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A MORE REALISTIC PRESENTATION OF MEASUREMENT DEVIATION
ERRORS IN GAS TURBINE DIAGNOSTIC ALGORITHMS

Gas path fault localization algorithms based on the pattern recognition theory are an important component of
gas turbine monitoring systems. To simulate random measurement errors (noise) in description of fault classes,
these algorithms usually involve theoretical random number distributions, like the Gaussian probability density
function. A level of the simulated noise is determined on the basis of known information on typical maximum er-
rors of different gas path sensors. However, not measurements themselves but their deviations from an engine
baseline are input parameters for diagnostic algorithms. These deviations computed for real data have other er-
ror components in addition to simulated measurement inaccuracy. In this way, simulated and real deviation er-
rors differ by an amplitude and distribution. Consequently, with such simulation, the performance of a diagnostic
algorithm is poorly estimated, and therefore, the conclusion on algorithm efficiency may be wrong. To under-
stand better noise peculiarities, plots of deviations of real measurements are tracked in the present paper. Addi-
tionally, possible deviation errors are surely analyzed analytically. To make noise presentation more realistic, it
is proposed to extract random errors from real deviations and to integrate these errors in fault description. Fi-

nally, the effect of the new noise representation mode on gas turbine diagnosis reliability is estimated.
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Introduction

Application of gas turbine health monitoring sys-
tems is a standard worldwide practice. In these systems,
diagnostic algorithms based on gas path measured vari-
ables (temperature, pressure, rotation speed, fuel con-
sumption, etc.) are considered as principle. Some meas-
ured variables are used to set an engine operation point
and are called operating conditions. The rest of meas-
ured gas path variables are available for diagnostic
analysis and are typically called monitored variables.

A total diagnostic process usually includes three
principal stages of fault detection, fault identification,
and prognostics [1]. They are preceded by an additional
stage of measurement data validation and computing

deviations. The deviation 8Y" is calculated for a moni-
tored variable Y as a relative discrepancy

(Y* -Y, ) /YO between a measured value Y and a

base-line value Y,. In contrast to the monitored vari-

ables strongly depending on engine operating mode, the
deviations, when properly computed, are almost free of
the influence of the operating conditions and can be
good indicators of engine gradual degradation or abrupt
faults. The present paper deals with fault identification
algorithms based on the pattern recognition theory. The
described deviations are input parameters to these algo-
rithms.

Monitoring systems’ effectiveness obviously de-
pends on accuracy of the diagnostic decisions made.

That is why, when a new algorithm is proposed, it is
usually tailored and subjected to verification. In the
corresponding investigations, operation of the proposed
algorithm as well as a whole diagnostic process is simu-
lated. To simulate gas path faults, a gas turbine model
computes the monitored variables corresponding to the
embedded faults.

The most of researchers also take into account ran-
dom errors in the monitored variables and operating
conditions applying the Gaussian distribution to that
end. Such noise simulation has the following limitations.
First, the level of simulated noise may differ from the
level of random measurement errors that are peculiar to
an analyzed gas turbine. Second, not monitored variables
themselves but their deviations are input parameters for
diagnostic algorithms, and, apart from measurement
errors, deviations’ errors include other uncertainty com-
ponents. Third, an error distribution in the deviations
based on real measurements is pretty irregular and differs
a lot from theoretical distributions.

For a long period of time we have analyzed quality
of recorded data and the deviation accuracy problem of
a gas turbine power plant for natural gas pumping [2].
Possible error sources were examined and some algo-
rithms were proposed to enhance the deviation quality.

The present paper focuses on more realistic noise
representation. The same power plant has been chosen
as a test case. Its nonlinear static model and field data
recorded at steady states were employed in the investi-
gations. To better understand types and sources of the
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deviation errors, the paper looks at deviation graphs
plotted for real measurements against power plant op-
eration time. Additionally, the process of computing the
deviations is analyzed analytically in order to clearly
determine all error components and their nature. As a
result of the analysis, it is proposed to draw a noise part
from the deviations and integrate it into the description
of simulated fault classes. Finally, such a novel mode to
describe gas turbine faults is comprehensively dis-
cussed.

1. Common approach to a gas path fault
recognition problem

For the purposes of diagnosis existing variety of
engine faults should be broken down into a limited
number of classes. The following hypothesis commonly
used in the pattern recognition theory is also accepted in
gas turbine diagnostics. It supposes that a system state D
can belong only to one of q classes

D,,D,,...D, €))
that are set beforehand. As a rule, each fault class corre-
sponds to one engine component.

As mentioned in the introduction, the deviations
can potentially be good indicators of engine faults. That
is why the deviations computed for m available moni-
tored variables Y, could form an appropriate space to

recognize the faults. An additional operation of nor-
malization Z; =3Y, / a,; can further enhance the space.

When a parameter a,; is a maximal random error of the
deviation variable 8Y; , maximal error amplitudes of all

normalized deviation variables Z:, i=1l,m will be

equal to one. Such normalization simplifies fault class
description and enhances diagnosis reliability. On the

N
basis of the above considerations, a vector Z~ that
unites elemental variables of the normalized deviations
is chosen to form a fault recognition space (diagnostic

5
space). One value of the vector Z* can be considered as
a pattern to be recognized.

There are two scenarios to describe the fault classi-

fication in the space Z' ; they can conditionally be
called as probabilistic and statistical. The Bayesian
approach exemplifies the first scenario [3]. It needs that
each fault class D; be described by its probability den-

sity function f(Z°/D ;) - The difficulty of this approach

is related with the density functions themselves because
it is a principal problem of mathematical statistics to
assess them. That is why the first scenario can be real-
ized only for a simplified fault classes.

In the second scenario the classes are given by

5
samples of patterns namely vectors Z' . In this way, a
whole fault classification is a union of pattern samples
of all classes. Apart from the simplification of a class
formation process, the replacement of the density func-
tions by pattern samples allows creating more complex
fault classes only on the basis of real data.

However, gas turbine faults are still often simu-
lated mathematically because of rare appearance of real
faults and high costs of physical fault simulation.
Among different mathematical models used to simulate
the faults, a so-called thermodynamic model can be
considered as principal. This static nonlinear one-
dimensional component-based model can be structurally
presented as

- - o
Y=F(Um®) 2)
It computes the monitored variables as a function
of steady state operating conditions (power set variables

and ambient conditions) denoted by a (nx1)-vector Un,

and engine health parameters ® = ®o+A® . Nominal

N
values ®o correspond to an engine baseline. Changes

Aé called fault parameters provide some shifting of
the performances of engine components (compressors,
combustor, turbines, etc.) that results in the correspond-
ing changes of monitored variables. Each fault class D;

is formed by growing values of its own vector Aéj.
Typically, all possible faults of one component are de-
scribed by two its fault parameters, namely, a flow pa-
rameter AA and an efficiency parameter An .

In this way, the fault parameters embedded into the
model allow simulating faults of variable severity for
different components.

The normalized deviations induced by the fault pa-

N
rameter vector A® can be written as

7 - Y}(Um,@O‘FA@)_Yi(Um,@O) i—

i

Lm. (3)
- o
Yvi (Um 5 @O )aYi

To take into consideration random deviation errors, a
noise component €, should be added, thus resulting in

Zi =Z;+Ez . i=lLm. (4)
As mentioned before, amplitudes of all variables

E,. are equal to one.

Zi

_ 22
The deviations (4) form a vector Z =Z+Ez,

which is a pattern to be recognized and an element to
construct the classification (1). During the generating
numerous patterns to represent the fault classes, a vari-
able fault severity is usually determined by the uniform
distribution and measurement errors are generated ac-
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cording to the Gaussian distribution. A totality ZI1 of
classification’s patterns is typically called a learning set
because it is applied to train or adjust the used recogni-
tion technique, for example, a neural network. In addi-
tion to the pattern observed and the fault classification
accepted beforehand, the recognition technique is an
integral part of a whole gas turbine diagnostic process.
Although the technique trained on the learning set
data is ready for application, one more set is required to
verify and validate it. The necessary set Zv, called a
validation set, is created in the same way as the set ZI.
The only difference is that other series of random num-
bers is generated to simulate fault severity and errors in
the deviations. The technique makes a diagnosis for

5
each pattern Z* of the set Zv. A nomenclature of
possible diagnoses d,,d,,...,d, corresponds to the ac-

cepted classification (1). The diagnosis d; may differ
from a known class D; due to pattern and classification
random errors as well as inherent errors in the tech-
nique. Comparing the diagnoses and the classes for a
great number of the validation set’s patterns, we can
Pd, =P(d,/D;) and

compose a so-called confusion matrix P. Its diagonal

compute diagnosis probabilities

>
elements P, form a vector P of true diagnosis prob-

abilities that are indices of classes’ distinguishability. A

mean number of these elements — scalar P — deter-
mines total engine diagnosability. The described prob-
abilities not only characterize the chosen recognition
techniques, but they also are performances of the engine
fault classification and a whole diagnostic process.

When the technique is adequate and well tailored,
the diagnostic performance (diagnosis reliability) is
mainly determined by the analyzed pattern and the clas-
sification. Since the deviation noise is a part of the pat-
tern and classification, accuracy of the performance
strongly depends on how realistic is noise simulation.

2. Deviations based on real data

In an effort to better understand peculiarities of the
deviation noise, let us look at the deviations computed
on the basis of real data. These data were recorded in
field conditions for the gas turbine chosen as a test case,
namely a power plant for natural gas pumping. It is an
aeroderivative two shaft engine with a power turbine.

Figure 1 firstly presented in [4] helps to illustrate
behavior of the deviation variable 8Y". This deviation
was computed for an exhaust gas temperature (EGT)
and is given here against power plant operation time t.

5
With the values Y~ and U] measured each hour, the
deviations were computed according to an expression
A -
. Y =Yo(U,
sy’ =X —YolUn) (5)
Yo(U,)

In this figure a gray color curve means the deviation
itself Y~ while the systematic influence of compressor
fouling 8Y corresponds to a bold line with a maximum
change designated as §, . In this way, a difference

E,, =8Y -8Y (6)
can be interpreted as a deviation error.

*
oY [

Fooo 7500 g000 8500

Qo000

o500 10000 10500 11000 ¢

Fig. 1. Deviations plotted in % against the time of operation (hours)

A baseline functions Yo(Un) is of a polynomial

type. A vector Gln of functions’ arguments comprises
variables of ambient air pressure p, engine inlet tem-
perature T;,, power turbine rotation speed npr and fuel
consumption Gy Unknown polynomial coefficients

were estimated by the least square method with healthy
engine data (reference set).

The baseline functions were determined and the
deviations were computed for all 6 gas path variables
available for monitoring in the analyzed power plant.
Table 1 contains the list of these variables with designa-
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tions of the corresponding deviations and normalization
parameters a. .

Table 1
Monitored variables

Designations

No Variable’s name 4y | Relative |Normalized

deviations | deviations

1 | Compressor temperature T ¢ 0,00525| dTc Z1
2 | Exhaust gas temperature T gpr 0,00453]  dTt 72
3 | Power turbine temperature T 1p1[0,00502] dTpt Z3
4 | Gas generator rotation speed nyp|0,00347| dNhp Z4
5 | Compressor pressure p*c 0,00869| dPc z5
6 | Exhaust gas pressure D Her 0,00775|  dPt 76

The EGT deviation plotted in Fig.1 is a result of
great efforts to enhance deviation quality. For instance,
some cases of sensors’ abnormal functioning were de-
tected and the corresponding data were excluded from
the analysis. The baseline functions were also optimized
by choosing the best function type, arguments, and
reference set to determine the function.

As a result of the optimization, the deviations have
become good indices of engine deterioration. In Fig.1 we
can clearly see two periods of EGT increase that is a
result of compressor fouling, which is practically perma-
nent and the most intensive deterioration mechanism of
stationary gas turbines [5]. The periods are divided by a
compressor washing in the time point t = 7970hours.

Figure 1 also helps us to quantify quality of the
deviations and specify deviation errors. The deviation

quality can be expressed by a ratio E% (signal-to-

noise ratio) of the maximum systematic change §, to a
spread S, of deviation fluctuations.

According to a frequency and scatter, the fluctua-
tions may be conditionally divided into three groups: 1)
high frequency noise that is observed in every time
point and has a scatter 3., <0,3%; 2) slower fluctuations
with the period of 30-300 hours and a scatter 5, <1,5%;
3) single spikes with a scatter &, >1,5%. Since the spikes
have the largest scatter, they can nearly always be de-
tected, identified and excluded from the analyzed data.
Generally, they are results of sensor malfunctions. To the
contrary, the fluctuations §,, resulted from permanent
measurement noise can not be removed. Being small,
these fluctuations do not however considerably affect
diagnosis accuracy. A main obstacle in the way to a cor-
rect diagnosis is related with the fluctuations §_, . On the
one hand, their effect is sufficiently great; on the other
hand, it is often difficult to identify their origin. That is
why these fluctuations can be mistaken for the effects of
engine deterioration resulting in a misdiagnosis.

In addition to the graphical analysis conducted
above, let us theoretically analyze possible causes and

sources of the deviation errors that can take place in
practice. This will help to understand their behavior and
to take them into account with higher accuracy.

3. Theoretical analysis of possible errors
in real deviations

This analysis takes into consideration our previous
studies on deviation accuracy [4,6] and is performed
below on the basis of expression (5) used to compute the
deviations in real conditions. Although the expression
looks to be simple, the analysis will not be so trivial.

3.1. Error types

For a monitored variable Y, expression (5) can be
rewritten as

*

Y = — 1L @)
Yo(U,,)
This equation shows that inaccuracy of the devia-
tion is completely determined by errors in a term

Y*/ Yo(U.,). It will be shown below that these errors
can be divided into four types. One type is connected

with a measured value Y" and the other three types are

A -
related to a function Yo (U ).

The measurement Y" differs from a true value Y
by an error E, called in this paper as a Type I error. In

5
its turn, the true value depends on a vector U of real
operating conditions and on engine health conditions

5
given by the vector A® . As a consequence, the value

Y" can be determined as

Y =Y(U,A®)+E,(U,AQ). ®)
The error E, is defined here as a function because,

in general, measurement errors may depend on the value

- -
Y and, consequently, on the variables U and A® .
One more obvious cause of the deviation inaccu-
racy is related with measurement errors in operating

5
conditions presented in equation (7) by the vector U’ .

N
Given a vector of measurement errors Eum, which
presents Type II errors, the measured operating condi-
tions are written as

—

U:‘ = Um+ EUm . (9)

The next error type (Type III) is also related to en-
gine operating conditions however it is not so evident.
The point is that not all real operating conditions de-
nominated in the present paper by a [(n+k)*x1] — vector
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6 can be included as arguments of the baseline func-
tion. Some variables of real operating conditions are not
always measured or recorded, for example, inlet air
humidity, air bleeding and bypass valves’ positions, and
engine box temperature. Let us unite all these additional

5
variables in a (kx1)-vector Ey. Since such variables
exert influence upon a real engine and its measured
variable Y~ but are not taken into consideration in the

=k

baseline function \?0 (Um) , the corresponding deviation

errors take place. A similar negative effect can occur if
sensor systematic error changes in time.

Given that U=10U, U EU, the vector Up can be

given by Un = U\Eu and the equation (9) is converted
to a form

— % —

U, =U\Ey +Eyp - (10)

Apart from the described errors related to the argu-
ments of the function Yo(U’,), the function has a proper
error Ey; (Type IV error). It can result from such factors

as a systematic error in measurements of the variable Y,
inadequate function type, improper algorithm for estimat-
ing function’s coefficient, errors in the reference set,
limited volume of the set data, and influence of engine
deterioration on these data. Given Ey; and a true func-

tion Y, the function estimation Yo can be written as
Lok = =
YO(Um)=YO(Um)+EY0(Um) . (11)
3.2. Deviation formula

Let us now substitute equations (8), (10), and (11) into

expression (7). As aresult, the deviation Y is written as

1

. Y(U,A@)+EY(Uj;—EUm+EU,A®)_1 (12)

Y, (U\Eu+Eun)+Ey, (Uy,)

A dependency E, (U - EUm"‘ Eu,Aé) in this ex-
pression can be simplified because of the following
reasons:

a) E, <<Y,

—

b) [Euml||<< U],

b

¢) The influence of Ey and A® on Y and, conse-
quently, on E, is significantly smaller then the influ-

5
4
enceof U _ .

Taking into account the considerations made, we
arrive to a final expression for the deviation

. Y(U,A®)+E,(U,)

% ~1. (13)

-> > - >
Yo(U\Eu+Eum)+Ey (U,,)
This expression includes four error types intro-

- -
duced above, namely E,,Eum, Eu, and Eyo - Let us
now analyze how each error can influence on inaccu-

racy of the deviation 8Y".

3.3. Influence of different error types

The influence of different error sources on the de-
viations are analyzed in the sequel under the following
assumptions commonly applied in gas turbine diagnos-
tics. First, the same sensors were employed to measure

currently analyzed values Y~ and U as well as the

reference set data. Second, gross errors (e.g. spikes)
have been filtered out. Third, a systematic error and

5
amplitude of random errors in Y and U, do not de-
pend on engine operating time.

Type I error. Since the sensor performance is invari-
able, every systematic change of the error E, will be

accompanied by the same change in E . As a conse-

quence, accuracy of the deviation 8Y  will not be af-
fected by the systematic component of E, . As to the

random component, it is usually given by the Gaussian
distribution. It is also believed that random errors of dif-
ferent variables Y are independent and are described by
the multidimensional Gaussian distribution. That is why,

the corresponding errors in the deviations 8Y~ of these
variables can also be described by this distribution.

Type II errors. Errors Eum can be analyzed in the
same way as the Type I errors, separately for systematic
and random components. Obviously, the objective of a
function determination method (e.g. least square
method) is to minimize the distance between the refer-
ence set data and function outputs. That is why, a base-
line function will correctly describe reference data re-
gardless of the systematic errors in function arguments

5

(systematic component of the error Eum ). Since the

systematic error component is the same in the reference
-

set and in a currently measured argument vector U_, a

m °

A -
function output Yo(U_) will be adequate to a measured
value Y . In this way, the system component of the er-

5
rors Eum cannot influence a lot the deviation SY" .

As to the random component, it can be described
by the multidimensional Gaussian distribution, as in the
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case of the monitored variables Y. Because every

5
* .
change of the arguments U has an influence on base-

line values of all monitored variables, their baseline

values SA(O and, consequently, deviations §Y" may have
correlation. Thus, independent random errors of meas-
ured operating conditions can induce correlated devia-
tion errors that cannot be described by the multidimen-
sional Gaussian distribution.

It is very likely that the noise with a scatter ., ob-
served in Fig.1 results from a random component of the
errors of Type I and Type II.

Type III error. Presence of such an error has been
confirmed after analyzing all other error types. This
error occurs because the additional operating conditions

5
Eu do not change baseline function but exert influence
on a real engine and, accordingly, on all variables Y.

5
For this reason, any change of Ey can induce synchro-

nous errors of the deviations 8Y " of all monitored vari-
ables. It is very likely that most fluctuations with the
scatter 8., (see Fig.1) origin from the Type III errors.
Type IV error. The issue of the baseline function non-
adequacy {error Ey (U’) } is a particular case of a well
studied mathematical problem of the function estimation
with empirical data [7]. This error varies in time along with

5
changes in the operating conditions U’ producing pertur-

bations in the deviation variable 8Y" . These perturbation
can be both independent and correlated depending on
particular causes of the error Ey . Although the baseline

function adequacy is a challenge, the error can be reduced
to an acceptable level by applying a proper function type
and using a representative reference set.

A deviation plot in Fig.1 is a result of multiple at-
tempts to enhance deviation quality. The achieved devia-
tion accuracy is not inferior to the level known from the
literature and is sufficient for reliable monitoring of the
power plant under analysis. Thus, we can conclude that
Fig. 1 gives an example of deviation errors expected in a
real situation. Therefore, to obtain realistic results of gas
turbine diagnosis, simulated noise should be as close as
possible to such real errors. This is verified below by com-
paring different schemes to represent deviation errors.

4. Noise representation schemes
4.1. Real error extraction

To extract an error component from the deviations

based on real data, a model Y(Um,t) of an degraded

power plant has been firstly determined as shown in

[4, 6]. In addition to the operating conditions Gln, the
monitored variable Y depends in this model on engine
operation time after the last washing t . Model’s coeffi-
cient were computed by the least square method with
the reference set that includes the first 2500 operating

points presented in Fig. 1. A baseline model Y,(Un)
was then simply determined by putting t equal to zero.

With the described model and equation (6), a rela-
tive deviation error Eg, is written as

g Y -Y(Un) Y(UnD-Y,(Un) _

3Y

Y, (Un) Y, (Un)

. I A—
_Y YgUln,t). (14)
Y, (Un)

The errors Eg, of all monitored variables were
computed for the 2500 points of the reference set as
well as for 1400 subsequent operating points of an addi-
tional sample called a testing set. Plots of Fig. 2 illus-
trate the relative errors E;, of the reference set. With
these errors the normalization parameters were esti-
mated for each monitored variable according to an ex-
pression a, =30, where o denotes a standard devia-

tion of the variable Ej, . The resulting values a, are

given in Table 1.

dPe

| |
1500 2000 00
0.01 : : :

dPt
=1

.01 i i i i
0 500 1000 1500 2000 2500 3000
t

Fig. 2. Relative errors computed
for the reference set
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Three error representation schemes are realized
and examined below. Since a diagnostic space is

formed by the normalized deviations Z* [see equation
(4)], the corresponding normalized errors E, are con-

sidered in all schemes. These errors, both real and
simulated, were computed with the same normalization
parameters of Table 1.

4.2. Scheme A: sensor error simulation

This scheme is the most widely applied in gas tur-
bine fault recognition algorithms. The errors of each
measured quantity, monitored variable Y or operating
condition U, are usually given by the normal distribution.
To simulate these errors (errors of Type I and Type II),
we used the standard deviations ¢ of sensor uncertainties
given in Table 2. These parameters were chosen in our
previous work [8] on the basis of multiple literature
sources. The influence of errors of the operating condi-
tions on the monitored variables was estimated with the
thermodynamic model described in section 1.

Table 2

Measurements uncertainties (c,%)

pPH | Tn|ner | Gr | T
0,03 02(01]05]0,2

Thet|T'er| NHe | Pc

0,25] 0,2

P'HPT

0,05/02 |03

Figures 3 and 4, a illustrate the considered schemes.
It is clearly seen in Fig.4a that the presented deviation
errors (deviations of exhaust gas temperature and power
turbine temperature) have correlation. It is also visible
that the error span considerably exceeds the interval
(-1,0; 1,0), i.e. the deviation errors induced by the simu-
lated sensor noise are more dispersed than the real er-
rors computed for the reference set data.

Fig. 3. 3D plot of the normalized
deviation errors according to Scheme A
(deviation designations Z5, Z2 and Z3
correspond to Table 1)

4.3. Scheme B: direct simulation
of the deviation errors

This scheme was applied to simulate fault classes
in our previous works (see, for instance, [9]). The
deviation errors are given by the multidimensional
normal distribution. The same standard deviations that
were obtained for real noise are chosen. This allows
exact adjustment of simulated errors to real ones.

This scheme is illustrated by Fig.4b. As it was
expected, practically all simulated normalized errors
are distributed inside the intervals (-1,0; 1,0) and no
correlation is observed. The latter can be considered as a
disadvantage because the correlation produced by Type
II errors and expected in real deviations is absent.

4.4. Scheme C: errors of real deviations

This scheme is proposed and it means the integra-
tion of the normalized deviation errors computed with
real data in the description of simulated faults. The
scheme was realized separately for the cases of the refer-
ence and testing sets. The corresponding deviation errors
are illustrated by Fig. 4, ¢ and Fig. 4, d. As expected, the
errors computed for the reference set (Fig. 4,c) are
mostly localized inside the intervals (—1,0; 1,0) while the
errors of the training set have significantly wider disper-
sion. Both figures show visible error correlation between
the presented deviations. It also can be seen that the dis-
tribution of real errors, especially for the case of the test-
ing set, is les regular than the simulated error distributions
presented in Fig. 4, a and Fig. 4, b.

In this way, we can conclude that simulated de-
viation errors can differ a lot from real errors. Conse-
quently, this can affect the accuracy of estimated indi-
cators of gas turbine diagnosis reliability.

4.5. Influence of different noise
representation schemes on diagnosis
reliability: first results

With three described above schemes of noise rep-
resentation, three corresponding fault classifications
have been formed for the analyzed power plant.
Namely, three variations of the learning and validation
sets were created. Each classification includes 9
classes and each class is simulated by the gradual
change of the corresponding fault parameter in the
thermodynamic model. Four such classes are shown in
Fig.5 in the space of three normalized deviations. The
deviation errors correspond to scheme A.

Multilayer perceptron, the most widely used net-
work, was chosen to recognize the faults. It was
trained consequently with each variation of learning

data. The probabilities of true diagnosis P and P (see
section 1) have been computed by applying this net-
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work to the corresponding variation of validation data. 6% when real errors are replaced by simulated errors.
Preliminary calculations have shown that the Thus, the diagnostic performance estimated with simu-
distinguishability of fault classes can change by up to lated noise can be inaccurate.

15,

¢ — Scheme C: real deviation errors (reference set) d — Scheme C: real deviation errors (testing set)

Fig. 4. 2D plots for different schemes of deviation error representation (deviation designations Z2
and Z3 correspond to Table 1)
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Fig. 5. 3D plot of fault classes in the space of normalized deviations (Scheme A)
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The case was also investigated of learning data
with reference set errors (see Fig.4c) and validation data
with testing set errors (Fig.4d). Since real errors ob-
tained from the testing set are more dispersed, we ex-
pected some degradation of the power plant diag-
nosability. The degradation was found drastic: from
P =90% - 94% in the previous cases to P = 59%. It
happened because the model of degraded engine deter-
mined on the reference set has lost its accuracy on the
testing set. Such a problem seems to be very probable in
real diagnosis and we should be careful to avoid or
mitigate it.

Conclusions

Thus, possible errors in deviations of gas turbine
monitored variables have been analyzed in this paper.
The problem of deviation accuracy is important because
no monitored variables themselves but their deviations
are input parameters in diagnostic algorithms.

A power plant for natural gas pumping has been
chosen as a test case. It was presented in the present
study by its nonlinear thermodynamic model and the
data recorded under field conditions.

Possible deviation errors have been investigated
theoretically and graphically. All error sources were
thoroughly examined and classified into four types. We
succeeded in finding a single mathematical expression
to relate the deviation with its typical errors.

Three alternative schemes, two existing and one
new, of deviation error representation in diagnostic
algorithms have been realized. They were compared
with the use of graphical means and probabilities of
correct diagnosis. Preliminary results show that the
existing schemes of error simulation do not always
ensure the necessary accuracy of estimated engine diag-
nosability. The new scheme enhances the accuracy by
including the noise component obtained from real data
into the description of fault classes.

Although the proposed scheme is more realistic, it
cannot automatically replace existing noise simulation
modes. This scheme is more complex for realization.
Additionally, it needs both the thermodynamic model
and extensive real data, two things rarely available to-
gether. In this way, the proposed scheme of deviation
error representation can rather be recommended for a
final precise estimation of gas turbine diagnosability.

This paper can only be considered as a preliminary
study. The investigations will be continued to better

investigate this new scheme and to draw the final con-
clusion on its applicability in gas turbine diagnostics.
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BLJIbII PEAJIICTUYHE ITIOJAHHSA NIOMUWJIOK BIIXWJIEHb BUMIPIOBAHOI'O
IHAPAMETPA B AJITOPUTM JIATHOCTUKU I'TA

LI JIobooa

AJNTopuTMH JTOKasTizamii AeeKTiB MPOTOYHOI YaCTHHU, 3aCHOBAHI Ha TeOpii po3mizHaBaHHS 00pa3iB, € BaXIIU-
BHUM KOMIOHEHTOM cucTeMu KoHTtpoiro ['T/]. Lli anropurmu 3a3BHyaii 3aiyqatoTh TEOPETHYHI PO3IIOJUIN BUIIA KO-
BUX YHCEJ JUIi MOJENIOBaHHS BUIAJKOBUX IOMWJIOK (LIyMy) B ommci KiaciB jaedekrTiB. PiBeHb MOIETbOBaHOTO
LIyMY BU3HAYa€THCS HA OCHOBI BiJIOMOi CTaTHCTHYHOI iH(OpMalii Mpo MOMUIKK Pi3HUX JATUYHKIB IPOTOYHOI Yac-
tuHd. OJIHAK, HEe caMi BUMIpH, a IX BIIXMJICHHS BiJl HOpMaJbHUX 3HAUCHb € BXIJHUMH MapaMeTpaMu JUIs JiarHOCTH-
YHUX aTOpUTMiB. Lli BimXuiieHHs, po3paxoBaHi ISl peaibHUX JaHUX, MAIOTh 1HII CKJIaJ0B1 IIOMUIJIOK B JIOIATOK 10
MO/IETTbOBaHOI HETOYHOCTI BUMIpIOBaHb. TakiM YHHOM, MOJIETIbOBAHI 1 peanbHi TOMHJIKH BiJIXWJIEHb BiJPi3HSIOTHCS
aMIUTITYZI010 Ta po3noaiioMm. OTxe, PH TAKOMY MOJIEIIOBAHHI XapaKTEPUCTUKU AiarHOCTHYHOTO aNropuTMy Oy-
JIyTh OLIIHEHI HE TOYHO, i, TOMY, BUCHOBOK NP0 €()eKTHBHICTh aJITOPUTMY MOXKE BUSIBUTUCS TIOMIJIKOBHM. Y JaHii
CTaTTi Ui TOrO, 00 Kpamie ModavynuT OCOOIMBOCTI IIyMy, OYAYIOTHCS Ta BUBYAIOThCS rpadikd BiAXHUICHb IS
peaybHUX JaHUX. MOXIIMBI TIOMUIIKY BiIXWJIEHb TAKOXK PETEIbHO aHANI3YIOThCs aHANiTHYHO. J{J1s Toro, mob 3po-
OWTH TOIaHHS IIYMY OUTBII peasliCTUYHUM, MPOIOHYETHCS BUALIUTH BHIIAJAKOBI MOMUIIKU 3 pealbHAX BiAXHJICHB 1
IHTErpyBaTH iX B omuc JedeKkTiB. ¥ BUCHOBKY OIIHIOETHCS BIUIMB HOBOTO CIIOCOOY 3aBJaHHS IIyMY Ha JOCTOBIip-
HicTh miarHoctyBanus ['T/I.

Karwuosi cioBa: I'T]l, niarHocTyBaHHs POTOYHOI YACTUHHM, BiIXMICHHS BUMipIOBaHUX MapaMeTpiB, MOMHJI-
KU BIAXWUJICHB.

BOJIEE PEAJIMCTUYHOE ITPEJCTABJIEHUE OIIWBOK OTKJIOHEHUI U3MEPSIEMbIX
IHAPAMETPOB B AVI'OPUTMAX ITMATHOCTUKHU I'T

H.u. jlobooa

AJTOPUTMBI JIOKaIH3aLUH 1e(EeKTOB IPOTOYHON YacTH, OCHOBaHHBIE Ha TEOPHH paclio3HaBaHMs 00pa30B, SIB-
JISIFOTCSL BAYKHBIM KOMITOHEHTOM cucteMbl KoHTpoust ['T/I. DTu anropuTMbl OOBIYHO IMPUBIIEKAIOT TEOPETUUECKUE
pacripeseneHus CiryqaiiHbIX YUCeN ISl MOJETUPOBAHUS CIyYaiHBIX OMIMOOK (IIyMa) B ONMCAaHHH KJIACCOB Jedek-
TOB. YPOBEHb MOJEIUPYEMOro LTyMa ONpPeessieTcs] Ha OCHOBE H3BECTHOM CTaTUCTUYECKON MH(pOpPMAaLUK 00 OIno-
Kax pa3jMYHBIX JATYUKOB NPOTOYHOH YacTH. OHAKO, HE CAaMU U3MEPEHUs], a UX OTKJIOHEHUS OT HOPMaJIbHBIX 3Ha-
YEHUH SIBJISIOTCS] BXOAHBIMU MapaMeTpaMH sl JUarHOCTHYECKHUX alrOPUTMOB. DTH OTKIIOHEHS, PACCYMTAHHBIE JIJIS
peabHBIX JaHHBIX, HIMEIOT JIPYTHe COCTABIISIONINE OUIMOOK B JIOMONHEHUH K MOJICIIMPYEMOW HETOYHOCTH H3Mepe-
Huid. Takum 00pa3om, MoAENUpYEMbIE U PeaIbHbIE OIIMOKN OTKIIOHEHHI OTIIMYAIOCS aMIUTUTYIO0H U pacripeesieH -
eM. CieaoBaTeNnbHO, MPU TAKOM MOJICITMPOBAHUU XapaKTEPUCTHKU JUATHOCTHYECKOrO aJIrOpUTMa OYIYyT OILIEHEHBI
HE TOYHO, U, TIO3TOMY, 3aKitoueHne 00 3(pQeKTHBHOCTH aNropuTMa MOXKET OKa3aThcsl OIIMOOYHBIM. B naHHO# cra-
ThE JUISl TOTO, YTOOBI JIy4Ille YBUIETh OCOOCHHOCTH LITyMa, CTPOSITCS U M3Y4alOTCs TpaduKy OTKIOHEHHUH IS peajb-
HBIX JJAaHHBIX. BO3MOKHBIE OIIMOKN OTKIIOHEHHUH Takke TIIATEIbHO aHATM3UPYIOTCS aHainuTHdecku. J[is toro, urto-
ObI cenaTth MPEACTaBIIeHUE IIyMa 0oJiee PeaMCTUYHBIM, MPEJIaraeTcsl BBIIEIUTh Cly4aifHble OLTHMOKH W3 pealb-
HBIX OTKJIOHEHHMH U MHTETPUPOBAThH UX B ONMUCaHUE Ae(eKTOB. B 3aKiItoueHNN OLIEHNBAETCS BIUSIHUE HOBOT'O CIIOCO-
0a 3a1aHKs IIyMa Ha IOCTOBEPHOCTh auarHoctupoBanust ['T/1.

Karwuessie caoBa: I'TJ/[, nuarHocTHpOBaHHE NPOTOYHOW YacTH, OTKIOHEHUsS HM3MEPSEMbIX IapaMeTpOB,
OLIMOKH OTKJIOHEHHH.
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