Hugpopmayuonnvie mexnonozuu

117

UDC 621.16

P. AXMAN, T. KERLIN, D. SVACINA, V. OPLUSTIL, J. TOMAN

UNIS, a. s., Department of Mechatronic Systems, Czech Republic

MODERN METHODS OF FADEC DESIGN FOR AIRCRAFT ENGINES
AND CERTIFICATION ASPECTS

An article describes the motivation for use of automatic code generators for the development of critical control
applications in the aerospace industry. A V-cycle model based design is introduced and its advantages and de-
velopment practices that leads from design of a MATLAB/Simulink [1] models to a real target application are
depicted. Attention is also paid to FAA/EASA certification authorities requirements ([5], [6], [7]) with respect
to a certification process of any newly designed aviation equipment. These practices are being used during the
entire development cycle of an aircraft engine subsystems for small civil aircraft (category FAR 23 / CS-23).

Key words: aircraft, engine, fadec, certification, modelling, V-cycle.

Introduction

Software (SW) and hardware (HW) that are devel-
oped for critical application and have to meet a lot of
standards that ensure their quality ([2], [3]). The certifi-
cation level depends on the target application. Some
experiences with certification for embedded systems in
aviation are described in [4]. Generally, it can be said,
that the software and hardware development and certifi-
cation is time and cost consumable process. Main effort
is to reduce development time and cost and ensure
shorter time to market. On this account it is necessary to
find new methods and approaches for SW and HW de-
veloping.

This paper describes certification process and way
how to reduce cost connected with the equipment certi-
fication; modern approaches for development of control
systems using V-cycle and example of a Full Authority
Digital Engine Control (FADEC) design cycle.

1 Certification Aspects

The main reason for using the Rapid Control Pro-
totyping (RCP) and development tools during the whole
development cycle is to reduce time and costs of the
development and certification process. We have ana-
lyzed COTS based SW and HW development tools
which are fully or partially qualified for use in the aero-
space industry, or they are in progress to be qualified in
the near future. We have also performed an internal
study which shown that COTS development tools
should shorten the development cycle very effectively.

There are many qualified SW tools offered by
many vendors. These SW tools cover airborne certifica-
tion requirements and comply with technical recom-
mendations and standards for safety-critical applica-

tions. Available methodologies introduce very effective
processes during the SW and HW development cycle.

The best way to save resources available for the
project is using integrated development tools. It is al-
most impossible to use only one tool for all activities
during the project development, but it is likely to use
such tools which can cooperate among each other, as is
shown in fig. 1.

Tools for Hardware
Development

Tools for Project
Management

Tools for Software

Development
Development

Tools

Documentation
Tools

Fig. 1. Cooperation among the development tools
during the certification process

An example of a commercial tool chain is shown
in Figure 3. These development tools can be fully stan-
dardized for creation of higher quality and more reliable
software, e.g. C, C++, Ada, Java compilators and auto-
matic code generators, which are usually a part of Inte-
grated Development Environment (IDE), such as
SCADE, MATLAB/Simulink, NI LabView, etc. Ability
to reuse certified SW parts and artifacts within the soft-
ware modification process for use in another application
(especially RTOS like LynxOS-178, PikeOS, Integrity-
178B, etc., see more in [2], [3]) leads to cost reduction
and time effective development because SW verification

© P. Axman, T. Kerlin, D. Sva¢ina, V. Oplustil, J. Toman

ABUALIMOHHO-KOCMUNYECKAS TEXHUKA N TEXHOJIOI'MA, 2009, Ne 7 (64)

118

Hugpopmayuonnvie mexnonozuu

and code tests are then less time consuming processes.
Static and dynamic code testing tools are available com-
mercially (CANTATA++, CodeTest, VectroCast, etc.).

Project Management Tool ‘

A S I
b e 1 v
|| Prolect Planning Phase, Definiton Phase ! 1
1 i 1
1 Requirements Tool Analysis Tool i 1
1 i 1
1 Rty P RapidRMA T
1 'DOORS « Timez. 1 1
| b
1 1
1 1
| I Sy S —— 1
1 1
[et LB EEEE L L { ———————————————————— I
| | Design Pha ! H
1 i 1
1 - > 3 i |
Structural Design Tool Functional Design Tool |
1 1 >
1 eg: g i 1
1 Rty Sice ; 1
1 ol o ! 1
1 Adisen Sidex I
1 1
! ! * ! 1 Documentation
: ! | Source Generator Module | ! : Tools
1 1
|) |
1 d Devel I
1 09 1
= :
e e 1
N S L
: Validation Phat i :
i
1 Testing Tools t 1
i %, P
1 Toorr | 1
i
1 ' 1
L PR | 1
1 1
. v .
1 Target Product 1
1 |
! &m T
: Integrity :
1 1

Fig. 2. Model of SW development process
and its impact on SW development tools application

A certification by FAA/EASA agencies is required
for both simple (based on CPU and simple electronic
components) and complex hardware architectures
(based on PLD, FPGA, ASIC micro-coded technology).
Using simple hardware architecture with a standard core
CPU (Freescale, ARM, TI, etc.) could simplify the certi-
fication process very dramatically because of proven
architecture and reference projects that have passed the
certification process formerly. The same situation is
with COTS bus technologies - these are being used in
the automotive industry for a long time and their safety,
performance and reliability has been sufficiently proven
(61, [7], [8].

Thus, wide enforcement of COTS components and
data buses into the aerospace sector is only a matter of
time.

1.1 RTCA/DO-178B and RTCA/DO-254 standards

The development of every equipment for use in
aerospace has to be approved by FAA or EASA certifi-
cation agencies. The two major standards in the aero-
space industry that describe all the requirements and
recommendations for successful certification are the
RTCA/DO-178B — Software Considerations in Airborne
Systems and Equipment Certification [4] and
RTCA/DO-254 — Design Assurance Guidance for Air-

borne Electronic Hardware [5]. These standards expect
from developers to describe the whole development
cycle in order to assure reliability, data integrity, per-
formance, proper development cycle, system configura-
tion management and continuous airworthiness. As a
resulting benefit there is identification of bottlenecks
and prevention of fault states.

On the other hand, the drawback of these two stan-
dards is a necessity to elaborate a comprehensive
amount of documentation, both for the SW and HW
development.

List of the SW development documentation in ac-
cordance with DO-178B is given below:

e Plan for Software Aspects of Certification

(PSAC)

e Software Development Plan (SDP)

e Software Verification Plan (SVP)

Software Configuration Management Plan

(SCMP)

Software Quality Assurance Plan (SQAP)

Software Requirements Standards (SRS)

Software Design Standards (SDS)

Software Code Standards (SCS)

Software Requirements Data (SRD)

Software Design Description (SDD)

Software Verification Cases and Procedures

(SVCP)

o Software Life Cycle Environment Configura-
tion Index (SECI)

e Software Configuration Index (SCI)

Software Accomplishment Summary (SAS)

The minimum software life cycle data to be sub-
mitted to a certification authority is:
e Plan for Software Aspects of Certification
(PSAC)
e Software Configuration Index (SCI)
e Software Accomplishment Summary (SAS)

The regulation concerning retrieval and approval
of SW life cycle data related to the type design applies
to:

Software Requirements Data
Software Design Description

Source Code

Executable Object Code

Software Configuration Index
Software Accomplishment Summary

List of HW development documentation in accor-
dance with DO-254:

e Plan for Hardware Aspects of Certification
(PHAC)

e Hardware Development Plan (HDP)

e Hardware Verification Plan (HVP)

e Hardware Configuration Management Plan
(HCMP)

Hugpopmayuonnvie mexnonozuu

119

e Hardware Process Assurance Plan (HPAP)

e Hardware Requirements Standards (HRS)

e Hardware Requirements (HR)

e Hardware Detailed Design Data: Top , Level
Drawings (TLD)

e Hardware Detailed Design Data: Assembly
Drawings (AD)

e Hardware Detailed Design Data: Installation
Control Drawings (ICD)

e Hardware Traceability Data (HTD)

e Hardware Acceptance Test Criteria (HATC)

e Hardware Configuration Management Re-

cords (HCMR)
e Hardware Process Assurance Records
(HPAR)

e Hardware Accomplishment Summary (HAS)

The minimum hardware life cycle data to be sub-
mitted to a certification authority is:

e Plan for Hardware Aspects of Certification
(PHAC)

e Hardware Verification Plan (HVP)

e Hardware Detailed Design Data: Top , Level
Drawings (TLD)

e Hardware Accomplishment Summary (HAS)

As is shown above, the list of required documenta-
tion is really comprehensive and it is — together with
strict coding practices, test sets and system verification
— the most disincentive issue during the development
cycle of any new equipment/technology for the aero-
space industry, because it requires strong experience,
deep know-how and well managed certification prac-
tices.

2 Development of Control Systems

The development procedures and practices in the
aerospace industry have originated on those used in the
industry and automotive sector. A process that describes
steps and linkages between individual development
stages of the project has been established over the time.
This process is often called a ”V-cycle”.

2.1 V-cycle

The V-Cycle is a graphical construct used to com-
municate a model-based software development method-
ology. The advantages of V—cycle lies in its inherently
intuitive nature, easy reuse of model and portability
across multiple platforms. Model-based control design
is a time saving and cost-effective approach, allowing
engineers to work with a single model in an integrated
software environment. The graphical representation of
the V-cycle is shown in Fig. 3.

The complete design consists of particular steps,
such as: control design, rapid control prototyping, target

implementation, hardware-in-the-loop testing and cali-
bration.

Within the function design stage, the modelling
and computer simulations of closed-loop system have
been done. A mathematical model of both the controlled
system (so called plant model) and a controller (ECU)
are necessary at this point. The important thing is that
the control algorithms are developed as symbolic mod-
els, not in a C-code.

When the synthesis of the ECU is finished and the
results of simulations are well, the engineers start with
verification of ECU’s algorithms in “real-time” on a
real-time hardware. This stage is called a rapid control
prototyping (RCP).

Function Design Calibration

B Hardware
Rapid Con?rols In-the-Loop
Prototyping Test

Automatic Code Generation

Fig. 3. The V-cycle development process [1]

RCP is a process that lets the engineers quickly
test and iterate control strategies on a real-time com-
puter with either real or modelled system-under-control.
The computer model is used in case where inadequate
action of ECU could cause a damage of equipment or
endanger lives. The biggest advantage of using the inte-
grated software environment for modelling, simulation
and also function prototyping is that the control engi-
neer does not have to be a C-code expert nor have
enough skills to port the C-code to a real-time target. By
virtue of an automated build process the RCP systems
do this work for them.

In the next stage, the target code for the ECU is
automatically generated by a special software, which
reads math model files and generates a compile-able
code that replicates the behaviour of the model. This
dramatically reduces the implementation time and, in
addition, the engineers have systematic consistency be-
tween a specification and production stage. Moreover,
improvements to the ECU could be easily added, even
after implementation of an initial code. The time for
hardware-in-the-loop testing is coming on once the
ECU is programmed.

Hardware-in-the-loop is a form of a real-time
simulation that differs from a pure real-time simulation
by addition of a “real” component into the loop. This
component might be the ECU or the real system-under-
control. The current industry definition of the hardware-

120

Hugpopmayuonnvie mexnonozuu

in-the-loop system is that the plant is simulated and the
ECU is real. The model of the plant (and the simulation
HW also) is the same like in the stage of RCP.

The next step is a calibration, which is a process of
optimizing or tuning real control algorithms to get the
desired response from the system. A calibration tool is a
combination of a hardware interface and a software ap-
plication that enables the engineer to access and change
the “calibration variables” in the ECU. Typical compo-
nents of control algorithms which need calibration are
look-up tables, gains and constants. The structure of the
control algorithm is not changed during the calibration
process.

2.2 Implementation of the V-cycle

The typical V-cycle development process is based
on a software development tools such as MATLAB and
dSPACE. These tools provide a seamless transition
from a block diagram to a real-time and target hardware.

Particularly, for function design is mostly used
MATLAB, Simulink, Stateflow and other toolboxes for
MATLAB. These tools together comprise a complex
software package that forms the core environment for
mathematical computation, analysis, visualization, algo-
rithm development, etc. MATLAB is a high-level tech-
nical computing language and interactive environment
that enables performing computationally intensive tasks
such as algorithm development, data visualization, data
analysis, and numeric computation. Simulink provides
an interactive graphical environment and a customizable
set of block libraries that let the user to design, simulate,
implement and test a variety of time-varying systems.
With Stateflow, you can integrate state diagrams into
Simulink models.

During RCP stage the Real-Time Workshop
(RTW) and Stateflow Coder (SC) automatically gener-
ate a C code from Simulink block diagrams and
Stateflow systems. And here comes into play a dSPACE
Real-Time Interface (RTI) which is a link between a
dSPACE hardware and the development software from
Mathworks. RTW/SC generates the model code, while
RTI provides blocks that implement the I/O capabilities
of dSPACE systems in Simulink models. Then the real-
time model is compiled, downloaded and started auto-
matically on the real-time hardware. The program can
now be controlled and instrumented by the GUI applica-
tion — ControlDesk. This is referred to as an experiment
control.

The system-under-control could be also simulated
on a real time hardware, especially in case of very com-
plicated systems, such as e.g. engines. Many different
types of HW simulators that cover all the different re-
quirements (such as computational power, I/O interface,
data bus systems, etc.) are provided with the simulations

tools. The generated code could be optimized for fixed-
or floating-point operations, in accordance to a certain
processors. Versatile code configuration options ensure
that the produced code copes with all the processor con-
straints.

Hardware-in-the-loop stage is closely connected
with the next stage — calibration.

3 FADEC Development Cycle

FADEC is the most important control authority on
the aircraft. The new and modern approach for design-
ing of the engine control unit brings:

e Shorter developing time,

e Reducing time for code testing,

e Reducing cost for prototypes manufacturing,

e Higher quality of the application code,

o Effective support of certification, etc.

The design cycle of the FADEC will be described
on the Complex Power-plant Control System (CP-CS) for
small aircraft that is designed in a frame of the project
CESAR. Power control system configuration for small
aircraft is shown in Fig. 4, its block diagram is shown in
Fig. 6. The power of the jet turbine is control by the dual
channel FADEC that cooperates with Fuel Control Elec-
trical Interface Device (FCEID) and Propeller Control
Electrical Interface Device (PCEID). The FADEC can be
back-upped by the manual control system.

o

ol
-

A \ANALOGUE SIGNALS
BT DISCRETE SIGHALS
CONTROL
NLN2TRO.T45,T1,P1
3 COCKPIT PANEL
DUAL f
> 5 !
BI-DIRECTIONAL DATA LINK
DISCRETE SIGHALS

> CHANNEL [
EECU
Fig. 4. CP-CS system configuration for small aircraft

L.
T
=

4
|

! {
1 {
! !
|
! / MANUAL CONTROL
i | [
| | KR

— 1l

-1 “Zr

Generally the FADEC model based development
consists of the following steps:

e Engine and control system requirements and
their decomposition
Mathematical modelling

Model integration and simulation (Model in
the loop - MIL)
Automatic code generation and verification

Hugpopmayuonnvie mexnonozuu

121

(8]
e Software in the loop (SIL) testing
e Hardware in the loop (HIL) testing
e Target platform implementation (Processor in
the loop - PIL)
The graphical relation among particular steps of
model based design is shown in Fig. 5.

Mathematical
mod

el

OUTPUT

Fig. 5. FADEC development cycle

FCEID - Fuel Control Electrical

20

system Interface Device

under

o | PCEID

INTERNATIONAL.STANDARD

]
o

— Propeller thrust

— Fuel flow

— Altitude

— Control current of FCEID
— Control current of PCEID

control

e

o
&S

P T l
n. | FCEID

o FREE
GAS TURBINE
] GENERATOR +

INee Pe| GEARBOX

PROPELLER

ne — Gas generator speed

— Propeller speed

— Power transmitted from gas
generator to free turbine

PCEID — Propeller Control Electrical

Q
Q

===
]

]
=

Interface Device

LA —Power Lever Angle

— Power of propeller

s=Ns-]

o

— Air total inlet pressure

measured
parameters

— Ambient temperature
1 — Air total inlet temperature
TPE - Virtual Turbo Prop Engine
— Air speed

<=3

— Propeller pitch
— Density

CONTROL
INTERFACE
3.1 Mathematical modelling

A model formulation of controlled system is an es-
sential part during the stage of its control algorithm de-
sign. The model is used for examination and prediction
of the behaviour of the real system. Real system could
be very expensive.

A model of the system is based on the mathemati-
cal description. In engineering disciplines the mathe-
matical model is usually described by a set of algebraic,
differential equations, the transfer functions or the state
matrixes.

These relations are mostly derived either by a
mathematic-physical analysis of the system’s phenome-
non or by an experimental examination of the real sys-
tem. Within the modelling of very complicated systems
both approaches are combined. The aim is to get as pre-
cise model as possible, but also as simple as possible.
These two requests go unfortunately against each other
— the more precise model is more complicated.

The CP-CS model is very complex and highly
non-linear system. The physical phenomenon involved
to cover domains such as solid and fluid mechanics,
thermodynamics and electromagnetism.

All the model parts are based on the mathematical
description of the each part, provided by their designers.

so° 6 <

7
—

— Free turbine Angular speed

L1

Fig. 6. Block diagram of VTPE and CP-CS architecture

3.2 Model integration and simulation

The simulation is a way, how to verify the behav-
iour of a control system that includes its environment
without real hardware.

The models were created in MATLAB / Simulink
that is a comprehensive software package that form the
core environment for mathematical computation, analy-
sis, visualization, algorithm development, model-based
design, etc. The schematic drawing implementation of
the real hardware and its mathematical models to the
Simulink is shown in Fig. 7.

\‘ Propeller

-y B K e G B0)
Lo - wee1-0)
/ PRRTR

FCEID s, o

i

Fig. 7. Mathematical model implementationr
to the simulation software (Simulink)

122

Hugpopmayuonnvie mexnonozuu

The structure of the VTPE model is based on split-
ting of the whole engine into two basic parts, which can
be solved separately. These main parts are:
gas-generator (inlet, compressor, combustor and tur-
bine) and power turbine with gearbox and propeller to-
gether. There is only thermodynamic power linkage
between these two parts, the only hand over variable is
the power transmitted from gas-generator to free turbine
Prr. Due to this fact the complexity of model is mark-
edly decreased. The MATLAB / Simulink representa-
tion of the VTPE that is depicted in picture Fig. 6 is
shown in Fig. 8. The VTPE model is precise enough to
for examination of its behaviour during flight, for dif-
ferent aircraft speeds, heights, power extractions and
outside conditions. The start of the engine, reverse
mode, taxiing and feathering are not possible to simu-
late.

wp 8
o> np
P
nP 20— 0 u " e aF]
—» S
u PCEID
FADEG propeler o
speed cortrol govemor [ho>—w o Fr » P
ter.10) TP
PLA v_ms
PLAE > op G
TP P
|_FT
- - P_FT
oo PFT = PFT MFT] T
—Plnce G s
ng - - P cep—— GTM _FT
P2 3 b— free turbine
FADEC nFT " +
power contol FoED AR B I
fuel governor. propeller
er. 1.2) gas generator
dovaLy
fer.1.0)
e
o pon FT

Fig. 8. Simulink diagram of VTPE
and CP-CS architecture

All necessary climatic variables are computed on
the basis of International Standard Atmosphere model
(ISA). The input blocs of the ISA model could be set to
a constant or to any time-dependent curve (e.g. typical
flight profile could be simulated).

Propeller Speed Control

This part of FADEC must keep propeller speed at
constant speed throughout the whole range of inputs
(e.g. for changing value of power transmitted from gas-
generator to free turbine and for all possible climatic
conditions).

System under control is ‘propeller governor’ +
‘free turbine + propeller’ and control signal is control
current of ‘propeller governor’ I,y. The control structure
is cascade, with inner ¢ feedback loop and outer np
feedback loop. Instead of measuring ¢ directly, the
value of u is measured, which is directly proportional
to .

The overall architecture of this structure is shown
in Fig. 9.

n_p nP phi » phi np

n_P

n_P_req

[n_P_req>——ppin p 1201 120 u

rho

[Fo>—b{m rr

Y PCEID i

propeller v_ms

FADEC
e
speed control governor v i (P_P]
fer 10 GTP _P
P_FT (kW]
PFT

400 63 = PFT MFT

free turbine
+

propeller

Fig. 9. Simulink scheme of the propeller speed control

Requested propeller speed is set with respect to
Propeller Speed Switch, with which pilot can set one of
the three different propeller states (speeds). This value
is restricted by a rate limiter, which doesn’t allow too
steep changes of this value. The difference between
requested and actual value of np is processed by and
PI+AW (PI + antiwind-up) controller, whose output is
requested value of ¢. The error signal of ¢ is processed
with another (PI2) controller, which produces control
current 1. It supplies an electromagnetic actuator
which drives a pilot valve of propeller governor that
changes an amount of oil flowing to or from propeller
head resulting in change of ¢ and change of np too. The
PI+AW and PI2 were set in respect of achieving as good
response to control signal as possible.

Power Control

Power control should ensure proper power of the
engine, particularly proper power on the free-turbine
shaft Prr, with respect to Power Lever and throughout
all possible climatic conditions. It also checks important
parameters and doesn’t allow them to overcome secure
values. System under control consists of ‘fuel governor’
with ‘gas-generator’, control signal is a control current
of ‘fuel governor’ I.. The control structure comprises
nge feedback loop with PI controller and some blocs
providing limitations.

But because measurement of the power (or torque)
is not precise enough for using it in the feedback con-
trol, the speed of gas-generator is used instead (power of
free-turbine is basically proportional to the speed of gas-
generator).

PLA

PLA >——PLA[]
P MFT
Ir| 21 o FT
n_GG T i
—®nGe Gp »Gp
L3 n_GG
»p2
. 3
FADEC nFT
power control FCEID 75—
fuel govemnor —
(ver. 1.2) gas generator
(r. 1.0)
_FT
M_FT

Fig. 10. Simulink scheme of the power control

Hugpopmayuonnvie mexnonozuu

123

3.3 Automatic code generation and verification

Automatic code generation software is an exten-
sion tool that can create executable code from a model.
Real-Time Workshop (RTW) is a tool that can be used
for automatic code generation in MATLAB / Simulink.
The RTW generates stand-alone C code for proposed
algorithms modelled in Simulink. The resulting code
can be used for accelerated simulation which mostly
contains software in the loop and hardware in the loop
simulations. The code can be tuned and monitored by
these simulations.

After automatic generation the build-in verification
tool can locate and test dangerous parts of the generated
code and prevents the possible accidents. The code can
be tested by external verification tools like Cantata
C/C++/Ada as well as.

e

Model in Simulink Generated code
Fig. 11. Automatic code generation

Note: The model part that contains algebraic con-
straint blocks has to be replaced by numerical iterative
calculation (showed in 12).

AdB hlavni

Q202

Add8
M

Fig. 12. Example of model with
algebraic constraint block

3.4 Software in the loop testing (SIL)

SIL test is proceed by the MATLAB / Simulink
tool. SIL tool is control systems simulator for temporal
and functional simulations. The behaviour of a control
system depends on the proposed architecture and on the
target hardware where the FADEC software is imple-
mented. On this account the results given from the SIL
tests can analyse only model behaviour, nevertheless the

SIL tests are important step for the finding of model
faults before model implementation into the hardware.

3.5 Hardware in the loop testing (HIL)

HIL is a kind of testing to validate the interactions
between the designed software and the test or real
hardware. The HIL tests can reduce the number of ex-
pensive prototypes. The HIL test is performed by the
dSPACE environment. The HIL testing offers to use
following test combination:

e Turbine model X

ECU model

e Turbine model X Real ECU

—
<—

All test combination can be realized on the created
dSPACE workplace.

The dSPACE is used as a development environ-
ment that ensures implementation created models and
generated C code to the real (evaluation) hardware.
Controlling of the test procedures is provided by the
Real-Time Interface (RTI) tool. RTI provides tool for
controlling panel creation.

3.6 Target platform implementation

The proposed and generated FADEC application
code will be finally loaded to the target platform. The
target platform can run either as a standalone applica-
tion (without OS) or as a program module in OS or
RTOS. For both types of output code representation it is
necessary create link interface that allows running the
control algorithms.

4 Conclusion

Model based design for engine control system was
approved. Main advantage of presented approach con-
sists in development time and cost reduction. This ap-
proach supports very effectively certification process as
well as. Models were created and simulated for a virtual
system and will be verified on a real CP-CS.

124

Hugpopmayuonnvie mexnonozuu

Acknowledgement

Development of Complex Power-plant Control
System (CP-CS) for small aircraft was supported by
the European Union, FP6 IP research project No.: 30
888, "CESAR — Cost Effective Small Aircraft”. Re-
quirements, mathematical descriptions of particular
sub-systems were provided as know-how by CESAR
partners (Ivchenko-Progress, VZLU, lJihostroj, PBS
and UNIS).

References

1. MATLAB SW producer:
works.com [cit. 2009-05-20].

2. RTCA/DO-178B: Software Considerations in
Airborne Systems and Equipment Certification. RTCA,
Inc.: USA, 1992.

3. RTCA/DO-254: Design Assurance Guidance for

http://www.math-

Circulars, AC No: 20-152, June 30, 2005.

4. Svéda M. Experience with integration and cer-
tification of COTS based embedded system into ad-
vanced avionics system / M. Svéda, V. Oplustil // In
2007 Symposium on Industrial Embedded Systems Pro-
ceedings. Lisbon, Portugal: UNINOVA, Lisbon, Portu-
gal, 2007. ISBN 1-4244-0840-7.

5. Certification of Aircraft Propulsion Systems
Equipped with Electronic Control Systems, AMC 20-1
Effective: 26/12/2007. Annex II to ED Decision
2007/019/R of 19/12/2007, EASA.

6. Compliance Criteria for 14 CFR §33.28, Air-
craft Engines, Electrical and Electronic Engine Control
Systems. Advisory Circular 6/29/01, AC No: 33.28-1,
FAA.

7. Electronic Engine Control Specifications and
Standards. AIR4250, rev A, March 2004, SAE.

8. Automatic Code Generation Tools Development
Assurance, Position Paper CAST-13, June 2002 Certifi-

Airborne Electronic Hardware. FAA Advisory. cation Authorities Software Team, FAA.

Tocmynuna 6 pedaxyuio 28.05.2009

PenensenT: n-p TexH. Hayk, npod. C.B. Enudanos, HaionaneHbli aspokocMmudeckuii yausepeuter uM. H.E. JKykog-
ckoro “XAN”, XapbkoB, YKpauHa.

CYYACHI METOJIM PO3POEKH CUCTEM ABTOMATHYHOI'O YIIPABJITHHS
JUISI ABIALIIMHUX JABUTYHIB I IXHSI CEPTUOIKATLIS

P. Axman, T. Kerlin, D. Svacina, V. Oplustil, J. Toman

CraTTsl onucye HEOOXiIHICTh BUKOPUCTaHHS aBTOMAaTHYHHUX T€HEPAaTOPiB 00'€KTHOTO KOAY IS pO3POOKH CHC-
TEeM KPUTHYHOTO YIIPABIIiHHS B aBiaKOCMi4HIH mpoMucioBocTi. [Ipencrasieno 6a30By Moaenb V-IHKIY, 11 epeBa-
T ¥ 300pakeHi MeTonu po3polKy, siki orpumani 3 mozeneit MATLAB/Simulink [1] anst peanbsHOro miapoBoro 3a-
CTOCYBaHHsS. YBara TakoxX 3BepHEHa a0 ceprudikamiiiaux sBumor FAA/EASA ([5], [6], [7]) 1 KOHKpETHO Tporecy
cepTUdiKaIlii HOBOro aBialiiiHoro odmagHanHsA. [1i METOIM BUKOPUCTOBYIOTHCS MPOTSITOM ITOBHOTO MUK PO3POOKH
TiICKCTEM aBiallifHOTO JBUI'YHA JUISl MaJIOro IMBiIBHOTO Jitaka (kareropis FAR 23 / CS-23).

Kurouogi ciioBa: nitak, neuryH, fadec, ceprudikariis, MoaemOBaHHs, V-IHKII.

COBPEMEHHBIE METO/IbI PASBPABOTKH CUCTEM ABTOMATHUYECKOI'O YIIPABJIEHUS
JIJISI ABUALTMOHHBIX JIBUTATEJIEN U UX CEPTU®UKALIUS

P. Axman, T. Kerlin, D. Svacina, V. Oplustil, J. Toman

CraTbs OIUCHIBaET HEOOXOIMMOCTh HCIIOIb30BaHUSI aBTOMATHYECKUX T'€HEPATOPOB 00BEKTHOTO KOJa JUIs pa3-
pabOTKH CHCTEM KPHTHYECKOTO YIpaBIIEHHs B aBUAKOCMHYECKOW MpPOMBINIIEHHOCTH. [IpescTaBiena 6azoBas Mo-
Jenb V-IuKia, ee IMPEeUMYIecTBa M HM300pa)KeHBI METOJbI pa3pabOTKH, KOTOpBIE IOJIYYEHBI W3 MoAenei
MATLAB/Simulink [1] st peanbHoro meneBoro npuMeHeHus. BHuMaHue Takke oOpameHo K cepTu(hUKanuOHHBIM
tpedoBanusiM FAA/EASA ([5], [6], [7]) 1 KoHKpeTHO Iporeccy cepTu(HKaIuK HOBOI'O aBHAIIIOHHOT'O 000py10Ba-
HUSL. DTH METOZbI UCMONB3YIOTCS B TEUEHHE MOJHOI0 LIUKJIA Pa3pabOTKHU MOACUCTEM aBHAIIMOHHOTO ABHUIATENs IS
MaJIoro rpakaanckoro camoneta (kareropust FAR 23 / CS-23).

KmoueBsie ciioBa: camorner, apurarens, fadec, cepruduxanus, MoaeaupoBanue, V-1UKII.

AxcMan IleTp — MHXCHEP-TIPOTPAMMHUCT OTJAETIA UCCICIOBaHUN U pa3pabOTOK MEXaTPOHHYECKHX CHCTEM B
kommanuu «UNIS», Bpro, Uexus, e-mail: paxman@unis.cz.

Kepaun Tomac — kaHa. TeXH. HaAYK, HHXKCHEP-KOHCTPYKTOP OT/IENa UCCIICAOBAaHUN U Pa3pabOTOK MEXaTPOHU-
yeckux cucteM B komnanuu «UNIS», Bpro, Uexus, e-mail: tkerlin@unis.cz.

CpaunHa J[aBua — pyKOBOAMTEIb TPYIIIBI IPOrPAMMHUCTOR OTJIENIa UCCIICAOBAHUIA W pa3padOTOK MeXaTpOHH-
yeckux cucteM B kommanuu «UNIS», Bpro, Uexwus, e-mail: dsvacina@unis.cz.

Omnymrrua BraguMup — A-p TeXH. HAyK, PyKOBOJUTEb OTJCa UCCICIOBaHUIN U pa3pabOTOK MeXaTpOHHUYE-
ckux cucrteM B kommanuu « UNISy, BpHo, Uexwus, e-mail: oplustil@unis.cz.

Toman IOpuii — WHXEHEP-KOHCTPYKTOP OTIAENAa HCCICAOBAHUN U pa3pabOTOK MEXaTPOHMYECKUX CHCTEM B
kommanuu «UNIS», Bpro, Uexus, e-mail: jtoman@unis.cz.

