Ëèòåðàòóðà
1.
Oliver, C. Understanding
Synthetic Aperture Radar Images [Òåêñò]/ C. Oliver,
S. Quegan – SciTech Publishing. – 2004. – 464 ð.
2.
Quasi–optimal
compression of noisy optical and radar images [Òåêñò]
/ V. Lukin, N. Ponomarenko,
M. Zriakhov, A. Zelensky,
K. Egiazarian, J. Astola //
Proc. of SPIE Conference “Image and Signal Processing for Remote Sensing XII”.
– 2006. – Vol. 6365. – 12 p.
3.
Zeng, Z. SAR
Image Data Compression Using a Tree–Structured Wavelet Transform [Òåêñò] / Z. Zeng,
I.G. Cumming // IEEE Transactions on Geoscience
and Remote Sensing. – 2001. – Vol. 39, No 3. – P. 546 – 552.
4.
Adaptive
DCT–based filtering of images corrupted by spatially correlated noise
[Òåêñò]
/ V. Lukin, N. Ponomarenko,
K. Egiazarian, J. Astola //
Proceedings of SPIE Conference Image Processing: Algorithms and Systems, 28
January 2008. – San Jose, 2008. – Vol. 6812. – 12 p.
5.
Al–Chaykh,
O.K. Restoration of Lossy Compressed Images [Òåêñò] / O.K. Al–Chaykh,
R.M. Mersereau // IEEE Transactions on Image
Processing. – 1999. – Vol. 8 (10). – P. 1348 – 1360.
6.
Wallace, G. JPEG still image
compression standard [Òåêñò] / G. Wallace //
Communications of the ACM – Special issue on digital multimedia systems. –
1991. – Vol. 34, No 4. – P. 30 – 44.
7.
Said, A.
A new fast and efficient image codec based on the partitioning in hierarchical
trees [Òåêñò] / A. Said, W. Pearlman // IEEE Transactions on Circuits System
and Video Technology. – 1996.
– Vol. 6. – P. 243 – 250.
8.
Valade, C. Homomorphic
Wavelet Transform and New Subband Statistics Models
for SAR Image Compression [Òåêñò]
/ C. Valade, J.M. Nicolas // IEEE Transactions
on Signal Processing. – 2006. – Vol. 86, No 3. – P. 533–548.
9.
Al–Chaykh,
O.K. Lossy compression of noisy images [Òåêñò] / O.K. Al–Chaykh,
R.M. Mersereau // IEEE
Transactions on Image Processing. – 1998. – Vol. 7 (12). – P. 1641 – 1652.
10. Lossy
compression of images with additive noise [Òåêñò]
/ N.N. Ponomarenko, V.V. Lukin,
M.S. Zriakhov, K. Egiazarian
// Proceedings International Conference on Advanced Concepts for Intelligent
Vision Systems. – 2005. – P. 381 – 386.
11. Lossy Compression of Noisy Images Based on Visual
Quality: a Comprehensive Study [Òåêñò] / N. Ponomarenko, S. Krivenko, V. Lukin, K. Egiazarian, J. Astola // Open
access paper in: EURASIP Journal on Advances in Signal Processing. – 2010. – 13 p. – Article ID 976436.
12. An
Automatic Approach to Lossy Compression of Images
Corrupted by Poisson Noise [Òåêñò] / V.V. Lukin, M.S. Zriakhov, N.N. Ponomarenko, A. Kaarna // Processing Microwaves, Radar and Remote Sensing Symposium
MRRS–2008, 22–24 Sept. 2008. – Kiev, 2008. –
P. 139 – 142.
13.
Îñîáåííîñòè ñæàòèÿ
èçîáðàæåíèé ïðè ñèãíàëüíî–çàâèñèìûõ ïîìåõàõ [Òåêñò] / Ì.Ñ. Çðÿõîâ,
Ñ.Ñ. Êðèâåíêî, Ñ.Ê. Àáðàìîâ, Í.Í. Ïîíîìàðåíêî, Â.Â. Ëóêèí //
Àâèàöèîííî-êîñìè÷åñêàÿ òåõíèêà è òåõíîëîãèÿ. – 2011. – ¹ 2/79. – Ñ. 87 – 95.
14. Lossy
compression of images corrupted by mixed Poisson and additive noise [Òåêñò] / V. Lukin, S. Krivenko, M. Zriakhov, N. Ponomarenko, S. Abramov, A.
Kaarna, K. Egiazarian //
Proceedings of LNLA, August 2009. – Helsinki, 2009. – P. 33 – 40.
15. Compression of noisy Bayer pattern color filter array
images [Òåêñò] / N. Ponomarenko,
A. Bazhyna, K. Egiazarian,
V. Lukin // Proceedings of SPIE Photonics West
Symp., Jan. 2007. – San Jose, 2007. – Vol. 6498. – 9
p.
16. An automatic approach to lossy
compression of AVIRIS images [Òåêñò] / N. Ponomarenko, V. Lukin, M. Zriakhov, A. Kaarna, J. Astola // Proceedings of IGARSS, July 2007. – Barcelona,
2007. – P. 472 – 475.
17. Lossy compression of images without visible
distortions and its applications [Òåêñò] / V. Lukin, M. Zriakhov, S. Krivenko, N. Ponomarenko, Z. Miao
// Proc. of ICSP, 24–28 Oct. 2010. – Beijing, 2010. – P. 69 4 –697.
18. Locally
Adaptive DCT Filtering for Signal–Dependent Noise Removal / R. Oktem, K. Egiazarian, V. Lukin, N. Ponomarenko, O. Tsymbal // EURASIP Journal on Advances in Signal
Processing. – 2007. – 10 p. – Article ID 42472.
19.
Dogan,
O. Time Domain SAR Raw Data Simulation of Distributed Targets [Òåêñò] / O. Dogan, M. Kartal // EURASIP Journal on Advances in Signal Processing.
– 2010. – 11 p. – Article ID 784815.
20.
A method for blind estimation
of spatially correlated noise characteristics [Òåêñò]
/ N. Ponomarenko, V. Lukin,
K. Egiazarian, J. Astola //
Proc. of SPIE Conf. Image Proc.: Algorithms and
Systems VII, 19 January 2010. – San Jose, 2010. – Vol. 7532. – 12 p.
21. Free TerraSAR–X Data Samples [Ýëåêòðîííûé ðåñóðñ]. – Ðåæèì
äîñòóïà: http://www.infoterra.de/free–sample–data. –
(30.09.11)
22.
DCT Based High Quality Image
Compression [Òåêñò] / N.N. Ponomarenko,
V.V. Lukin, K.O. Egiazarian,
J.T. Astola // Proc. Scand. Conf. on Image Analysis,
Springer Series: Lect. Notes in Comp. Sc. – 2005. – Vol. 3540. – P. 1177 –
1185.
23.
Wu, X.
Context–based, adaptive, lossless image coding [Òåêñò]
/ X. Wu and N. D. Memon // IEEE Trans. On
Communications. – 1997. – Vol. 45 (4). – P. 437 – 444.
24. On between–coefficient contrast masking of DCT basis
functions [Òåêñò] / N. Ponomarenko,
F. Silvestri, K. Egiazarian,
M. Carli, J. Astola, V. Lukin // CD–ROM Proc. of the Third Int. Workshop on Video
Proc. and Quality Metrics, 25–26 January 2007. – Arizona, 2007. – 4 p.
25. Wang, Z. Multi–scale Structural Similarity for Visual
Quality Assessment [Òåêñò] / Z. Wang, E.P. Simoncelli, A.C. Bovik //
Proceedings of the 37th IEEE Asilomar Conference on
Signals, Systems and Computers. – 2003. – Vol. 2. – P. 1398 – 1402.
26.
Îöåíêà âèçóàëüíûõ èñêàæåíèé ïðè âíåäðåíèè â èçîáðàæåíèÿ öèôðîâûõ âîäÿíûõ çíàêîâ [Òåêñò] / Î.È. Åðåìååâ, Í.Í. Ïîíîìàðåíêî, Â.Â. Ëóêèí, À.À. Çåëåíñêèé // Ìàòåð³àëè 7–¿ íàóêîâî¿
êîíôåðåíö³¿ ÄÓ²ÊÒ «Ñó÷àñí³ òåíäåíö³¿ ðîçâèòêó òåõíîëîã³é â ³íôîêîìóí³êàö³ÿõ òà îñâ³ò³», ëèñòîïàä 2010
ð. – Õ., 2010. – Ñ. 20 – 23.