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A MORE REALISTIC PRESENTATION OF MEASUREMENT DEVIATION  
ERRORS IN GAS TURBINE DIAGNOSTIC ALGORITHMS 

 
Gas path fault localization algorithms based on the pattern recognition theory are an important component of 
gas turbine monitoring systems. To simulate random measurement errors (noise) in description of fault classes, 
these algorithms usually involve theoretical random number distributions, like the Gaussian probability density 
function. A level of the simulated noise is determined on the basis of known information on typical maximum er-
rors of different gas path sensors. However, not measurements themselves but their deviations from an engine 
baseline are input parameters for diagnostic algorithms. These deviations computed for real data have other er-
ror components in addition to simulated measurement inaccuracy. In this way, simulated and real deviation er-
rors differ by an amplitude and distribution. Consequently, with such simulation, the performance of a diagnostic 
algorithm is poorly estimated, and therefore, the conclusion on algorithm efficiency may be wrong. To under-
stand better noise peculiarities, plots of deviations of real measurements are tracked in the present paper. Addi-
tionally, possible deviation errors are surely analyzed analytically. To make noise presentation more realistic, it 
is proposed to extract random errors from real deviations and to integrate these errors in fault description. Fi-
nally, the effect of the new noise representation mode on gas turbine diagnosis reliability is estimated. 
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Introduction 

 
Application of gas turbine health monitoring sys-

tems is a standard worldwide practice. In these systems, 
diagnostic algorithms based on gas path measured vari-
ables (temperature, pressure, rotation speed, fuel con-
sumption, etc.) are considered as principle. Some meas-
ured variables are used to set an engine operation point 
and are called operating conditions. The rest of meas-
ured gas path variables are available for diagnostic 
analysis and are typically called monitored variables.  

A total diagnostic process usually includes three 
principal stages of fault detection, fault identification, 
and prognostics [1]. They are preceded by an additional 
stage of measurement data validation and computing 
deviations. The deviation *Y  is calculated for a moni-
tored variable Y  as a relative discrepancy 

 *
0 0Y Y Y  between a measured value *Y  and a 

base-line value 0Y . In contrast to the monitored vari-
ables strongly depending on engine operating mode, the 
deviations, when properly computed, are almost free of 
the influence of the operating conditions and can be 
good indicators of engine gradual degradation or abrupt 
faults. The present paper deals with fault identification 
algorithms based on the pattern recognition theory. The 
described deviations are input parameters to these algo-
rithms. 

Monitoring systems’ effectiveness obviously de-
pends on accuracy of the diagnostic decisions made. 

That is why, when a new algorithm is proposed, it is 
usually tailored and subjected to verification. In the 
corresponding investigations, operation of the proposed 
algorithm as well as a whole diagnostic process is simu-
lated. To simulate gas path faults, a gas turbine model 
computes the monitored variables corresponding to the 
embedded faults.  

The most of researchers also take into account ran-
dom errors in the monitored variables and operating 
conditions applying the Gaussian distribution to that 
end. Such noise simulation has the following limitations. 
First, the level of simulated noise may differ from the 
level of random measurement errors that are peculiar to 
an analyzed gas turbine. Second, not monitored variables 
themselves but their deviations are input parameters for 
diagnostic algorithms, and, apart from measurement 
errors, deviations’ errors include other uncertainty com-
ponents. Third, an error distribution in the deviations 
based on real measurements is pretty irregular and differs 
a lot from theoretical distributions. 

For a long period of time we have analyzed quality 
of recorded data and the deviation accuracy problem of 
a gas turbine power plant for natural gas pumping [2]. 
Possible error sources were examined and some algo-
rithms were proposed to enhance the deviation quality. 

The present paper focuses on more realistic noise 
representation. The same power plant has been chosen 
as a test case. Its nonlinear static model and field data 
recorded at steady states were employed in the investi-
gations. To better understand types and sources of the 
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deviation errors, the paper looks at deviation graphs 
plotted for real measurements against power plant op-
eration time. Additionally, the process of computing the 
deviations is analyzed analytically in order to clearly 
determine all error components and their nature. As a 
result of the analysis, it is proposed to draw a noise part 
from the deviations and integrate it into the description 
of simulated fault classes. Finally, such a novel mode to 
describe gas turbine faults is comprehensively dis-
cussed.  

 
1. Common approach to a gas path fault 

recognition problem 
 
For the purposes of diagnosis existing variety of 

engine faults should be broken down into a limited 
number of classes. The following hypothesis commonly 
used in the pattern recognition theory is also accepted in 
gas turbine diagnostics. It supposes that a system state D 
can belong only to one of q classes  

1 2 qD ,D ,..., D                                (1) 
that are set beforehand. As a rule, each fault class corre-
sponds to one engine component.  

As mentioned in the introduction, the deviations 
can potentially be good indicators of engine faults. That 
is why the deviations computed for m available moni-
tored variables iY  could form an appropriate space to 
recognize the faults. An additional operation of nor-
malization * *

i i YiZ Y a   can further enhance the space. 
When a parameter Yia  is a maximal random error of the 

deviation variable *
iY , maximal error amplitudes of all 

normalized deviation variables *
iZ ,  i 1, m  will be 

equal to one. Such normalization simplifies fault class 
description and enhances diagnosis reliability. On the 

basis of the above considerations, a vector *Z


 that 
unites elemental variables of the normalized deviations 
is chosen to form a fault recognition space (diagnostic 

space). One value of the vector *Z


 can be considered as 
a pattern to be recognized.  

There are two scenarios to describe the fault classi-

fication in the space *Z


; they can conditionally be 
called as probabilistic and statistical. The Bayesian 
approach exemplifies the first scenario [3]. It needs that 
each fault class Dj be described by its probability den-

sity function *
jf (Z / D )



. The difficulty of this approach 
is related with the density functions themselves because 
it is a principal problem of mathematical statistics to 
assess them. That is why the first scenario can be real-
ized only for a simplified fault classes. 

In the second scenario the classes are given by 

samples of patterns namely vectors *Z


. In this way, a 
whole fault classification is a union of pattern samples 
of all classes. Apart from the simplification of a class 
formation process, the replacement of the density func-
tions by pattern samples allows creating more complex 
fault classes only on the basis of real data.  

However, gas turbine faults are still often simu-
lated mathematically because of rare appearance of real 
faults and high costs of physical fault simulation. 
Among different mathematical models used to simulate 
the faults, a so-called thermodynamic model can be 
considered as principal. This static nonlinear one-
dimensional component-based model can be structurally 
presented as 

mY F U ,
     

 
.                        (2) 

It computes the monitored variables as a function 
of steady state operating conditions (power set variables 

and ambient conditions) denoted by a (n×1)-vector mU


, 

and engine health parameters 0

  

     . Nominal 

values 0



  correspond to an engine baseline. Changes 


  called fault parameters provide some shifting of 
the performances of engine components (compressors, 
combustor, turbines, etc.) that results in the correspond-
ing changes of monitored variables. Each fault class Dj 

is formed by growing values of its own vector j


 . 

Typically, all possible faults of one component are de-
scribed by two its fault parameters, namely, a flow pa-
rameter A  and an efficiency parameter  . 

In this way, the fault parameters embedded into the 
model allow simulating faults of variable severity for 
different components.  

The normalized deviations induced by the fault pa-

rameter vector 


  can be written as 

m 0 m 0i i
i

m 0i Yi

Y (U , ) Y (U , )
Z ,i 1,m

Y (U , )a

    

 

    
 


.    (3) 

To take into consideration random deviation errors, a 
noise component i  should be added, thus resulting in  

i
*
i i ZZ Z E ,i 1,m   .                        (4) 

As mentioned before, amplitudes of all variables 
ZiE  are equal to one. 

The deviations (4) form a vector *
ZZ Z E

  
  , 

which is a pattern to be recognized and an element to 
construct the classification (1). During the generating 
numerous patterns to represent the fault classes, a vari-
able fault severity is usually determined by the uniform 
distribution and measurement errors are generated ac-



ISSN 1727-7337. АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2011, № 5 (82) 70 

cording to the Gaussian distribution. A totality Zl of 
classification’s patterns is typically called a learning set 
because it is applied to train or adjust the used recogni-
tion technique, for example, a neural network. In addi-
tion to the pattern observed and the fault classification 
accepted beforehand, the recognition technique is an 
integral part of a whole gas turbine diagnostic process. 

Although the technique trained on the learning set 
data is ready for application, one more set is required to 
verify and validate it. The necessary set  Zv , called a 
validation set, is created in the same way as the set  Zl . 
The only difference is that other series of random num-
bers is generated to simulate fault severity and errors in 
the deviations. The technique makes a diagnosis for 

each pattern *Z


 of the set  Zv . A nomenclature of 
possible diagnoses 1 2 qd ,d ,...,d  corresponds to the ac-
cepted classification (1). The diagnosis dl may differ 
from a known class Dj due to pattern and classification 
random errors as well as inherent errors in the tech-
nique. Comparing the diagnoses and the classes for a 
great number of the validation set’s patterns, we can 
compute diagnosis probabilities lj l jPd P(d / D )  and 
compose a so-called confusion matrix P. Its diagonal 

elements llP  form a vector P


 of true diagnosis prob-
abilities that are indices of classes’ distinguishability. A 

mean number of these elements – scalar 
__

P  – deter-
mines total engine diagnosability. The described prob-
abilities not only characterize the chosen recognition 
techniques, but they also are performances of the engine 
fault classification and a whole diagnostic process.  

When the technique is adequate and well tailored, 
the diagnostic performance (diagnosis reliability) is 
mainly determined by the analyzed pattern and the clas-
sification. Since the deviation noise is a part of the pat-
tern and classification, accuracy of the performance 
strongly depends on how realistic is noise simulation.  

 

2. Deviations based on real data 
 
In an effort to better understand peculiarities of the 

deviation noise, let us look at the deviations computed 
on the basis of real data. These data were recorded in 
field conditions for the gas turbine chosen as a test case, 
namely a power plant for natural gas pumping. It is an 
aeroderivative two shaft engine with a power turbine.  

Figure 1 firstly presented in [4] helps to illustrate 
behavior of the deviation variable *Y . This deviation 
was computed for an exhaust gas temperature (EGT) 
and is given here against power plant operation time t. 

With the values *Y  and *
mU



 measured each hour, the 
deviations were computed according to an expression  

* *
0* m

*
0 m

Y Y (U )
Y

Y (U )






  .                       (5) 

In this figure a gray color curve means the deviation 
itself *Y  while the systematic influence of compressor 
fouling Y  corresponds to a bold line with a maximum 
change designated as 0 . In this way, a difference 

*
YE Y Y                             (6) 

can be interpreted as a deviation error. 
 

 
Fig. 1. Deviations plotted in % against the time of operation (hours) 

 

A baseline functions 0 mY (U )
 

 is of a polynomial 

type. A vector mU


 of functions’ arguments comprises 
variables of ambient air pressure p*

H, engine inlet tem-
perature T*

in, power turbine rotation speed nPT and fuel 
consumption Gf. Unknown polynomial coefficients 

were estimated by the least square method with healthy 
engine data (reference set).  

The baseline functions were determined and the 
deviations were computed for all 6 gas path variables 
available for monitoring in the analyzed power plant. 
Table 1 contains the list of these variables with designa-
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tions of the corresponding deviations and normalization 
parameters Ya .  

Table 1  
Monitored variables 

Designations  
No 
 

 
Variable’s name 

 
Ya  Relative 

deviations 
Normalized 
deviations 

1 Compressor temperature T*
C 0,00525 dTc Z1 

2 Exhaust gas temperature T*
HPT 0,00453 dTt Z2 

3 Power turbine temperature T*
LPT 0,00502 dTpt Z3 

4 Gas generator rotation speed nHP 0,00347 dNhp Z4 
5 Compressor pressure p*

C 0,00869 dPc Z5 
6 Exhaust gas pressure p*

HPT 0,00775 dPt Z6 
 
The EGT deviation plotted in Fig.1 is a result of 

great efforts to enhance deviation quality. For instance, 
some cases of sensors’ abnormal functioning were de-
tected and the corresponding data were excluded from 
the analysis. The baseline functions were also optimized 
by choosing the best function type, arguments, and 
reference set to determine the function.  

As a result of the optimization, the deviations have 
become good indices of engine deterioration. In Fig.1 we 
can clearly see two periods of EGT increase that is a 
result of compressor fouling, which is practically perma-
nent and the most intensive deterioration mechanism of 
stationary gas turbines [5]. The periods are divided by a 
compressor washing in the time point t = 7970hours.  

Figure 1 also helps us to quantify quality of the 
deviations and specify deviation errors. The deviation 

quality can be expressed by a ratio 0




  (signal-to-

noise ratio) of the maximum systematic change 0  to a 
spread   of deviation fluctuations.  

According to a frequency and scatter, the fluctua-
tions may be conditionally divided into three groups: 1) 
high frequency noise that is observed in every time 
point and has a scatter 1 <0,3%; 2) slower fluctuations 
with the period of 30-300 hours and a scatter 2 <1,5%; 
3) single spikes with a scatter 3 >1,5%. Since the spikes 
have the largest scatter, they can nearly always be de-
tected, identified and excluded from the analyzed data. 
Generally, they are results of sensor malfunctions. To the 
contrary, the fluctuations 1  resulted from permanent 
measurement noise can not be removed. Being small, 
these fluctuations do not however considerably affect 
diagnosis accuracy. A main obstacle in the way to a cor-
rect diagnosis is related with the fluctuations 2 . On the 
one hand, their effect is sufficiently great; on the other 
hand, it is often difficult to identify their origin. That is 
why these fluctuations can be mistaken for the effects of 
engine deterioration resulting in a misdiagnosis. 

In addition to the graphical analysis conducted 
above, let us theoretically analyze possible causes and 

sources of the deviation errors that can take place in 
practice. This will help to understand their behavior and 
to take them into account with higher accuracy. 

 
3. Theoretical analysis of possible errors  

in real deviations 
 
This analysis takes into consideration our previous 

studies on deviation accuracy [4,6] and is performed 
below on the basis of expression (5) used to compute the 
deviations in real conditions. Although the expression 
looks to be simple, the analysis will not be so trivial.  

 
3.1. Error types 

 
For a monitored variable Y, expression (5) can be 

rewritten as  
*

*

*
0 m

YY 1
Y (U )


   .                         (7) 

This equation shows that inaccuracy of the devia-
tion is completely determined by errors in a term 

* *
0 mY Y (U )


. It will be shown below that these errors 

can be divided into four types. One type is connected 
with a measured value *Y  and the other three types are 

related to a function *
0 mY (U )


. 

The measurement *Y  differs from a true value Y 
by an error YE  called in this paper as a Type I error. In 

its turn, the true value depends on a vector U


 of real 
operating conditions and on engine health conditions 

given by the vector 


 . As a consequence, the value 
*Y  can be determined as 

*
YY Y(U, ) E (U, )

   
    .                    (8) 

The error YE  is defined here as a function because, 
in general, measurement errors may depend on the value 

Y and, consequently, on the variables U


 and 


 . 
One more obvious cause of the deviation inaccu-

racy is related with measurement errors in operating 

conditions presented in equation (7) by the vector *
mU



. 

Given a vector of measurement errors UmE


, which 
presents Type II errors, the measured operating condi-
tions are written as 

*
UmmmU U E

  
  .                           (9) 

The next error type (Type III) is also related to en-
gine operating conditions however it is not so evident. 
The point is that not all real operating conditions de-
nominated in the present paper by a [(n+k)×1] – vector 
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U


 can be included as arguments of the baseline func-
tion. Some variables of real operating conditions are not 
always measured or recorded, for example, inlet air 
humidity, air bleeding and bypass valves’ positions, and 
engine box temperature. Let us unite all these additional 

variables in a (k×1)-vector UE


. Since such variables 
exert influence upon a real engine and its measured 
variable *Y  but are not taken into consideration in the 

baseline function  *
0 mY U


, the corresponding deviation 

errors take place. A similar negative effect can occur if 
sensor systematic error changes in time.  

Given that m UU U E 
  

, the vector mU


 can be 

given by UmU U \ E
  

  and the equation (9) is converted 
to a form 

*
m U UmU U \ E E 
   

.                   (10) 
Apart from the described errors related to the argu-

ments of the function *
0 mY (U )


, the function has a proper 

error Y0E  (Type IV error). It can result from such factors 

as a systematic error in measurements of the variable Y, 
inadequate function type, improper algorithm for estimat-
ing function’s coefficient, errors in the reference set, 
limited volume of the set data, and influence of engine 
deterioration on these data. Given Y0E  and a true func-

tion 0Y , the function estimation 0Y


 can be written as 

* * *
0 m 0 m Y m0Y (U ) Y (U ) E (U )

  
  .           (11) 

 
3.2. Deviation formula 

 
Let us now substitute equations (8), (10), and (11) into 

expression (7). As a result, the deviation *Y  is written as 

*
Um U* Y m

*
U Um0 Y m0

Y(U, ) E (U E E , )Y 1
Y (U\ E E ) E (U )

    

  

    
  

 
.  (12) 

A dependency *
Um UY mE (U E E , )

   
    in this ex-

pression can be simplified because of the following 
reasons:  

a) YE Y ,  

b) *
Um mE U


 ,  

c) The influence of UE


 and 


  on Y and, conse-
quently, on YE  is significantly smaller then the influ-

ence of *
mU



.  
Taking into account the considerations made, we 

arrive to a final expression for the deviation 

*
* Y m

*
U Um0 Y m0

Y(U, ) E (U )Y 1
Y (U\ E E ) E (U )

 

  

 
  

 
.      (13) 

This expression includes four error types intro-

duced above, namely YE , UmE


, UE


, and Y0E . Let us 

now analyze how each error can influence on inaccu-
racy of the deviation *Y . 

 
3.3. Influence of different error types  

 
The influence of different error sources on the de-

viations are analyzed in the sequel under the following 
assumptions commonly applied in gas turbine diagnos-
tics. First, the same sensors were employed to measure 

currently analyzed values *Y  and *
mU



 as well as the 
reference set data. Second, gross errors (e.g. spikes) 
have been filtered out. Third, a systematic error and 

amplitude of random errors in *Y  and *
mU



 do not de-
pend on engine operating time. 

Type I error. Since the sensor performance is invari-
able, every systematic change of the error YE  will be 
accompanied by the same change in Y0E . As a conse-

quence, accuracy of the deviation *Y  will not be af-
fected by the systematic component of YE . As to the 
random component, it is usually given by the Gaussian 
distribution. It is also believed that random errors of dif-
ferent variables Y are independent and are described by 
the multidimensional Gaussian distribution. That is why, 
the corresponding errors in the deviations *Y  of these 
variables can also be described by this distribution. 

Type II errors. Errors UmE


 can be analyzed in the 
same way as the Type I errors, separately for systematic 
and random components. Obviously, the objective of a 
function determination method (e.g. least square 
method) is to minimize the distance between the refer-
ence set data and function outputs. That is why, a base-
line function will correctly describe reference data re-
gardless of the systematic errors in function arguments 

(systematic component of the error UmE


). Since the 
systematic error component is the same in the reference 

set and in a currently measured argument vector *
mU



, a 

function output *
0 mY (U )


 will be adequate to a measured 

value *Y . In this way, the system component of the er-

rors UmE


 cannot influence a lot the deviation *Y .  
As to the random component, it can be described 

by the multidimensional Gaussian distribution, as in the 
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case of the monitored variables Y. Because every 

change of the arguments *
mU



 has an influence on base-
line values of all monitored variables, their baseline 

values 0Y


 and, consequently, deviations *Y  may have 
correlation. Thus, independent random errors of meas-
ured operating conditions can induce correlated devia-
tion errors that cannot be described by the multidimen-
sional Gaussian distribution.  

It is very likely that the noise with a scatter 1  ob-
served in Fig.1 results from a random component of the 
errors of Type I and Type II. 

Type III error. Presence of such an error has been 
confirmed after analyzing all other error types. This 
error occurs because the additional operating conditions 

UE


 do not change baseline function but exert influence 
on a real engine and, accordingly, on all variables Y. 

For this reason, any change of UE


 can induce synchro-
nous errors of the deviations *Y  of all monitored vari-
ables. It is very likely that most fluctuations with the 
scatter 2  (see Fig.1) origin from the Type III errors. 

Type IV error. The issue of the baseline function non-

adequacy {error *
Y m0E (U )



} is a particular case of a well 

studied mathematical problem of the function estimation 
with empirical data [7]. This error varies in time along with 

changes in the operating conditions *
mU



 producing pertur-

bations in the deviation variable *Y . These perturbation 
can be both independent and correlated depending on 
particular causes of the error Y0E . Although the baseline 

function adequacy is a challenge, the error can be reduced 
to an acceptable level by applying a proper function type 
and using a representative reference set. 

A deviation plot in Fig.1 is a result of multiple at-
tempts to enhance deviation quality. The achieved devia-
tion accuracy is not inferior to the level known from the 
literature and is sufficient for reliable monitoring of the 
power plant under analysis. Thus, we can conclude that 
Fig. 1 gives an example of deviation errors expected in a 
real situation. Therefore, to obtain realistic results of gas 
turbine diagnosis, simulated noise should be as close as 
possible to such real errors. This is verified below by com-
paring different schemes to represent deviation errors. 

 
4. Noise representation schemes 

 
4.1. Real error extraction 

 
To extract an error component from the deviations 

based on real data, a model mY(U , t )


 of an degraded 

power plant has been firstly determined as shown in 

[4, 6]. In addition to the operating conditions mU


, the 
monitored variable Y depends in this model on engine 
operation time after the last washing t . Model’s coeffi-
cient were computed by the least square method with 
the reference set that includes the first 2500 operating 

points presented in Fig. 1. A baseline model m0Y (U )


 

was then simply determined by putting t  equal to zero.  
With the described model and equation (6), a rela-

tive deviation error YE  is written as  

*
m m m0 0

Y

m m0 0

Y Y (U ) Y(U , t ) Y (U )
E

Y (U ) Y (U )

  

  

 
    

*
m

m0

Y Y(U , t ) .
Y (U )






                     (14) 

The errors YE  of all monitored variables were 
computed for the 2500 points of the reference set as 
well as for 1400 subsequent operating points of an addi-
tional sample called a testing set. Plots of Fig. 2 illus-
trate the relative errors YE  of the reference set. With 
these errors the normalization parameters were esti-
mated for each monitored variable according to an ex-
pression Y Ea 3  , where E  denotes a standard devia-
tion of the variable YE . The resulting values Ya  are 
given in Table 1.  

 

 
 

Fig. 2. Relative errors computed  
for the reference set 
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Three error representation schemes are realized 
and examined below. Since a diagnostic space is 
formed by the normalized deviations *Z  [see equation 
(4)], the corresponding normalized errors ZE  are con-
sidered in all schemes. These errors, both real and 
simulated, were computed with the same normalization 
parameters of Table 1. 

 
4.2. Scheme A: sensor error simulation 

 
This scheme is the most widely applied in gas tur-

bine fault recognition algorithms. The errors of each 
measured quantity, monitored variable Y or operating 
condition U, are usually given by the normal distribution. 
To simulate these errors (errors of Type I and Type II), 
we used the standard deviations σ of sensor uncertainties 
given in Table 2. These parameters were chosen in our 
previous work [8] on the basis of multiple literature 
sources. The influence of errors of the operating condi-
tions on the monitored variables was estimated with the 
thermodynamic model described in section 1. 

Table 2 

Measurements uncertainties (σ,%) 

p*H T*in nPT Gf T*C T*HPT T*LPT nHP p*C p*HPT 
0,03 0,2 0,1 0,5 0,2 0,25 0,2 0,05 0,2 0,3 

 
Figures 3 and 4, a illustrate the considered schemes. 

It is clearly seen in Fig.4a that the presented deviation 
errors (deviations of exhaust gas temperature and power 
turbine temperature) have correlation. It is also visible 
that the error span considerably exceeds the interval  
(-1,0; 1,0), i.e. the deviation errors induced by the simu-
lated sensor noise are more dispersed than the real er-
rors computed for the reference set data. 

 

 
 

Fig. 3. 3D plot of the normalized  
deviation errors according to Scheme A  
(deviation designations Z5, Z2 and Z3  

correspond to Table 1) 

4.3. Scheme B: direct simulation  
of the deviation errors 

 
This scheme was applied to simulate fault classes 

in our previous works (see, for instance, [9]). The 
deviation errors are given by the multidimensional 
normal distribution. The same standard deviations that 
were obtained for real noise are chosen. This allows 
exact adjustment of simulated errors to real ones.  

This scheme is illustrated by Fig.4b. As it was 
expected, practically all simulated normalized errors 
are distributed inside the intervals (-1,0; 1,0) and no 
correlation is observed. The latter can be considered as a 
disadvantage because the correlation produced by Type 
II errors and expected in real deviations is absent. 

 
4.4. Scheme C: errors of real deviations 

 
This scheme is proposed and it means the integra-

tion of the normalized deviation errors computed with 
real data in the description of simulated faults. The 
scheme was realized separately for the cases of the refer-
ence and testing sets. The corresponding deviation errors 
are illustrated by Fig. 4, c and Fig. 4, d. As expected, the 
errors computed for the reference set (Fig. 4, c) are 
mostly localized inside the intervals (–1,0; 1,0) while the 
errors of the training set have significantly wider disper-
sion. Both figures show visible error correlation between 
the presented deviations. It also can be seen that the dis-
tribution of real errors, especially for the case of the test-
ing set, is les regular than the simulated error distributions 
presented in Fig. 4, a and Fig. 4, b.  

In this way, we can conclude that simulated de-
viation errors can differ a lot from real errors. Conse-
quently, this can affect the accuracy of estimated indi-
cators of gas turbine diagnosis reliability. 

 
4.5. Influence of different noise  

representation schemes on diagnosis  
reliability: first results 

 

With three described above schemes of noise rep-
resentation, three corresponding fault classifications 
have been formed for the analyzed power plant. 
Namely, three variations of the learning and validation 
sets were created. Each classification includes 9 
classes and each class is simulated by the gradual 
change of the corresponding fault parameter in the 
thermodynamic model. Four such classes are shown in 
Fig.5 in the space of three normalized deviations. The 
deviation errors correspond to scheme A.  

Multilayer perceptron, the most widely used net-
work, was chosen to recognize the faults. It was 
trained consequently with each variation of learning 

data. The probabilities of true diagnosis P


 and 
__

P  (see 
section 1) have been computed by applying this net-
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work to the corresponding variation of validation data. 
Preliminary calculations have shown that the 

distinguishability of fault classes can change by up to 

6% when real errors are replaced by simulated errors. 
Thus, the diagnostic performance estimated with simu-
lated noise can be inaccurate.  

 

 
a – Scheme A: sensor error simulation 

 
b – Scheme B: deviation error simulation 

 

 
c – Scheme C: real deviation errors (reference set) 

 

 
d – Scheme C: real deviation errors (testing set) 

 

Fig. 4. 2D plots for different schemes of deviation error representation (deviation designations Z2  
and Z3 correspond to Table 1) 

 

 
 

Fig. 5. 3D plot of fault classes in the space of normalized deviations (Scheme A) 



ISSN 1727-7337. АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2011, № 5 (82) 76 

The case was also investigated of learning data 
with reference set errors (see Fig.4c) and validation data 
with testing set errors (Fig.4d). Since real errors ob-
tained from the testing set are more dispersed, we ex-
pected some degradation of the power plant diag-
nosability. The degradation was found drastic: from 
P  = 90% - 94% in the previous cases to P  = 59%. It 
happened because the model of degraded engine deter-
mined on the reference set has lost its accuracy on the 
testing set. Such a problem seems to be very probable in 
real diagnosis and we should be careful to avoid or 
mitigate it. 

 

Conclusions  
 
Thus, possible errors in deviations of gas turbine 

monitored variables have been analyzed in this paper. 
The problem of deviation accuracy is important because 
no monitored variables themselves but their deviations 
are input parameters in diagnostic algorithms.  

A power plant for natural gas pumping has been 
chosen as a test case. It was presented in the present 
study by its nonlinear thermodynamic model and the 
data recorded under field conditions.  

Possible deviation errors have been investigated 
theoretically and graphically. All error sources were 
thoroughly examined and classified into four types. We 
succeeded in finding a single mathematical expression 
to relate the deviation with its typical errors. 

Three alternative schemes, two existing and one 
new, of deviation error representation in diagnostic 
algorithms have been realized. They were compared 
with the use of graphical means and probabilities of 
correct diagnosis. Preliminary results show that the 
existing schemes of error simulation do not always 
ensure the necessary accuracy of estimated engine diag-
nosability. The new scheme enhances the accuracy by 
including the noise component obtained from real data 
into the description of fault classes.  

Although the proposed scheme is more realistic, it 
cannot automatically replace existing noise simulation 
modes. This scheme is more complex for realization. 
Additionally, it needs both the thermodynamic model 
and extensive real data, two things rarely available to-
gether. In this way, the proposed scheme of deviation 
error representation can rather be recommended for a 
final precise estimation of gas turbine diagnosability.  

This paper can only be considered as a preliminary 
study. The investigations will be continued to better 
 

investigate this new scheme and to draw the final con-
clusion on its applicability in gas turbine diagnostics.  
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БІЛЬШ РЕАЛІСТИЧНЕ ПОДАННЯ ПОМИЛОК ВІДХИЛЕНЬ ВИМІРЮВАНОГО  

ПАРАМЕТРА В АЛГОРИТМ ДІАГНОСТИКИ ГТД 
І.І. Лобода 

Алгоритми локалізації дефектів проточної частини, засновані на теорії розпізнавання образів, є важли-
вим компонентом системи контролю ГТД. Ці алгоритми зазвичай залучають теоретичні розподіли випадко-
вих чисел для моделювання випадкових помилок (шуму) в описі класів дефектів. Рівень модельованого 
шуму визначається на основі відомої статистичної інформації про помилки різних датчиків проточної час-
тини. Однак, не самі виміри, а їх відхилення від нормальних значень є вхідними параметрами для діагности-
чних алгоритмів. Ці відхилення, розраховані для реальних даних, мають інші складові помилок в додаток до 
модельованої неточності вимірювань. Таким чином, модельовані і реальні помилки відхилень відрізняються 
амплітудою та розподілом. Отже, при такому моделюванні характеристики діагностичного алгоритму бу-
дуть оцінені не точно, і, тому, висновок про ефективність алгоритму може виявитися помилковим. У даній 
статті для того, щоб краще побачити особливості шуму, будуються та вивчаються графіки відхилень для 
реальних даних. Можливі помилки відхилень також ретельно аналізуються аналітично. Для того, щоб зро-
бити подання шуму більш реалістичним, пропонується виділити випадкові помилки з реальних відхилень і 
інтегрувати їх в опис дефектів. У висновку оцінюється вплив нового способу завдання шуму на достовір-
ність діагностування ГТД. 

Ключові слова: ГТД, діагностування проточної частини, відхилення вимірюваних параметрів, помил-
ки відхилень. 

 
БОЛЕЕ РЕАЛИСТИЧНОЕ ПРЕДСТАВЛЕНИЕ ОШИБОК ОТКЛОНЕНИЙ ИЗМЕРЯЕМЫХ 

ПАРАМЕТРОВ В АЛГОРИТМАХ ДИАГНОСТИКИ ГТД 
И.И. Лобода 

Алгоритмы локализации дефектов проточной части, основанные на теории распознавания образов, яв-
ляются важным компонентом системы контроля ГТД. Эти алгоритмы обычно привлекают теоретические 
распределения случайных чисел для моделирования случайных ошибок (шума) в описании классов дефек-
тов. Уровень моделируемого шума определяется на основе известной статистической информации об ошиб-
ках различных датчиков проточной части. Однако, не сами измерения, а их отклонения от нормальных зна-
чений являются входными параметрами для диагностических алгоритмов. Эти отклонеия, рассчитанные для 
реальных данных, имеют другие составляющие ошибок в дополнении к моделируемой неточности измере-
ний. Таким образом, моделируемые и реальные ошибки отклонений отличаюся амплитудой и распределени-
ем. Следовательно, при таком моделировании характеристики диагностического алгоритма будут оценены 
не точно, и, поэтому, заключение об эффективности алгоритма может оказаться ошибочным. В данной ста-
тье для того, чтобы лучше увидеть особенности шума, строятся и изучаются графики отклонений для реаль-
ных данных. Возможные ошибки отклонений также тщательно анализируются аналитически. Для того, что-
бы сделать представление шума более реалистичным, предлагается выделить случайные ошибки из реаль-
ных отклонений и интегрировать их в описание дефектов. В заключении оценивается влияние нового спосо-
ба задания шума на достоверность диагностирования ГТД. 

Ключевые слова: ГТД, диагностирование проточной части, отклонения измеряемых параметров, 
ошибки отклонений. 
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