6.\text{orp}}^2}{2} t = \frac{V_{6.\text{orp}}}{2} V_{6.\text{orp}} t = \frac{V_{6.\text{orp}}}{2} \Delta 1,$$

где $\Delta 1$ – длина панели.

Потенциал на поверхности в области отрыва

$$\phi = \Delta \phi_{\Pi C} + G_4 \sum_{i=1}^{I} \frac{V_{6.\text{orp}}}{2} \Delta l,$$

где G_4 находиться из условия, что возмущенная скорость в последующей точке от точки отрыва равна скорости в точке отрыва, т.е.

$$V_{6.\text{orp}}\Delta l = \Delta \phi_{\text{nc}} + G_4 \frac{V_{6.\text{orp}}}{2} \Delta l.$$
 (16)

Оторвавшаяся вихревая пелена располагается по вектору скорости набегающего потока, а ее влияние определяется аналогично влиянию пелены в уравнении (11). Уравнение (16) обеспечивает непрерывность давления.

На рис. 2, 3 представлены значения коэффициента давления C_P в центральном сечении прямоугольного крыла с удлинением $\lambda=5$ и профилем типа NACA 0018, $\overline{C}=0,18$ при числе Рейнольдса $Re=0,7\cdot 10^6$.

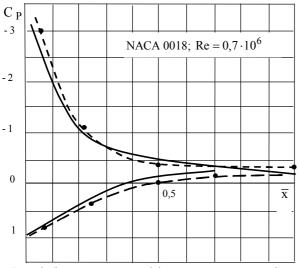


Рис. 2. Зависимость коэффициента давления C_p от безразмерной продольной координаты \overline{x} при угле атаки $\alpha = 17^\circ$

Пунктирной линией показаны экспериментальные значения C_P . Сплошная линия — расчетные значения C_P . Совпадение расчетных значений C_P с экспериментальными вполне удовлетворительное.

На рис. 4 представлены расчетные значения C_P на внешней поверхности мотогондолы при степени торможения потока турбиной $\chi' = \frac{V_2}{V_\infty} = 0.8$ и экспериментальные значения [20] при степени торможения $\chi' = 0.6$. Некоторые расхождения экспериментальных и расчетных данных обусловлено отсутствием точных геометрических данных мотогондолы, с которой проводился эксперимент.

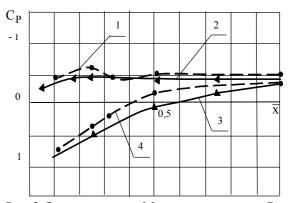
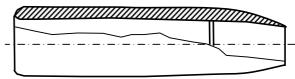



Рис. 3. Зависимость коэффициента давления $\, C_p \,$ от продольной координаты $\, \overline{x} \,$ при $\, \alpha = 21^\circ \,$:

1, 2 - для верхней поверхности крыла; 3, 4 - для нижней поверхности крыла

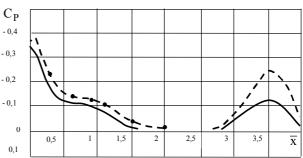


Рис. 4. Распределение коэффициента давления $\,{\rm C}_{\rm p}\,$ на внешней поверхности мотогондолы

По расчетным значениям C_P и τ определяются коэффициенты C_{xp} и $C_{x\tau}$.

Потеря энергии в ПС за счет вязкости определяется по формуле

$$E = \frac{\rho V_{\delta}^3}{2} \cdot \delta_{000} \cdot 2\pi r_0,$$

где $\delta_{000} = 2\delta \frac{n}{(1+n)(3+n)} - \,$ толщина потери энергии;

 ${\bf r}_0$ — радиус внутренней окружности сечения КВП перпендикулярного оси ох, в котором произошел отрыв ПС.

Если энергию E отнести к величине $\ V_2 S_{_T} \, \frac{\rho V_\infty^2}{2}$, то получим

$$\xi_{\rm Tp} = 8 \ \overline{V}_{\delta}^2 \ \overline{\delta}_{000} \ \overline{\tau}_0 \frac{V_{\delta}}{V_2} \,, \tag{17}$$

где
$$\overline{V}_{\delta} = \frac{V_{\delta}}{V_{\infty}}; \overline{\delta}_{000} = \frac{\delta_{000}}{r_{_T}}; \ \overline{r}_{\!0} = \frac{r_0}{r_{_T}}.$$

Коэффициент местных потерь определяется по формуле [21]:

$$\xi_{M} = \left[1 - \left(\frac{r_{0}}{r_{3}}\right)^{2}\right]^{2} \cdot \left(\frac{V_{\delta \text{ OT}}}{V_{\infty}}\right)^{2}.$$

На рис. 5 представлены экспериментальные [12] и расчетные значения относительной мощности \overline{N} (1) от коэффициента загрузки турбины C_D (2) для трех моделей КВП, показанных на рис. 6.

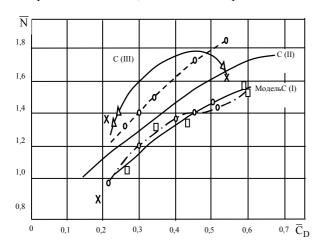


Рис. 5. Зависимость \overline{N} от C_D при нулевом угле скольжения: — экспериментальные значения коэффициента мощности [12]; о — расчетные значения коэффициента мощности по предлагаемой методике для моделей C (I) и C (III)

Анализ формулы (10) показывает, что мощность турбины в значительной степени зависит от перепада давления, который в свою очередь зависит от коэффициента $C_{x\rho}$. Но эта зависимость двояка: с одной стороны рост $C_{x\rho}$ приводит к росту ϑ_2 (8), а с другой к уменьшению ΔP_T . Рост ϑ_2 более пред-

почтителен, т.к. ϑ_2 умножается на значительную величину $2(\bar{V}_{\delta,T}-\vartheta_i)$, поэтому снижение разрежения внутри диффузора предпочтительно. Так в работе [1] рассмотрен вариант КВП с установкой за ним завихрителя (торнадо-башни), создающего разрежение. Но подобный завихритель имеет высокую себестоимость.

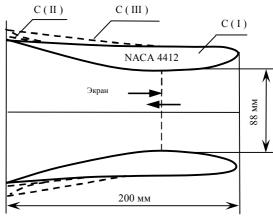


Рис. 6. Модели С (I), С (II) и С (III)

В работе [22] исследуется фланцевой диффузор (рис. 7). В области срыва потока за фланцем появляется значительное разрежение. Но надо иметь в виду, что срывные явления за фланцем приводят к значительному росту коэффициента потерь ξ и падению $\Delta \overline{P}_{\rm T}$ (6), поэтому в работе [22] указывается только увеличение энергии в 2,6 раза, а о приросте мощности турбины ничего не сказано.

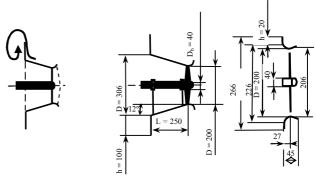


Рис. 7. Фланцевые диффузоры двух типов: удлиненный и короткий

Для уменьшения срыва потока и соответственно уменьшения ξ в настоящее время большое распространение получили щелевые диффузоры [13] (рис. 8), но все эти конструкции сложны и дороги, и кроме того наличие щели приводит к уменьшению скорости V_2 .

Перспективными являются диффузоры с системой управления внутренним и внешним потоками около диффузора. Но они исследованы мало.

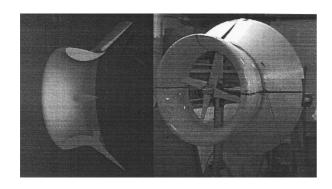


Рис. 8. Щелевой диффузор [14]

На рис. 9 представлены зависимости мощности турбины от длины КВП. При этом диаметр d_3 выходного сечения КВП (рис. 1) оставался постоянным и равным 2 м. Диаметр турбины $d_{\rm T} = 1$ м, а диаметр входного сечения $d_1 = 1,4$ м. Видно, что с увеличением длины КВП мощность турбины возрастает (кривая 1). Это обусловлено тем, что с увеличением длины КВП точка отрыва ПС смещается ближе к выходному сечению 3-3. Кривая 2 на рисунке 9 зависимость мощности турбины от длины КВП при управлении течением воздуха внутри КВП. Треугольником отмечено значение мощности турбины при управлении наружным и внутренним потоками КВП.

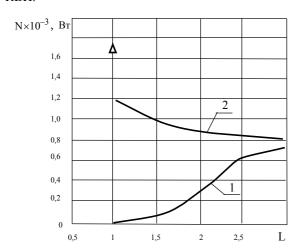


Рис. 9. Зависимость мощности турбины от длины КВП

На рис. 10 представлена зависимость стоимости диффузора от величины

$$L_D = L \cdot 0.5 \cdot (D_{BMX} + D_{BX}),$$

где L – длина диффузора (КВП), D_{RMX} , D_{RX} – диаметр выходного и входного сечения КВП. Зависимость получена на основе анализа стоимости пластмассовых изделий.

На рис. 11 представлена зависимость стоимости турбины от ее радиуса $r_{\rm T}$ при КПД равном 0,3. Зависимость построена исходя из статических данных: стоимость одного ватта мощности ветротурбины при скорости набегающего потока $V_{\infty}=8\,$ м/с равна двум долларам.

Принимая во внимание, что мощность турбины

$$N_T = \eta \frac{\rho V_{\infty}^3}{2} \pi r_{\scriptscriptstyle T}^2 ,$$

где $\,r_{_{\! T}}\,,\,\,\eta\,{-}$ соответственно, радиус и КПД турбины, можно построить зависимость стоимости турбины от $r_{_{\rm T}}$ для других значений скорости ветра.

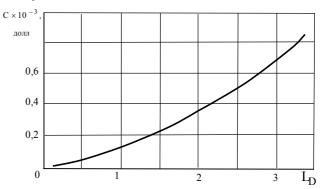


Рис. 10. Стоимость диффузора в зависимости от произведения длины диффузора L на средний диаметр $D_c = (D_{BMX} + D_{BX})/2$

Рис. 11. Зависимость стоимости турбины от ее радиуса

На рис. 12 представлены зависимости стоимости ветроэнергетических установок (стоимость турбины + КВП) C_{Σ} от выходной мощности турбины $N_{_{\mathrm{T}}}$. Кривая 1 — зависимость $C_{\Sigma} = f\left(N_{_{\mathrm{T}}}\right)$ без КВП. Кривая 2 — зависимость $C_{\Sigma} = f(N_{\scriptscriptstyle T})$ с КВП. Кривая 3 – зависимость $C_{\Sigma} = f\left(N_{_{\mathrm{T}}}\right)$ с КВП и управлением внутренним течением. Значком Δ обозначена стоимость ветроэнергетической установки с КВП и управлением внутренним и наружным течением в КВП. По приведенным зависимостям легко вычислить критерий целесообразности использования

КВП
$$\ni = N_T / C_{\Sigma}$$
.

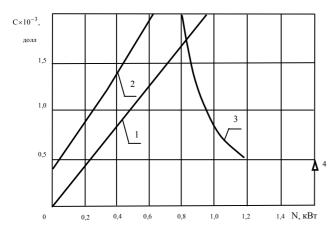


Рис. 12. Зависимость стоимости ВЭУ от выдаваемой мощности

Результаты расчетов показывают, что использование в ВЭУ концентраторов воздушного потока целесообразно при применении управления внешним и внутренним потоками. При этом наиболее эффективными являются короткие КВП с энергетической системой управления параметров течения воздушного потока.

Для ветроэнергетической установки с КВП третьего поколения на рис.13 представлены зависимости мощности турбины N , безразмерного перепада давления на турбине $\Delta \overline{P}_{\rm T}$ (5), относительной мощности \overline{N} от относительной скорости $\overline{V_t} = V_t / V_{\infty}$ в самом узком сечении КВП (в месте расположения турбины).

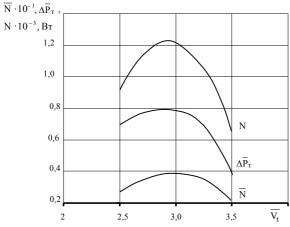


Рис. 13. Зависимости мощности, коэффициента перепада давления на турбине и относительной мощности от относительной скорости

При отсутствии турбины относительная скорость имеет максимальное значение $\overline{V}_{t\,max}$ =3,55. Расчеты проведены при расчетной скорости ветра V_{∞} =5,5 м/с по методике, изложенной выше, для ВЭУ с КВП с L/d_t=0,31 и d₃/d_t=1,5 без учета расхо-

дов энергии на управление внутренним и внешним течением. На управление течением воздуха требуется соответственно $N_B = 35~BT$ и $N_{BH} = 64~BT$ мощности. Мощность на валу ветротурбины с КВП без использования управления состоянием потока составляет 20 BT, что является результатом значительных потерь энергии в диффузоре.

Известные теоретические работы [13, 15, 16, 23] расчета ветроэнергетических установок с КВП не рассматривают вопросы проектирования турбины, находящейся внутри КВП. Ниже описана методика расчета геометрических параметров турбины ветроэнергетической установки с концентратором воздушного потока.

В основу методики расчета геометрических параметров турбины с КВП положено условие, что оптимальные значения перепада давления и мощности турбины, определенные по импульсной теории и приведенные на рис.13, должны быть равны значениям, полученным по лопастной теории [24].

Анализ данных, приведенных на рис. 13 показывает, что оптимальные значения газодинамических параметров турбины имеют место при $\overline{V}_{t \, \text{opt}}$ =2,97. Для полученных оптимальных значений параметров N_{opt} , $\Delta \overline{P}_{\text{Topt}}$, $\overline{V}_{t \, \text{opt}}$ необходимо спроектировать турбину, то есть определить угловую скорость турбины (быстроходность турбины), число лопастей, геометрию лопасти (крутку и хорду), а также выбрать аэродинамический профильдля лопастей.

Представим турбину в виде винта с конечным числом лопастей и воспользуемся лопастной теорией [16, 24] расчета аэродинамических нагрузок на лопастях винта. Спроектируем аэродинамические силы, возникающие на лопастях, на ось вращения и на плоскость вращения винта. Тогда проекция силы тяги на ось вращения винта (рис. 14) должна равняться произведению величины перепада давления в плоскости винта на площадь турбины. Проекция сил лопастей на плоскость вращения создает крутящий момент, который при определенной угловой скорости вращения ω должен обеспечить оптимальную величину мощности $N_{\rm opt}$. Следовательно:

$$F_{X} = S_{t}(P_{2,1} - P_{2,2}), \tag{18}$$

$$M_{\kappa p} \cdot \omega = N_{opt}, \qquad (19)$$

где
$$F_X = z \int_{R_{BT}}^{R} (C_{ya} \cos \beta + C_{xa} \sin \beta) \cdot 0, 5 \cdot \rho V^2 b dr -$$

проекция аэродинамической силы, возникающей на лопастях, на ось вращения турбины (рис. 14);

$$M_{\kappa p} = z \int\limits_{R_{pr}}^{R} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \qquad \text{где } \gamma_j(x) = \frac{2}{\pi} \sqrt{\frac{b_j - x}{x}} \times \frac{b_j - x}{x} + \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 5 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 6 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 6 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{xa} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \sin \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya} \cos \beta - C_{ya} \cos \beta \right) \cdot 0, \\ 7 \cdot \rho V^2 br \ dr \ - \frac{1}{2} \left(C_{ya}$$

крутящий момент относительно оси вращения турбины (от аэродинамических сил);

z - число лопастей винта (турбины);

 C_{ya} , $C_{xa}\,$ - коэффициенты аэродинамических сил в сечениях лопастей;

b - хорда профиля;

 $V = \sqrt{(\omega r)^2 + V_{t \ opt}^2} \quad \text{- скорость набегающего на} \\$ профиль лопасти потока;

 $V_{t \; opt}$ - скорость протекания воздуха через плоскость винта.

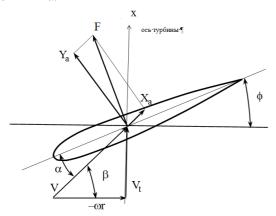


Рис. 14. Скорости и аэродинамические силы в сечении лопасти

В соответствии с вихревой теорией моделирование течения воздуха около винтов осуществляется с помощью вихревой системы, состоящей из присоединенных, продольных и свободных вихрей.

Свободные вихри удобно разделить на два класса [9, стр.222]. К первому классу относятся вихри, примыкающие непосредственно к задней кромке рассматриваемой лопасти и сошедшие с нее на расстоянии до трех хорд. Вызываемые ими индуктивные скорости $V_{i\,c}$ называются собственными. Ко второму классу относятся все остальные вихри, а вызываемые ими скорости $V_{i\,B}$ называются внешними индуктивными скоростями. Будем полагать, что значение внешних индуктивных скоростей в плоскости ВТ будут равны индуктивным скоростям, определенным при решении уравнения (11) или на основе импульсной теории, то есть

$$V_{t \text{ opt}} = V_{t \text{ max}} - V_{i \text{ B}}$$
.

В каждом j - м сечении лопасти винта циркуляция скорости равна [25]:

$$\Gamma_{j} = \int_{0}^{b_{j}} \gamma(x) \, \mathrm{d}x,$$

te
$$\gamma_{j}(x) = \frac{2}{\pi} \sqrt{\frac{b_{j} - x}{x}} \times \frac{b_{j}}{x} \sqrt{\frac{\xi}{b_{j} - \xi}} \frac{V_{\text{ni B}} + V_{\text{ni c}} - V_{\text{ni }\omega} + V_{\text{ni Hc}} + V_{\text{nj}}}{x - \xi} d\xi;$$

 x, ξ - координаты вдоль хорды лопасти;

b_i - хорда лопасти в j - м сечении;

 $V_{\text{ni}\,\omega}$ - нормальная составляющая переносной скорости;

 $V_{ni\,\,B}$, $V_{ni\,\,c}$ - нормальная составляющая индуктивной скорости в j - м сечении от внешних и собственных вихрей вихревой системы;

 $V_{\mbox{ni}\ \mbox{нc}}$ - нормальная составляющая индуктивных скоростей от вихрей, образующихся при вязконевязком взаимодействии;

 $V_{nj}\,$ - нормальная составляющая скорости набегающего потока.

Циркуляцию скорости в j - м сечении представим в виде:

$$\begin{split} \Gamma_{j} &= \Gamma_{lj} + \Gamma_{ij} \;, \\ \text{где} \;\; \Gamma_{ij} &= \int\limits_{0}^{b_{j}} \frac{2}{\pi} \sqrt{\frac{b_{j} - x}{x}} \int\limits_{0}^{b_{j}} \sqrt{\frac{\xi}{b_{j} - \xi}} \frac{V_{ni \; c}}{x - \xi} d\xi dx \;; \\ \Gamma_{lj} &= \int\limits_{0}^{b_{j}} \frac{2}{\pi} \sqrt{\frac{b_{j} - x}{x}} \times \\ &\times \int\limits_{0}^{b_{j}} \sqrt{\frac{\xi}{b_{j} - \xi}} \frac{V_{ni \; B} - V_{ni \; \omega} + V_{ni \; Hc} + V_{nj}}{x - \xi} d\xi dx \;. \end{split}$$

Так как Γ_{lj} не оказывает влияния на Γ_l других сечений лопасти, то значение Γ_{lj} определяется по экспериментальным данным аэродинамических характеристик профилей:

$$\Gamma_{lj} = 0.5 C_{y_{anj}} V_j b_j,$$

где $C_{y_{anj}}$ - коэффициент подъемной силы, определяемый по поляре профиля (рис. 15) при $\alpha = \alpha_1$;

 α_i - угол атаки j - го сечения лопасти (рис. 14).

Скорость $V_{ni\,c}$ рассчитывается от продольных и собственных вихрей, образующихся из-за изменения циркуляции присоединенных вихрей по размаху лопасти. Собственные вихревые шнуры постоянной циркуляции заменяются некоторым числом прямолинейных вихревых отрезков, направления которых в пространстве определяются по относительной скорости в начале каждого отрезка.

Суммарная циркуляция в j - м сечении лопасти равна:

$$\Gamma_{\mathbf{j}}^{\ k} = \Gamma_{\mathbf{l}\mathbf{j}}^{\ k} + \Gamma_{\mathbf{i}\mathbf{j}}^{\ k} ,$$

где к – число итераций.

Коэффициент подъемной силы сечения равен:

$$C_{y_{aj}} = \frac{2 \Gamma_j^k}{b_j V_j}.$$

Индуктивное сопротивление сечения лопасти определяется как:

$$X_{a_{ij}} = \rho(\overrightarrow{V_{ij}} \times \vec{\upsilon} \Gamma_j^k) \overrightarrow{\overrightarrow{V_j}}_{\left|\overrightarrow{V_j}\right|},$$

а коэффициент индуктивного сопротивления как:

$$C_{xa_{ij}} = \frac{X_{a_{ij}}}{(0.5\rho V_j^2 b_j)},$$

где $\overrightarrow{V_{ij}} = (\overrightarrow{V}_{i\,B} + \overrightarrow{V}_{i\,c})$ - индуктивная скорость в центре сечения лопасти;

 $\vec{\upsilon}$ - единичный вектор по направлению присоединенного вихря.

Суммарный коэффициент сопротивления сечения лопасти равен:

$$C_{xa_{i}} = C_{xa_{ni}} + C_{xa_{ii}}$$
,

где $C_{\mathrm{xa}_{\mathrm{nj}}}$ - коэффициент сопротивления профиля, определяемый по поляре профиля (рис. 15) для угла атаки α_{j} .

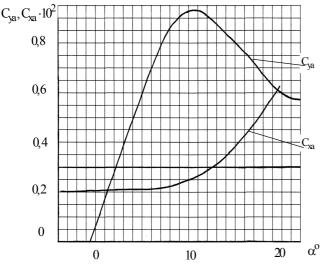


Рис. 15. Аэродинамические коэффициенты профиля лопасти в зависимости от угла атаки при числе Маха $\, M_\infty = \! 0.0162 \,$

Разделим обе части уравнения (18) на $0.5 \rho V_{\infty}^2 S_t$, а уравнения (19) - на $0.5 \rho V_{\infty}^3 S_t$, тогда система уравнений (18), (19) будет иметь вид:

$$\overline{F}_{X} = \Delta \overline{P}_{\text{ropt}},$$
 (20)

$$\overline{M}_{KP} = \overline{N}_{Opt}$$
 (21)

Методика определения геометрических параметров турбины ВЭУ с КВП состоит из следующих этапов:

- из условия обеспечения максимальной угловой скорости вращения винта задается число лопастей;
- из аэродинамических характеристик заданного профиля (рис.15) определяется наивыгоднейший угол атаки α_{HB} ;
- вычисляется крутка лопасти (рис.14) $\phi = \alpha_{\mbox{\tiny HR}} \beta$;

- вычисляется хорда лопасти -

$$b = b_0 (1 - (r - R_{BT}) \cdot (\eta - 1) / (\eta \cdot (R - R_{BT})),$$

где b_0 - хорда лопасти у её основания;

η - сужение лопасти;

R_{вт} - радиус втулки винта.

При заданном сужении лопасти η в системе уравнений (20), (21) неизвестными являются хорда b_0 и угловая скорость вращения ω . Система уравнений (20), (21) решается методом итераций [26, стр. 148].

В результате решения системы уравнений для профиля с заданными аэродинамическими характеристиками (рис. 15) и сужением $\eta=2$ была определена величина корневой хорды лопасти $b_0=0,23$ м. Величина угловой скорости составила $\omega=84$ рад/сек для $V_{\rm cp}=5,5$ м/сек и $\omega=55$ рад/сек для $V_{\rm cp}=3,5$ м/сек. При таких оборотах ветроколеса передачу мощности от турбины к электрогенератору можно осуществлять без понижения оборотов, то есть без применения мультипликатора.

Необходимо отметить, что за счет средств активного управления внутренним и внешним потоками воздуха скорость перед турбиной у ветроэнергетической установки с КВП поддерживается практически постоянной в диапазоне набегающего потока $V_{\infty} = 5,5...15$ м/сек. Поэтому для ветроэнергетической установки с концентратором воздушного потока третьего поколения отпадает необходимость в системе стабилизации частоты вращения турбины.

При средней скорости ветра $V_{\rm cp}$ =5,5 м/сек, характерной для южных районов Украины [27], применение концентратора воздушного потока с активной системой управления параметрами потока позволит обеспечить 800 кВт-час электроэнергии в месяц при диаметре турбины 2,5 м. Для сравнения, месячная выработка электроэнергии трехлопастным ветрогенератором коаксиальной схемы FA-4.4/400 с диаметром ветроколеса 4,4 м составляет 500 кВт-час.

На мощность турбины влияет большое число

геометрических параметров КВП, средств управления и самой турбины, и мощность турбины нелинейно зависит от этих параметров. Поэтому на этапах предварительного проектирования ветроэнергетических установок с концентратором воздушного потока необходимо широко использовать компьютерные технологии. Особенно это необходимо для разработки серии ветроэнергетической установки для соответствующего диапазона скоростей ветрового потока применительно для того или иного региона.

Заключение

Разработан метод расчета аэродинамических характеристик ветроэнергетических установок с концентраторами воздушного потока. Показано, что ветроэнергетическая установка с КВП и системой активного управления внутренним и внешним течениями воздуха позволяет почти в два раза уменьшить диаметр ротора по сравнению с ветроэнергетической установкой без КВП и более чем в 1,5раза увеличить мощность, снимаемую с вала ротора.

Литература

- 1. Янсон, Р.А. Ветроустановки [Текст]: учеб. пособие / Р.А. Янсон; Мин-во общ. и проф. образования Рос. Федерации; под ред. М.И. Осипова М.: МГТУ им. Н.Э. Баумана, 2007. 36 с.
- 2. Жуковский, Н.Е. Аэродинамический расчет медленно движущихся ветряных мельниц [Текст] / Н.Е. Жуковский // Собр. соч.: в 7 т. М.; Л.: Гостехиздат, 1950. Т. 7 С. 333-339.
- 3. Жуковский, Н.Е. Ветряная мельница типа НЕЖ [Текст] / Н.Е. Жуковский // Собр. соч.: в 7 т. М.; Л.: Гостехиздат, 1950. Т. 7 С. 349–361.
- 4. Сабинин, Г.Х. Теория идеального ветряка [Текст] / Г.Х. Сабинин // Труды ЦАГИ. 1927. Вып. 32. С. 2-18.
- 5. Сабинин, Г.Х. Теория и аэродинамический расчет ветряных двигателей [Текст] / Г.Х. Сабинин // Труды ЦАГИ. 1931. Вып. 104. С. 59 -60.
- 6. Glauert, H. General Theors of the Autogiro (R&M 1111) [Text] / H. Glauert // Technical report of the Aeronautical Research Committee for the year 1927-1928 London, 1928. P. 558–593.
- 7. Lock, C.H. Futher Development of the Autogiro Theory (R&M 1127) [Text] / C.H. Lock // Technical report of the Aeronautical Research Committee for the year 1927-1928 London, 1928. P. 594–636.
- 8. Белоцерковский, С.М. K математическому нелинейному моделированию нестационарного обтекания несущего винта [Текст] / С.М. Белоцерковский, В.А. Васин, Б.Е. Локтев // Докл. АН СССР. 1978. T. 240, N06. T07. T1320—1323.
- 9. Вертолеты: расчет и проектирование. Книга 1. Аэродинамика [Текст] / М.Л. Миль, А.В. Не-

- красов, А.С. Браверман и др.; под ред. М.Л. Миля. М.: Машиностроение, 1966. 452 с.
- 10. Компаниец, Н.И. Подход к расчету углов атаки сечений лопасти несущего винта в нестационарных нелинейных задачах [Текст] / Н.И. Компаниец, Б.С. Крицкий // Научно-методические материалы по прикладным задачам аэромеханики: сб. статей ХАИ, ХВВАИУ. Вып. 2. —Х., 1987. С. 36—44.
- 11. Казанджян, Б.И. Ветроэнергетические установки с концентраторами воздушного потока [Текст] / Б.И. Казанджян, Ю.Г. Мятов // Возобновляемые источники энергии: сб. науч. тр. Моск. энерг. инс-та. N 233 M., 1990. C. 143-148.
- 12. Игра, О. Кожухи для ветродвигателей [Текст] / О. Игра // Ракетная техника и космонавтика. 1976. № 10. С. 166- 168.
- 13. Phillips, D.G. Diffuser development for a diffuser augmented wind turbine using computational fluid dynamics [Электронный ресурс] / D.G. Phillips, P.J. Richards, R.G.J. Flay. Режим доступа: http://www.docstoc.com/docs/26255835/Diffuser-Development-for-a-Diffuser-Augmented-Wind-Turbine-Using 12.05.2012 г.
- 14. Palapum, K. Al. An investigation of diffuser for water current turbine application using CFD [Text] / K. Al. Palapum, J. Adun // International Journal of Engineering Science and Technology. -2011.-Vol.~3, N = 4.-P.~3437-3445.
- 15. Лебедь, В.Г. Оценка целесообразности использования концентраторов воздушного потока в ветроэнергетических установках [Текст] / В.Г. Лебедь, С.А. Калкаманов, А.Л. Сушко // Інтегровані технології та енергозбереження: щоквартальний наково-технічний журнал. Харків: HTV «ХПІ», 2011.-N 2.-C.73-88.
- 16. Кривцов, В.С. Неисчерпаемая энергия. Книга 2. Ветроэнергетика [Текст]: учеб. для вузов / В.С. Кривцов, А.М. Олейников, А.И. Яковлев; Миниво образования и науки Украины, Нац. Аэрокосм. унт «ХАИ» Х.: НАКУ «ХАИ», 2004. 519 с.
- 17. Гайдаенко, В.И. Метод расчета стационарного и нестационарного обтекания летательного аппарата с работающей силовой установкой [Текст] / В.И. Гайдаенко, В.В. Гуляев, А.К. Калганов // Применение ЭВМ для исследования аэродинамических характеристик летательных аппаратов: труды ВВИА им. Н.Е. Жуковского. Вып. 1313. М., 1986. С. 23-32.
- 18. Лебедь, В.Г. Метод расчета аэродинамических характеристик крыла в широком диапазоне углов атаки [Текст] / В.Г. Лебедь, А.Л. Сушко, С.А. Калкаманов // Вопросы проектирования и производства конструкций летательных аппаратов: сб. научных трудов Нац. Аэрокосм. ун-та им. Н.Е. Жуковского «ХАЙ». Вып. 40(1). X., 2005. C. 22-32.
- 19. Репик, Е.У. Исследование внутренней структуры турбулентного пограничного слоя [Текст] / Е.У. Репик // Труды ЦАГИ. Вып. 972.–

M., 1965. −72 c.

- 20. Кюхеман, Д. Аэродинамика авиационных двигателей, ч. 1 [Текст] / Д. Кюхеман, И. Вебер. М.: Иностранная литература, 1956. 287 с.
- 21. Алешко, П.И. Механика жидкости и газа [Текст] / П.И. Алешко. Х.: Вища школа, 1977. 320 с.
- 22. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud [Text] / T. Kazuhiko, N. Koutarou, H. Wataru, O. Shinichi, T. Manabu, O. Yuji // Proceedings of the 2nd Asian Joint Workshop on Thermophsics and Fluid Science, 2008. Luoyang, China, 2008. P. 264 270.
- 23. Хомяков, А.Н. Профилирование осесимметричных диффузоров с безотрывным полем течения [Текст] / А.Н. Хомяков // Ломоносовские чтения: тезисы докладов научной конференции 2009 г. М.: Изд. МГУ им. М.В. Ломоносова, 2009. С.149.

- 24. Сучасні методи дослідження аеродинаміки та динаміки польоту [Текст]: навч. посібник / В.Г. Лебідь, С.А. Калкаманов, І.Б. Ковтонюк та інш.— Х.: ХУПС, 2009.— 142 с.
- 25. Джонсон, У. Теория вертолета. Книга 1 [Текст] /У. Джонсон. М.: Мир, 1983. 502 с.
- 26. Демидович, Б.П. Основы вычислительной математики [Текст] / Б.П. Демидович, И.А. Марон. М.: Наука, 1966. 664 с.
- 27. Атлас енергетичного потенціалу відновлюваних та нетрадиційних джерел енергії України: Енергія вітру, сонячна енергія, енергія малих рік, енергія біомаси, геотермальна енергія, енергія довкілля, енергія скидного енерготехнологічного потенціалу, енергія нетрадиційного палива. [Текст] Київ: Інститут електродинаміки НАН України, 2001. 69 с.

Поступила в редакцию 16.07.2012

Рецензент: д-р техн. наук, профессор, профессор кафедры ракетно-космических двигателей и энергетических установок летательных аппаратов А.И. Яковлев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.

МЕТОД АЕРОДИНАМІЧНОГО РОЗРАХУНКУ ВІТРОЕНЕРГЕТИЧНОЇ УСТАНОВКИ З КОНЦЕНТРАТОРОМ ПОВІТРЯНОГО ПОТОКУ

В.Г. Лебедь, С.А. Калкаманов

Запропоновано чисельний метод розрахунку аеродинамічних характеристик вітроенергетичних установок з концентраторами повітряного потоку. Метод заснований на теорії в'язко-нев'язкої взаємодії. Запропонований метод дозволяє визначити геометричні параметри вітроколеса, що забезпечують оптимальний режим роботи вітряка з дифузором, оснащеним системою управління відривом потоку. Наведено результати розрахунків, які показують переваги використання концентраторів повітряного потоку в вітроенергетичних установках.

Ключові слова: турбіна, концентратор повітряного потоку, середньорічна швидкість вітру.

METHOD OF CALCULATING AERODYNAMIC WIND POWER PLANTS WITH CONCENTRATORS OF AIR FLOW

V.G. Lebed, S.A. Kalkamanov

A numerical method for calculating of the aerodynamic characteristics of wind power plants with concentrators of air flow. The method is based on the theory of viscous-inviscid interaction. The proposed method allows to determine of the geometrical parameters of windwheel to ensure optimum performance wind turbine with a diffuser, equipped by a system of control flow separation. The results of calculations that show the advantages of concentrator-properties of the air flow in wind power plants.

Keywords: turbine, the concentrator of air flow, the average wind speed.

Лебедь Валентин Георгиевич – канд. техн. наук, доцент, профессор кафедры 103, Харьковский университет Воздушных Сил им. Ивана Кожедуба, Харьков, Украина.

Калкаманов Салим Аюпович – д-р техн. наук, профессор, профессор кафедры 102, Харьковский университет Воздушных Сил им. Ивана Кожедуба, Харьков, Украина.