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RADIAL BASIS FUNCTIONS FOR GAS TURBINE FAULT RECOGNITION

Artificial neural networks present a fast growing computing technique for many fields of applications
including gas turbine diagnostics. This paper examines the network based on radial basis functions
(radial basis network) and applied to recognise gas path faults. To assess diagnosis efficiency of the
radial basis network (RBNs), it is compared with a multilayer perceptron. During the comparison, input
data are the same for the both networks; however comparative calculations are repeated for different
variations of these data allowing to draw more general conclusions on the RBN applicability. The
objectives are to tune the networks, to compare them, and to assess efficiency of the RBN on basis of a
probabilistic criterion of correct fault recognition. The comparison results show that the RBN is a

perspective technique for gas turbine diagnosis.
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Introduction

In order to improve gas turbine reliability and
reduce maintenance costs, many advanced condition
monitoring and diagnosis systems have been developed
recent decades. A diagnostic process in such a system
can be divided in some stages such as feature extraction
from raw input data, fault detection, fault identification,
and prognosis. Final efficiency of diagnostic decisions
will depend on quality of each stage.

In the monitoring system, fault identification
algorithms based on the gas path analysis may be
considered as important and sophisticated. These
algorithms also use pattern recognition techniques,
mostly different artificial neural networks [1 — 3].

Among the networks applied, a multilayer
perceptron has emerged as the most widely used in
gas turbine diagnostics [3]. Our study [4] also shows
that the perceptron’s fault recognition is accurate
enough. However, other network types begin to
compete with the multilayer perceptron, in particular,
a network with radial basis functions or radial basis
network (RBN) [5].

In the present paper, the application of the RBNs
to gas turbine fault recognition is examined. To better
assess efficiency of this network, it is compared with the
perceptron and the focus is on recognition accuracy.
Comparative calculations were carried out in
MATLAB®. A gas turbine driver for a pipeline gas
pumping unit has been chosen as a test case to perform
the comparison. A mathematical model of this engine is
employed for fault simulating. In order to generalize the
conclusions on the network efficiency, compared
techniques are verified under different engine operation
and diagnosis conditions.

1. Approach used

In the present paper the faults of the chosen engine
are simulated mathematically because of rare
appearance of real faults and high costs of physical fault

- > >
simulation. The model Y(U,®) of the gas turbine

driver computes the monitored gas path variables Y as a
function of a vector of control variables and ambient

- -
conditions U and a vector of fault parameters ® . The
model is called a thermodynamic model and can be
classified as static, non-linear, and one-dimensional.

N
The vector U feeds the engine stationary operating
conditions into the model. While the vector
- -

N
®=00+00 helps to take into account an actual

engine health condition. The nominal values of

N
correction factors ®¢ correspond to an engine baseline.

BN
Changes 8® entered into the model provide some
shifting of the engine component performances in given
directions and the corresponding deviations of
monitored variables, thus simulating different faults of
variable severity.

In the process of fault simulation, deviations Z?
for each monitored variable Y; are generated. Every
deviation is composed of two components: a systematic

component Z; and a random component ¢g;, i.e.

ZT =Z, +¢; . The systematic component is induced by

the faults implanted in the model, while the component
g; takes into account possible errors in the deviations.
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The deviation Z? is normalized so that the random
variable ¢; is limited by the bounds "-1" and "1" for all

monitored variables. The deviations of these variables

form a vector 5 7 +;, which is a pattern to be

recognized when the diagnosis is performed. A lot of
-

patterns Z" are generated to build the classification

described below.

Existent  variety of gradual degradation
mechanisms and abrupt faults is too great to distinguish
all of them. Furthermore, maintenance personnel do not
need such a detailed diagnosis. That is why, the faults
should be united into a limited number of classes. The
used fault classification is formed on the hypothesis that
an actual engine condition pertains to only one of preset
q classes Dy, D,,...Dg. In the space of normalized

-

deviations Z, each fault class is represented
statistically by its own sample of patterns generated by
the model. In order to reach satisfactory numerical
accuracy, a sample of the class usually comprises 700
patterns or more. During the pattern generation, a fault
severity is given by the uniform distribution of the fault
parameter changes 8® within the interval (0, -5%)
while the errors & are generated according to the
Gaussian distribution. Two types of fault classes are
simulated. A single fault class is formed by changes of
only one fault parameter and a multiple fault class
implies independent variation of two parameters of the
same engine component. From classes of each type, a
separate classification is composed.

A nomenclature of possible diagnosis d, ,dz,...,dq

with  the accepted classification
To make a diagnosis d, the chosen

corresponds
D;,Dy.....Dy.
network, perceptron or RBN, computes a closeness
-
measure between a current deviation vector Z
(pattern) and each item D; of the classification. The
closest class is recognized as a current diagnosis. Before
making diagnostic decisions, the network is trained on
the fault classification patterns. That’s why a totality of
classification patterns is called a training set.

The multilayer perceptron is a feed forward
network trained with the back propagation algorithm.
Perceptron foundations can be found in any textbook on
neural networks or in Matlab Help [7] and only a
perceptron structure is described below. The used
network presented in Fig.1 has one hidden layer and
sigmoid activation functions. The number of the
network inputs is equal to a number m of monitored

-
variables (dimensionality of the patterns z" ). The
quantity of the outputs equals to a number q of analyzed
classes. Each output gives a closeness measure between

BN
an actual input pattern Z" and the corresponding class;
the maximal output indicates a current diagnosis. The
optimal hidden layer’s size of 12 and the best training
algorithm, resilient backpropagation, were determined
previously in [6].

Input

Residuals
Classes

Hidden
Nodes

Fig. 1. Perceptron structure

The other analyzed technique, radial basis
network, may require more neurons than the perceptron;
however it can often be trained within the same time
that is necessary for the perceptron. It is a favourable
factor that the training set comprises thousands of
patterns because the RBFs work better when many
training patterns are available [7]. Note that a RBF’s
neuron differs from a perceptron neuron. Here the input
n to a radial basis transfer function is a vector distance

- -
between a weight vector W and an input vector P,

multiplied by a bias b i.e. n= b. A neuron

- o
W-P

2
output computed by the transfer function is a =e"

The function has a maximum of 1 when the distance is

BN
0. The output decreases when the distance between W

and ; increases. The bias b allows adjusting the
neuron sensitivity.

Figure 2 helps to illustrate RBFs’ operation. The
presented radial basis network includes two layers: a
hidden radial basis layer (S' nodes) and an output linear

N
layer (S* nodes). The input vector P and an input

weight matrix /W) produce a distance vector having S!
elements. The bias vector b, scales these distances and a
MATLAB transfer function radbas converts the scaled
-
distances into an output vector al of the hidden layer.
The output layer operates like a usual perceptron output
-
layer and produces an output vector a’? of § elements.
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Fig. 2. Structure of the radial basis network

Although the networks, perceptron and RBN,
adjusted to the data of the training set, are ready for gas
turbine fault recognition, they must undergo statistical
testing. To that end an additional set — called a
validation set — is formed just like the training set. The
only distinction is that different seeds are used to
initialize the random number generators. During the
testing, every pattern of the validation set enters into the
network and the latter makes the corresponding
diagnosis. As the pattern’ class is known beforehand, it
can be compared with the diagnosis and we can
ascertain whether the diagnosis was correct. That is why
for each class D, a probability P, of a correct

diagnosis can be calculated. It determines the
distinguishability of this class against the background of
the other classes. The probabilities calculated for all

BN
classes make up a vector P . Mean value of these

probabilities denoted as P, allows determining the total
engine’s diagnosability and is employed as a criterion
for tuning and comparison of the employed networks.

In order to compare two chosen networks, they
were embedded into a special testing procedure
designed in MATLAB. In this procedure the both
networks have the same input data, namely, training and

validation sets. Output data, mean probabilities }_)t and
I_)V of a correct diagnosis, are computed for the training

and validation sets correspondingly. Quantity I_)V is a
principal criterion to choose the best network, while
quantity I_)V helps to control so-called network

overtraining.  Although in every comparative
calculation, input data for the perceptron and RBN are
the same, the calculations with the testing procedure are
repeated for different comparison conditions (network
parameters, diagnostic conditions, and engine operating
conditions). This is necessary to draw sound
conclusions on efficiency of the compared techniques.
These varying conditions are described in the next
section.

2. Comparison conditions

All calculations are executed with constant
structure and accuracy of measured gas path variables,
which correspond to a gas turbine regular measurement
system. The other computational conditions described
below are varying.

A. Seed number. The comparative calculations are
repeated for two different seeds in order to exclude the
influence of a particular distribution of random
numbers.

B. Number of nodes in the hidden layer. The above
calculations are repeated for two different numbers of
nodes in the hidden layer because it is difficult to
determine an exact node number.

C. Classification parameters. Two classification
variations are considered. The first incorporates nine
single classes. The second includes four multiple classes
corresponding to the principle modules (compressor,
combustion chamber, compressor turbine, free turbine).
It is not known beforehand which classification
variation will be more adequate in real conditions. That
is why, the previously described calculations are
performed for the both variations.

D. Gas turbine operational conditions: Two gas
turbine operating points are analyzed. They are close to
engine maximal and idle regimes and are set by
different high pressure rotor speeds under standard
ambient conditions. All the above calculations are
carried out for each operating point.

As can be seen, four factors are varied
independently and each factor has two values.
Consequently, a total number of comparative

calculations equals 16. The following section describes
their results.

3. Comparison results

Before performing principal calculations described
above, some preliminary studies have been performed.
As a result, optimal parameters of the fault
classifications and networks have been found. In
particular, the numbers of 700 simulated patterns for
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each single fault class and 1000 patterns for each
multiple fault class were established. Basic and enlarged
numbers of hidden layer nodes were chosen as well: 12
and 24 for the perceptron, and 27 and 90 for the RBN.
Table 1, which contains results of some principal
calculations, helps to estimate quality of the network
training process, namely the absence of the over training
effect. It can be seen that this effect does not take place
in the presented calculations because the differences are

small between the probabilities P, and P, as well as
between the basic and early stopping options.
Probabilities of a correct diagnosis I_)V computed

for the validation sets are given in Table 2 for all
principal calculations. As can be seen, for the enlarged
node numbers the RBN demonstrates slight
enhancement of diagnosis accuracy compared with the

perceptron (0.3-0.5 per cent increment of I_)V ).

Table 1
Results of training process verification (computation conditions: regime 1, seed 1, singular class type)
Basic node number Enlarged node number
Network type Probability . .
Basic option Early St.oppmg Basic option Early St.oppmg
option option
P, 0,8133 0,8108 0,8160 0,8165
Perceptron —
P, 0,8129 0,8103 0,8135 0,8168
P, 0,8070 0,8190
RBN —= N/A N/A
P, 0,8110 0,8167
Table 2
Network comparison results (probabilities I_)V obtained on the validation set)
Regime 1 Regime 2
Class type Seed Network type Basic node Enlarged Basic node Enlarged
number node number number node number
. Perceptron 0,8129 0,8135 0,8025 0,8027
Base radial 0,8110 0,8167 0,7986 0,8078
Singular
5 Perceptron 0,8127 0,8151 0,8003 0,8005
Base radial 0,8090 0,8160 0,7970 0,8000
. Perceptron 0,8755 0,8760 0,8665 0,8650
Base radial 0,8733 0,8805 0,8662 0,8700
Multiple
5 Perceptron 0,8738 0,8733 0,8635 0,8670
Base radial 0,8740 0,8780 0,8685 0,8702
Conclusions the mentioned procedure for different network
parameters, diagnostic conditions, and engine
Thus, the comparison of two recognition operating conditions.

techniques, multilayer perceptron and radial basis
network (RBN), has been performed in the present
paper. The necessary fault classification was formed
with the use of the thermodynamic model of a gas
turbine for driving centrifugal compressors in natural
gas pipelines. The classification and the recognition
techniques were embedded into a special testing
procedure that computes for each technique the
probabilities of a correct diagnosis. In order to draw
sound conclusions about the compared techniques, the
comparative calculations were executed by means of

Summing up the comparison results, it can be
stated that the application of the RBN yields some
enhancement of gas turbine diagnosis reliability.
However, a greater complexity of the RNFs should be
taken into account when a recognition technique is
chosen for a real gas turbine monitoring system. This
paper is only the first comparative study of the
perceptron and RBN. The investigations will be
continued to draw the final conclusion on the
applicability of these recognition techniques in gas
turbine diagnostics.
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PeneHseHT: KaHI. TEXH. HayK, mpodeccop Kadempsl KOHCTpyKimu apuamsuratencii FO.A. I'yceB, HarmoHanbHbBIN
aspokocmmdeckuil yausepcureT uM. H.E. JKykoBckoro « XapbKOBCKH aBUALIMOHHBIM HMHCTUTYT», XapbKOB.

PAIIAJIBHI BABUCHI ® YHKIIIT J1JIs1 PO3IIBHABAHHS JTE®EKTIB I'T/I
LI Jlooooa, 1. A. Mipo Capame, A.E. Jleanv bonanvoc

[ITyuHi HEHPOHHI MEpeXi SBJSIOTH COOOK PO3PAXYHKOBHM METOMA IO IIBHIKO PO3BUBAETHCS y 0araThox
o0acTsIX 3acTocyBaHHs, BKItouaroun miarHoctuky [T/, Lls cTaTTs mociikye Mepexy, 3aCHOBaHY Ha paialIbHUX
OasucHMX PYHKIIAX (paaiaabHa Oa3ucHa MepeXka) i 3aCTOCOBYEThCS AT PO3ITi3HABAHHS JE(PEKTIB MPOTOYHOI YACTHHH.
Jlns Toro, mo6 omiHuTH eeKTHBHICTh pamiaibHoi 0a3ucHOi Mepexi (PBM), BoHa MOPIBHIOETHCS 3 OaraToIapoOBUM
MEPCENTPOHOM. 3 METOIO KOPEKTHOT'O MOPIBHIHHS BXiHI JaHI B KOXKHOMY TOPIBHSJIBHOMY PO3pPaxXyHKY OJHAKOBI VIS
000x Mepex. TTopiBHAIbHI PO3PAXYHKU MOBTOPIOIOTHCS I PI3HUX BapiaHTIB IUX JAHHUX, IO TO3BOJISE OAEpKaTH
OLTBIII 3arajbHI BUCHOBKH IO 3acTOCOBHOCTI PBM. [{o minel poOOTH BiIHOCHTHLCS MiArOHKA MEPEXK, iX TOPIBHAHHS Ta
ominka edexkruBHOcTi PBM Ha OCHOBI KpHTEpit0 HMOBIPHOCTI MPaBWIBHOTO PO3IMi3HaBaHHS Ae(eKTiB. PesympraTtn
MTOPIBHSHHS MTOKa3y0Th, 1o PBM € nepcrniekTiBHUM 3aco00M yist miarHoctyBanHs [T,

KarwuoBi cmoBa: I'T/l, miarHocTMKa NpPOTOYHOI YACTHHM, paliajibHa Oa3ucHa Mepeka, HMOBIPHOCTB
MIPAaBWJIHLHOTO PO3Mi3HABAHHS Ae(EKTIB.

PAJIUAJIBHBIE BABUCHBIE ® YHKIUU JJ151 PACIIOSHABAHU S JE®EKTOB I'T/]
HU.H. jlobooa, J1.A. Mupo Capam, A.3. Jleanv bonanvoc

HckyccTBeHHBIE HEHPOHHBIC CETH IPEICTABIAIOT COOOM OBICTPOPAa3BUBAIOIIMICS PACUCTHBIA METON LIS
MHOTHX OOJIacTell mpuMeHeHus, Bkitodas muarHoctuky I'TJI. JlaHHas craThs HCCIIEAyeT CeTh, OCHOBAHHYIO Ha
paauaIbHBIX Oa3uMCHBIX (QYHKIUAX (paauanbHas 0a3vcHas CEeTh) U NMPHUMEHSAEMYIO JUIS paclo3HaBaHHs J¢()EKTOB
MPOTOYHOM YacTH. Jlas Toro, 4YroObl oreHUTh 3G(GEeKTUBHOCTH pamuanbHoN OasucHoi cetn (PBC), onHa
CPaBHUBAETCS C MHOTOCIIOMHBIM TepcenTpoHoM. C IENIbI0 KOPPEKTHOI'O CPAaBHEHUSA BXOIHBIC NAHHBIC B KaXKIOM
CPaBHUTEIILHOM pacyeTe OIUWHAKOBBI JUIs 00eHX cereil. PacdeTsl MOBTOPSIOTCS Ui Pa3IUYHBIX BAPHAHTOB ITHX
JAHHBIX, YTO ITO3BOJIACT MOMYUUTh Oojiee oOmurue BeIBOMBI Mo nmpuMeHuMocTH PBC. K nensamu paGoThl OTHOCHUTCS
MOJITOHKA CETCH, MX CPaBHCHUE M OICHKA 3(P(EKTUBHOCTH HCCIICIyeMON HEWPOHHOW CETH Ha OCHOBE KPHUTCPHUS
BEPOSATHOCTH TPABWILHOIO pacro3HaBaHUs ae(eKkToB. Pe3ynbraThl cpaBHEHHs MOKa3bIBaioT, 4yTo PBC sBisercs
MIEPCIICKTUBHBIM CPEICTBOM it auarnoctupoanus ['T/I.

KiaroueBnie caoBa: I'TJ/[, auarHocTMka NPOTOYHOM 4YacTH, pajuaibHas Oa3uCHas CeTh, BEPOSTHOCTH
MIPAaBWJILHOTO pacro3HaBaHus Ae(heKToB.
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