УДК 004.8:004

И.Б. СИРОДЖА, А.А. БАБУШКИН

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ФОРМАЛИЗАЦИЯ КОМПЬЮТЕРНОЙ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ ПРИ ПРОЕКТИРОВАНИИ СТАПЕЛЬНО-СБОРОЧНОЙ ОСНАСТКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Предложена формализация процесса компьютерной поддержки принятия решений при проектировании стапельно-сборочной оснастки летательных аппаратов (СОЛА). Разработана математическая схема принятия решений в иерархической системе поддержки принятия решений (СППР) при проектировании СОЛА, на основе формализации фундаментального принципа последовательного разрешения неопределенности с использованием энтропии решений. Принятие решений рассмотрено как иерархический процесс целенаправленного преобразования текущей информации о состоянии функционирования СППР в информацию о наиболее рациональном пути достижения системой желательного состояния в будущем.

Ключевые слова: поддержка принятия решений, база квантов знаний, формальная схема поддержки решений в СППР «СОЛА».

1. Постановка задачи

В работе [1] сформулирована общая задача формализации СППР, содержащая важную частную задачу - синтез математической схемы принятия решений в СППР «СОЛА». Решению именно этой задачи по заданной там же исходной информации посвящена данная работа.

Итак, задача синтеза математической схемы принятия решений в СППР рассматривается как вариант формализации фундаментального принципа последовательного разрешения неопределённости [2-6] с использованием энтропии искомых решений. Разработанные в [1] формальные схемы функционирования и управления СППР составляют основу для построения формальной схемы принятия решений в СППР «СОЛА». Обеспечение принятия решений полной и надежной информацией в нужное время - центральная и наиболее сложная проблема организации эффективного функционирования и управления СППР. Количество, содержание и своевременность получения информации определяют качество принимаемых решений, а, значит, эффективность СППР. Поэтому принятие решений мы рассматриваем как иерархический процесс целенаправленного преобразования текущей информации о состоянии функционирования СППР в информацию о наиболее рациональном пути достижения системой желательного состояния в будущем. Применительно к предмету нашего исследования под информацией будем понимать сведения, созвучные с понятиями теории информации [5] К.Шеннона, и необходимые для принятия целевых решений. Иными

словами, мы будем использовать энтропийную меру количества информации как степень разрешения неопределенности выбора из множества альтернатив возможных решений с применением ЭВМ.

Следуя общей постановке задачи формализации СППР в [1], перед разработкой математической схемы принятия решений в СППР «СОЛА» рассмотрим формализацию информационной структуры принимаемых решений.

2. Формализация информационной структуры искомых решений

Содержание информационной деятельности СППР определяется информационной структурой решений, принимаемых в звеньях иерархии управления системой. Информацию будем характеризовать двумя взаимосвязанными показателями - количеством І (например, в битах) и неопределенностью, выраженной через энтропию Э.

Каждая составляющая информационной структуры решения представляет собой набор количественных и-или качественных параметров. Неопределенность информации состоит в том, что истинные значения параметров неизвестны, а принимающий решение может определить только интервалы 1, содержащие возможные значения параметров. Для каждого решения существует допустимая точность задания информации, т.е. минимальные интервалы є значений параметров, обеспечивающих требуемую подробность описания процесса. Если информация о каком либо параметре отсутствует, то интервал 1 содержит все возможные значения этого параметра, т.е. $1 = \sup 1$. В ином крайнем случае, когда вся информация о параметре известна, то 1 совпадает с допустимым интервалом ϵ , т.е. $1 = \epsilon$. При известной полной информации интервалы 1 и є вырождаются в точку. В реальной практике возможна промежуточная ситуация, когда 1 находится в интервале $\varepsilon \le 1 \le \sup 1$. Использование допустимого интервала є позволяет перейти от континуального множества значений параметров управляемого процесса к конечному множеству, что обеспечивает возможность использования формулы Шеннона [5] для описания неопределенности решения. Пусть на любой момент процедуры принятия решения для каждого j-го параметра (j = 1, 2, ..., J) определены допустимые интервалы точности задания численных значений $\varepsilon_i \in E = \{\varepsilon_i\}$ и интервалы возможных значений параметров $l_j \in L = \left\{l_j\right\}$, где L — область возможных решений. Разобьем интервалы 1; на участки k_i длиной, равной $|\epsilon_i|$. Тогда каждый интервал l_i будет содержать количество N_i участков k_i :

$$N_{j} = \frac{\left|l_{j}\right|}{\left|\epsilon_{j}\right|}.$$
 (1)

Обозначим через P_{k_j} вероятность попадания численного значения j-го параметра в k_j -й участок интервала l_j , $(k_j = \overline{l,N_j})$. В силу независимости элементов области возможных решений $L = \left\{l_j\right\}$ полная энтропия \Im_{Π} принимаемого решения согласно Шеннону [8] определяется по формуле:

$$\Im_{\Pi} = -\sum_{j=1}^{J} \sum_{k_{i}=1}^{N_{j}} P_{k_{j}} \log P_{k_{j}}.$$
(2)

Очевидно, что величина \mathfrak{I}_{Π} определяется вектором допустимого интервала точности $\vec{E}=\left(\epsilon_{1},\epsilon_{2},...,|E|\right)$ и вектором $\vec{L}=\left(l_{1},l_{2},...,|L|\right)$. Уменьшение |E| при |L|= const увеличивает *полную* энтропию решения \mathfrak{I}_{Π} , и наоборот. В процессе принятия решений |E| обычно не изменяется, а |L| уменьшается, что приводит к увеличению энтропии решения. Если принять допущение о том, что распределение истинных значений параметров в интервалах $l_{j}\in L$ подчиняется равномерному закону, то вероятность $P_{k_{j}}$ определяется формулой:

$$P_{k_j} = \frac{\varepsilon_j}{l_j}, \tag{3}$$

а равенство (2) при подстановке выражения P_{k_j} (3) преобразуется к виду:

$$\Im_{\Pi} = -\sum_{j=1}^{J} \log \frac{1}{N_{j}}.$$
(4)

Представленные оценки неопределенности информации (2) и (4) носят универсальный характер в том смысле, что могут применяться и к качественным параметрам. Например, если при формировании общей цели управления системой не может быть отдано предпочтение ни одному варианту компромисса в решении задачи скаляризации частных целей, то неопределенность выбора цели можно представить в соответствии с (4) выражением:

$$\mathfrak{I}_{\Pi} = -\log \frac{1}{m},\tag{5}$$

где m — число рассматриваемых вариантов компромисса.

Таким образом, основной закономерностью процесса разрешения неопределенности \mathfrak{I}_{Π} в принятии решений является зависимость величины интервалов $1_{\mathfrak{j}}\in L$, содержащих истинное значение параметров, от величины объективной информации I об этих параметрах. Чем меньше информации, тем шире интервалы $1_{\mathfrak{i}}$ и тем выше роль субъективных факторов в принятии решений, и наоборот. В случае полного отсутствия объективной информации об управляемом процессе область возможных значений параметров L совпадает с областью их определения $\sup L$.

Информацию, необходимую для принятия решений в СППР, условно классифицируем на *три основные класса*. К *первому классу* отнесем информацию $I_{\Pi\Gamma}$, заранее накопленную в системе управления и *потенциально готовую* к использованию в процессе принятия решений. Неопределенность $I_{\Pi\Gamma}$ определяется ее неполнотой труднодоступностью, а также неполной достоверностью и несоответствием содержанию решения. Неопределенность $I_{\Pi\Gamma}$ обозначается символом $\Theta_{\Pi\Gamma}$.

Второй класс составляет информация $I_{\rm of}$, получаемая в процессе принятия решения и объективно готовая к использованию для выработки решения. Неопределенность $I_{\rm of}$ определяется неполнотой оперативных сведений и накопленной $I_{\rm nf}$, а также ограниченными возможностями используемых математических методов. Неопределенность $I_{\rm of}$ обозначается символом $\Theta_{\rm of}$.

К *темьему классу* отнесем информацию I_{cb} , которая не может быть получена какими-либо объ-

ективными методами, а базируется на субъективном выборе, интуиции и опыте ЛПР. Неопределенность I_{св} разрешается волевым решением ЛПР путем субъективного выбора и обозначается символом Эсв. На основании изложенного полная энтропия решения Э_п может быть представлена суммой:

$$\Theta_{\Pi} = \Theta_{\Pi\Gamma} + \Theta_{O\Gamma} + \Theta_{CB} . \tag{6}$$

Выражение (51) отражает тот факт, что на каждый определенный момент процесса принятия решения объективно существуют неопределенности всех трех указанных классов.

Выделим начальную неопределенность решения Э_н на момент начала процедуры принятия решения, т.е. $\Theta_{\Pi} = \Theta_{H}$ на момент t = 0, где $t \in T = [0, t_T] - время, выделенное на принятие ре$ *шения*. Заметим, что функция $\Im_{\Pi} = f(I)$ существенно зависит от Э_н, количества информации I и времени Т . В общем виде зависимость $\Im_{\Pi} = f(I)$ представлена на рис. 1 как огибающая реальной дискретной функции $\, \Im_{\Pi} \, .$

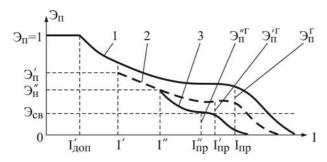


Рис. 1. Зависимость $\Im_{\Pi} = f(I)$ при T = const

Графики $\Theta_{\Pi} = f(\Theta_{H}, I)$ построены при условиях, что для всех значений 9_{π} сохраняются одни и те же условия принятия решений, время Т и время обработки информации. При этом равенство I = 0 соответствует полному отсутствию информации, а I_{лоп} - это минимально допустимое количество исходной информации, ниже которого никаких суждений относительно принимаемого решения сделать нельзя. І' и І" обозначают величины заранее накопленной информации (І' < І"), которым соответствуют величины начальной неопределенности решений \mathfrak{I}'_{H} и \mathfrak{I}''_{H} . Наконец, $I_{\Pi D}$ – предельное (максимальное) количество информации, которое может быть использовано для принятия решения при условии, что дальнейшее накопление информации уже не уменьшает область L возможных значений параметров. При $\Theta_{H} = 1$ (гипотетическая *кривая 1* на рис. 1) управляющий не имеет необходимой информации к началу принятия решений и вынужден формировать все элементы информационной структуры непосредственно в процессе принятия решения за ограниченное время Т. В подобных условиях принимаемое решение будет носить крайне субъективный характер, т.е. определяться широкой областью значений L, чему соответствует наибольшее значение граничной энтропии решения $\mathfrak{I}^{\Gamma}_{\mathbf{H}}$. В реальных условиях управления СППР начальная неопределенность решения всегда находится в интервале $\Theta_{cB} < \Theta_{H} < 1$. *Кривые 2* и *3*, соответствующие \mathfrak{I}'_{H} и \mathfrak{I}''_{H} , когда $\mathfrak{I}'_{H} > \mathfrak{I}''_{H}$ отражают *общую за*кономерность: чем больше информации об ОПР накоплено и обработано заранее, тем меньше информации требуется искать и обрабатывать в процессе принятия решения и тем меньше граничная неопределенность решения $\vartheta_{\Pi}^{"\Gamma} < \vartheta_{\Pi}^{'\Gamma}$, т.е. выше качество решения. На рис. 2 изображены три дискретные зависимости величины граничной неопределенности $\mathfrak{I}_{\mathrm{H}}^{\Gamma}$ решения для трех значений *началь*ной неопределенности $3_{H}^{\Gamma} = 1 > 3_{H}' > 3_{H}''$ при фиксированном методе М сбора и обработки информации.

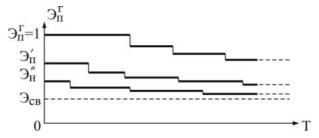


Рис. 2. Дискретная зависимость граничной $Э_H^\Gamma = \phi(J_H, T)$ при M = const

Дискретный характер изменения энтропии $\mathfrak{I}_{\mathrm{H}}^{\Gamma}$ объясняется тем, что для получения каждой порции (кванта) информации требуется определенное время, которое зависит, прежде всего, от метода М для принятия решений. На рис. 3 представлен общий вид функции $\Im_{\pi}^{\Gamma} = \phi(M,T)$, где M_1 – метод принятия решений без какой либо поддержки; М2метод, использующий в качестве средств поддержки решений банки данных, информационно-поисковые системы; М₃ - метод, основанный на применении интеллектуальных информационных технологий (ИИТ) при $\mathcal{H}_{H} = \text{const}$.

Из графиков рис. 3 следует, что величину граничной энтропии $\mathfrak{I}_{\pi}^{\Gamma}$ можно уменьшить не только за счет уменьшения начальной энтропии \mathfrak{I}_{H} вплоть до уровня энтропии субъективного выбора решения \mathfrak{I}_{CB} . Можно уменьшить $\mathfrak{I}_{H}^{\Gamma}$ и путем увеличения времени $\mathfrak{I}_{H}^{\Gamma}$ для принятия решения, а главное, за счет применения ИИТ (см. кривую для \mathfrak{M}_{3}).

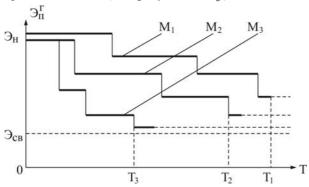


Рис. 3. Общий вид зависимости $\Im_{\Pi}^{\Gamma} = \phi(M,T)$ при $\Im_{H} = \text{const}$

Это научно обосновывает развивающуюся тенденцию разработки и внедрения в производство интеллектуальных информационных (ИИТ) на базе компьютерных СППР промышленного назначения. Заметим, что в некоторых технических системах выбор решений удается автоматизировать, используя известные компьютерные средства. Поскольку в таких случаях $\Theta_{cB} = 0$ и для принятия решений не требуется непосредственное использование интеллектуальных человеческих усилий. С другой стороны, проведенный на основе шенноновского подхода анализ информационных аспектов принятия решений, позволяет использовать граничную энтропию решения $\mathfrak{I}^{\Gamma}_{H}$ как универсальную меру качества решения. Действительно, величина \Im_{H}^{Γ} характеризует как *степень риска*, которую берет на себя ЛПР, прекращая поиски строгого обоснования способов уменьшения $\mathfrak{I}_{H}^{\Gamma}$, так и возможности применяемых методов выработки решений. Наряду с Э можно пользоваться относительной оценкой качества решения о:

$$\omega = 1 - \frac{\mathcal{J}_{H}^{\Gamma}}{\mathcal{J}_{H}} \le \omega_{\text{max}} = -\frac{\mathcal{J}_{CB}}{\mathcal{J}_{H}}, \tag{7}$$

где ω_{max} — предельно возможная величина *качества решения*, когда вся объективная информация I_{np} , необходимая для принятия решения, собрана и когда $\Im_H^\Gamma = \Im_{CB}$.

Величина ω (7) характеризует качество самой

процедуры принятия решений, т.е. эффективность ее организации, применяемых методов и технических средств. Практическое значение меры качества $\mathfrak{I}_{\mathrm{H}}^{\Gamma}$ и ее аналога ω заключается в том, что с их помощью можно оценивать и сравнивать эффективность внедрения в практику различных СППР или их отдельных элементов.

Анализ информационной структуры принимаемых решений в СППР будет неполным, если не затронуть информационных аспектов прогнозирования, т.е. принятия прогнозных решений наряду с идентификационными решениями. Вся собираемая информация и все этапы ее обработки нацелены на обеспечение достоверного прогнозирования внешних условий функционирования СППР «СОЛА» и ее возможной в будущем эволюции под воздействием принимаемых решений. Подходящая альтернатива решения выбирается путем анализа прогнозируемых последствий реализации всех альтернатив. Прогнозируемое состояние СППР по каждой альтернативе сравнивается с целями системы, оценивается степень риска принятия альтернативы и ее негативные побочные последствия. Достоверность прогноза полностью определяется количеством и качеством исходной информации и подчиняется закономерностям, указанным на рис. 1, 2, 3. Энтропия субъективного выбора Эсв решения содержит в себе как основную составляющую – энтропию субъективного прогнозирования Эсп. Характерной особенностью прогнозирования является зависимость Θ_{cn} от времени упреждения t_{yn} , т.е. глубины прогноза. Чем дальше мы заглядываем в будущее, тем менее определенным оно нам представляется. С увеличением глубины прогноза объективно t yn *уменьшается* информация, которая потенциально может быть использована для прогнозирования $(I_{\Pi\Gamma}(\text{см. } \exists_{\Pi\Gamma}(6))), \text{ а следовательно } \textit{увеличивается}$ энтропия субъективного прогноза $\Theta_{cn} = f(I(t))$. Конкретный вид f(I(t)) определяется природой данного явления и особенностями свойственных явлению причинно-следственных связей. Когда прогноз понимается как любое обоснованное суждение о будущем состоянии процесса, то зависимость энтропии $\Im_{cn} = f(I(t)_{yn})$ отражает наиболее *общие* закономерности прогнозирования. Цели прогнозирования вытекают из содержания принимаемых на основе прогноза решений. Требования по точности прогноза могут быть выражены через допустимую неопределенность прогноза Эдоп, которая в простейшем случае определяется как сумма энтропий

прогнозируемых параметров будущего состояния СППР: $\Theta_{\text{доп}} = \sum_{i=1}^{n} \Theta_{i}^{\text{доп}}$, где n- число параметров состояния.

Наш взгляд на возможности научного предвидения (прогнозирования) базируется на следующем суждении. Если исследования настоящего и прошлого поведения процесса (объекта) позволяют выявить устойчивые связи, отношения между характеристиками процесса и на их основе сформулировать объективные закономерности, то с помощью этих закономерностей возможно и научное предвидение. Иными словами, существование объективных законов развития процессов определяет принципиальную возможность прогнозирования, которая может быть реализована по мере вскрытия этих законов наукой.

3. Математическая схема принятия решений в СППР «СОЛА»

Как известно, математическая схема принятия решений в СППР должна отражать основные закономерности процессов выработки решений в иерархической системе. Она является основой для синтеза моделей, методов, информационных технологий управления и эксплуатации СППР. Основные закономерности принятия решений сформулируем в виде фундаментального принципа последовательного разрешения неопределенности (ПНР). Согласно принципу ПНР процесс принятия решения должен представлять собой движение от обобщенного представления о целях, иерархическом характере деятельности, условиях функционирования многоуровневой управляемой системы, о показателях ее рационального поведения в целом до детального представления задач, условий, механизмов и критериев работы всех подсистем и элементов СППР «СОЛА».

Следовательно, поставленная задача сводится к установлению на языке формальной схемы взаимно однозначных отображений математических языков нижнего, среднего и верхнего уровней описания СППР «СОЛА», а также к выбору однозначных операторов для реализации этих отображений.

Для решения этой задачи формализуем сначала необходимые условия информационного единства многоуровневого формального описания СППР и построения системы ее моделей. Представим лингвистическую структуру многоуровневого модельного описания системы в виде взаимосвязанных языков трех уровней: нижнего – Я1, среднего – Я2 и верхнего - ЯЗ как множеств словарей исходных понятий на соответствующих уровнях. Элементами этих множеств являются параметры описания СППР:

$$\Pi 1 = \{ \alpha_i \}, \quad \Pi 2 = \{ \beta_j \}, \quad \Pi 3 = \{ \gamma_k \}, \quad (8)$$

где $i \in I_{\alpha}$, $j \in J_{\beta}$, $k \in K_{\gamma}$;

 $I_{\alpha}, J_{\beta}, K_{\gamma}$ – число параметров, описывающих систему на каждом уровне обобщения.

Язык Я $1 = \{\alpha_i\}$ реализует наиболее подробное описание системы и называется базовым языком. Языки других уровней описания системы являются производными от базового языка в том смысле, что любое понятие вышестоящего уровня опирается на понятия нижестоящего уровня или базового языка. В межуровневых отношениях языков моделирования эта зависимость выступает в виде формальных правил вычисления значений параметров по числовым значениям группы параметров нижестоящего уровня. Выразим эту зависимость в виде операторных отображений $F_{\rm H2}$ и $F_{\rm H3}$:

$$F_{\text{M2}}: \text{M1} \to \text{M2}, \ F_{\text{M3}}: \text{M2} \to \text{M3}.$$
 (9)

Предполагается, что существуют также операторы обратного отображения языка верхнего уровня на язык нижних уровней описания СППР:

$$\overline{F}_{R1}: R2 \rightarrow R1, \ \overline{F}_{R3}: R3 \rightarrow R2.$$
 (10)

Из (9) и (10) следует, что и элементы языков различных уровней должны однозначно соотноситься друг с другом. Тогда оператор $F_{\beta i}$ формирования понятий элементов языка Я2 из элементов языка Я1 и оператор $F_{\gamma k}$ формирования элементов языка ЯЗ из элементов языка Я2 описывают соответствующие взаимнооднозначные отображения:

$$F_{\beta j}: \{\alpha_{ij}\} \rightarrow \beta_{j}, F_{\gamma k}: \{\beta_{jk}\} \rightarrow \gamma_{k}.$$
 (11)

Аналогично операторы $\overline{F}_{\beta k}$ и $\overline{F}_{\alpha j}$ задают обратные отображения элементов вышестоящих языков в соответствующие множества элементов языков нижестоящих уровней:

$$\begin{split} \overline{F}_{\beta k}:&\gamma_k \to \left\{\beta_{jk}\right\}, \ \overline{F}_{\alpha j}:&\beta_j \to \left\{\alpha_{ij}\right\}, \quad \text{(12)} \end{split}$$
 где
$$\left\{\alpha_{ij}\right\} \subset \left\{\alpha_i\right\} \text{ и } \left\{\beta_{jk}\right\} \subset \left\{\beta_j\right\}. \end{split}$$

Поскольку каждому понятию вышестоящего языка соответствует свой оператор прямого и обратного отображения, то операторы взаимнооднозначного отображения языков представляют собой множества:

$$F_{\mathfrak{A}2} = \left\{ F_{\beta j} \right\}, \quad F_{\mathfrak{A}3} = \left\{ F_{\gamma k} \right\},$$

$$\overline{F}_{\mathfrak{A}2} = \left\{ \overline{F}_{\beta k} \right\}, \quad \overline{F}_{\mathfrak{A}1} = \left\{ \overline{F}_{\alpha j} \right\}.$$
(13)

На основании соотношений (9) – (13) заключаем, что для соблюдения принципа информационного единства каждому описанию конкретного состояния системы на языке нижестоящего уровня должно соответствовать единственное значение параметров описания этого состояния на вышестоящем уровне.

Пусть $m_{\alpha i}$, $m_{\beta j}$, $m_{\gamma k}$ – численные значения какого либо параметра m для соответствующих уровней описания системы. Тогда должна существовать такая последовательность операторов отображения $S_{\bf g}$, которая ставит в соответствие количественное описание объекта на нижнем уровне количественному описанию этого состояния на вышестоящем уровне:

$$S_{\mathcal{A}2}: M_{\mathcal{A}1} = \left\{ m_{\alpha i} \right\} \rightarrow M_{\mathcal{A}2} = \left\{ m_{\beta j} \right\},$$

$$S_{\mathcal{A}3}: M_{\mathcal{A}2} = \left\{ m_{\beta j} \right\} \rightarrow M_{\mathcal{A}3} = \left\{ m_{\gamma k} \right\}, \qquad (14)$$

$$\forall_{i} \in I_{\alpha}, \ \forall_{i} \in J_{\beta}, \ \forall_{k} \in K_{\gamma}.$$

Следовательно, для каждого элемента языка вышестоящего уровня можно записать свои операторы отображения $S_{\beta\, j}$ и $S_{\gamma\, k}$:

$$S_{\beta j}: \{m_{\alpha j}\} \to m_{\beta j},$$

$$S_{\gamma k}: \{m_{\beta j}\} \to m_{\gamma k}.$$
(15)

Обратный переход сверху вниз в иерархии описаний СППР неоднозначен: каждому конкретному количественному описанию состояния системы на языке верхнего уровня соответствует множество описаний этого состояния на языке нижнего уровня, т.е существует оператор *обратного* отображения $S_{\rm g}$, формирующий множество исходных описаний на языке нижестоящего уровня:

$$\bar{S}_{R2}: M_{R3} \to \{M_{R2}\} = \Omega_{R2},$$

 $\bar{S}_{R1}: M_{R2} \to \{M_{R1}\} = \Omega_{R1},$
(16)

где $\Omega_{\rm M2}$ – множество состояний, описанных на языке Я2, соответствующих единственному состоянию, описанному на языке ЯЗ; для $\Omega_{\rm Я1}$ – аналогично. Отображения (16) подсказывают следующую идею обоснования необходимого числа уровней формального описания СППР. Если на заданных множествах $\Omega_{\rm H1}$ и $\Omega_{\rm H2}$ ввести меры $d_{\rm H1}$ и $d_{\rm H2}$, отражающие степень агрегирования и деагрегирования описания системы, то о величине меры можно косвенно судить по числу ситуаций нижнего уровня описания, соответствующих одной ситуации вышестоящего уровня. Если мера «мала», то система моделей СППР становится многоуровневой и сложной в эксплуатации, а если «велика», то система моделей огрубляется с потерей информации и становится неадекватной реальным условиям. Компромисс достигается эмпирическим путем с введением некоторого порога сложности описания и проверки корректности операторов (14) – (16), обеспечивающих соответствие языков представления системы на разных уровнях иерархии описания. Проверку обычно проводят с помощью моделей системы. Пусть т $\mathfrak{m}_{\mathfrak{g}_1}$, $m_{\it H2}$ и $m_{\it H3}$ – множества моделей, описывающих

функционирование СППР соответственно на нижнем, среднем и верхнем уровнях обобщения. Входную информацию, описывающую исходное состояние системы в модели на языках Я1, Я2, Я3 (8), обозначим соответственно $I_{BX}^{Я1}$, $I_{BX}^{Я2}$, $I_{BX}^{Я3}$. Результаты моделирования в виде выходной информации, описывающей будущее состояние системы на тех же языках, обозначим через $I_{BIX}^{Я1}$, $I_{BIX}^{Я2}$, $I_{BIX}^{Я3}$. Процессы моделирования представим в виде операторного преобразования входной информации в выходную:

$$m_{\Re 1}: I_{BX}^{\Re 1} \to I_{Bbix}^{\Re 1},$$
 $m_{\Re 2}: I_{BX}^{\Re 2} \to I_{Bbix}^{\Re 2},$
 $m_{\Re 3}: I_{BX}^{\Re 3} \to I_{Bbix}^{\Re 3}.$
(17)

С помощью оператора \hat{S}_{S} получаем *входную* информацию I_{BX}^{S2} и I_{BX}^{S3} путем операторного преобразования *входной* информации I_{BX}^{S1} , представленной на *базовом языке* S_{S}^{S1} :

$$\hat{S}_{92}: I_{BX}^{91} \to I_{BX}^{92} ,$$

$$\hat{S}_{93}: I_{BX}^{92} \to I_{BX}^{93} .$$
(18)

Оператор $\hat{S}_{\it S}$ может быть использован для преобразования и *выходной* информации I $^{\it S1}_{\it Bbx}$:

$$\hat{S}_{\mathfrak{A}2}: I_{\text{BMX}}^{\mathfrak{A}1} \to I_{\text{BMX}}^{\widehat{\mathfrak{A}2}},
\hat{S}_{\mathfrak{A}3}: I_{\text{BMX}}^{\mathfrak{A}2} \to I_{\text{BMX}}^{\widehat{\mathfrak{A}3}}.$$
(19)

Введем допустимые отклонения $\varepsilon_{\rm Д}^{\rm S2}$ и $\varepsilon_{\rm Д}^{\rm S3}$ значений параметров состояния системы при переходе с языка описания Я1 на язык Я2 и с языка Я2 на язык Я3. Тогда сравнение результатов моделирования (17) позволяет сформулировать *необходимое условие соответствия описаний* на языках разного уровня обобщения:

$$\begin{vmatrix} I_{BX}^{\Re 2} - I_{BbiX}^{\widehat{\Re 2}} \end{vmatrix} \le \varepsilon_{\mathcal{I}}^{\Re 2} ,$$

$$\begin{vmatrix} I_{BX}^{\Re 3} - I_{BbiX}^{\widehat{\Re 3}} \end{vmatrix} \le \varepsilon_{\mathcal{I}}^{\Re 3} ,$$
(20)

где $\varepsilon_{\rm A}^{\rm S2}$ и $\varepsilon_{\rm A}^{\rm S3}$ определяются мерами $d_{\rm S1}$ и $d_{\rm S2}$ агрегирования и дезагрегирования описания системы. Поскольку в формальном описании СППР оператор $\hat{\rm S}_{\rm S}$ на практике осуществляет функцию осреднения информации, то в большинстве случаев для операторных отображений используются модели нижестоящего уровня:

$$\hat{S}_{\text{M2}} : \left\{ I_{\text{BX}}^{\text{M1}}, m_{\text{M1}} \right\} \to I_{\text{BX}}^{\text{M2}},
\hat{S}_{\text{M3}} : \left\{ I_{\text{BX}}^{\text{M2}}, m_{\text{M2}} \right\} \to I_{\text{BX}}^{\text{M3}}.$$
(21)

В этом случае выражение (21) служит условием одновременного согласования информации и моделей в иерархии формального описания СППР. Выражения (9) – (21) в совокупности составляют необходимые условия информационного единства многоуровневого формального описания системы.

Для получения окончательной формальной схемы принятия решений в СППР «СОЛА» введем порог сложности, т.е. дополним полученные соотношения (8) – (21) ограничениями на объемы словаисходных $Я1 = {\alpha_i},$ понятий языков $93 = \{\beta_i\}, \quad 93 = \{\gamma_k\}$ (см. (8)). Эти ограничения имеют вид:

$$i = (1, 2, ..., |I_{\alpha}|); |I_{\alpha}| \le I_{\alpha}^{\pi};$$

$$j = (1, 2, ..., |J_{\beta}|); |J_{\beta}| \le J_{\beta}^{\pi}; ,$$

$$k = (1, 2, ..., |K_{\gamma}|); |K_{\gamma}| \le K_{\gamma}^{\pi};$$
(22)

где $I_{\alpha}^{\,\pi},\ J_{\beta}^{\,\pi},\ K_{\,\gamma}^{\,\pi}$ – величины заданных значений мощностей соответствующих множеств I_{α} , J_{β} , K_{γ} , характеризующих объемы словарей указанных языков многоуровневого описания СППР.

В терминах нашего энтропийного подхода порог сложности, выраженный ограничениями (22), представим в виде величины предельной неопределенности информации, с которой может оперировать лицо, принимающее решение (ЛПР). По аналогии с выражением (6) назовем порог сложности каждой задачи, решаемой на каждом этапе принятия решения, полной предельной энтропией і-й задачи n-го уровня обобщения, т.е. $\Im_{i}^{III}(n)$. Поскольку каждая задача принятия решения не должна превышать соответствующего порога сложности, то для 1-го этапа принятия решения, состоящего из одной задачи, можно записать условие неопределенности согласно (6) в виде:

$$\begin{split} & \vartheta_i^{\Pi\Pi}\left(n=1\right) \geq \vartheta_{\Pi}\left(n=1\right) = \\ & = \vartheta_{\Pi\Gamma}\left(n=1\right) + \vartheta_{O\Gamma}\left(n=1\right) + \vartheta_{CB}\left(n=1\right). \end{split}$$

В общем виде для любого уровня (этапа) принятия решения это условие определяется выражением:

$$\sum_{i=l}^{D} \vartheta_{i}^{\Pi\Pi}\left(n\right) \geq \sum_{i=l}^{D} \vartheta_{i}\left(n\right) = \vartheta_{\Pi}\left(n\right); n = l, 2, ..., M;$$

D-числозадач принятия решений;

$$M$$
 – число уровней иерархии решений; (23) $\Theta_{i\pi}(n) = \Theta_{i\pi r}(n) + \Theta_{i\sigma r}(n) + \Theta_{ics}(n);$ (i = 1, D);

где і - номер последовательно решаемой задачи на n -м уровне принятия решений,

D – число задач принятия решений; $\Theta_{i\pi}(n)$ –

полная энтропия і -й задачи п -го уровня решений; $\Theta_{i\, {
m III}}(n)$ – энтропия потенциально готовой для принятия решений информации; $\Theta_{ior}(n)$ – энтропия объективно готовой для принятия решений информации; $\Theta_{icb}(n)$ – энтропия субъективного выбора решения і -й задачи.

Полная энтропия Э принятия решений в целом должна удовлетворять выполнению условия:

$$\Im_{\pi} = \sum_{n=1}^{M} \sum_{i=1}^{D} \Im_{i\pi}(n) \le \Im^{\Pi\Pi} = \sum_{n=1}^{M} \sum_{i=1}^{D} \Im_{i}^{\Pi\Pi}(n).$$
 (24)

Из условий (23) и (24) следует, что вертикальная декомпозиция принятия решений по уровням и горизонтальная декомпозиция по решаемым задачам определяется степенью сложности проблемы, т.е. величиной полной энтропии решения \mathfrak{I}_{Π} и порогами сложности отдельных задач $\mathfrak{I}_{i}^{\Pi\Pi}(n)$ декомпозиции этого решения. Поэтому искомый оператор декомпозиции \widehat{D} , определяющий структуру {M,D} принятия решений, в зависимости от величины полной энтропии решения $\, \vartheta_{\rm II} \, ,$ представляет собой интерактивный процесс последовательного сверху вниз определения уровней описания проблемы и числа задач последовательного принятия решений на каждом уровне. При этом для каждой выделенной задачи принятия решений определяется порог сложности и сравнивается с полной энтропи $e\ddot{u}$ ее решения. Если $\vartheta_{i}^{\Pi\Pi}(n) \leq \vartheta_{i\Pi}(n)$, то увеличивают число задач и вновь проводят сравнение. Если $\Theta_{i}^{\text{пп}}(n)$ на много превышает $\Theta_{in}(n)$, то уменьшают число задач этого уровня. Итерации прекращаются при достижении рациональной декомпозиции, т.е. при условии, когда для всех $\exists_{i\pi}(n) \in \exists_{\pi}(n)$ значения $\vartheta_{i\pi}(n)$ и $\vartheta_{i}^{m\pi}(n)$ становятся допустимо близкими. Представим этот процесс в виде опера торного отображения:

$$D: \left\{ \Im_{\pi}, \left\{ \Im_{i}^{\Pi\Pi} \left(\mathbf{n} \right) \right\} \right\} \rightarrow \left\{ M, D \right\}. \tag{25}$$

Таким образом, условия (23), (24) и отображение (25) представляют один из конструктивных вариантов формализации принципа ПРН в процессе принятия решений на базе полученных необходимых условий (9) – (21) информационного единства многоуровневого описания СППР «СОЛА».

Заключение

На основе полученных необходимых условий (9) - (21) информационного единства многоуровневого описания компьютерной СППР, дополненных порогом сложности в виде ограничений (22), синтезирована искомая формальная схема принятия решений в СППР «СОЛА». Порог сложности (22) представлен в виде величины предельной неопределенности информации, с которой может оперировать ЛПР. Условия (23), (24) в совокупности с отображением (25) математически определяют предложенный авторами конструктивный вариант формализации принципа последовательного разрешения неопределённости в СППР «СОЛА».

Литература

- 1. Сироджа И.Б. Формализация функционирования и управления системой поддержки решений при проектировании стапельно-сборочной оснастки летательных аппаратов / И.Б. Сироджа, А.А. Бабушкин // Радіоелектронні і комп'ютерні системи. 2008. № 4 (31). С. 75-86.
- 2. Трахтенгерц Э.А. Компьютерная поддержка принятия решений / Э.А. Трахтенгерц. М.: СИН-ТЕГ, 1998. 376 с.
- 3. Ларичев О.И. Объективные модели и субъективные решения / О.И. Ларичев. М.: Наука,. 1987. 320 с.

- 4. Ларичев О.И. Качественные методы принятия решений / О.И. Ларичев, Е.М. Мошкович. М.: Наука, 1996. 208 c.
- 5. Шеннон К. Работы по теории информации и кибернетике / К. Шеннон. М.: Изд-во иностр. лит., 1963. 830 с.
- 6. Сироджа И.Б. Квантовые модели и методы искусственного интеллекта для принятия решений и управления / И.Б. Сироджа. К.: Наукова думка, 2002. 490 с.
- 7. Бабушкин А.А. Методологические основания разработки систем автоматизированного проектирования приспособлений для сборки летательных аппаратов / А.А. Бабушкин // Открытые информационные и компьютерные интегрированные технологии: сб. научн. тр.; сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». Х., 2007. Вып. 37. С. 25-34.
- 8. Бабушкин А.А. Обеспечение точности изготовления и точности увязки сборочных приспособлений в авиастроении / А.А. Бабушкин // Вісник Інженерної академії України. — 2008. —№1. — С. 8-11.
- 9. Бабушкин А.И. Моделирование и оптимизация сборки летательных аппаратов / А.И. Бабушкин. М.: Машиностроение, 1990. 240 с.

Поступила в редакцию 6.01.2009

Рецензент: д-р техн. наук, профессор кафедры системотехники Э.Г. Петров, Харьковский национальный университет радиоэлектроники, Харьков.

ФОРМАЛІЗАЦІЯ КОМП'ЮТЕРНОЇ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ ПРИ ПРОЕКТУВАННІ СТАПЕЛЬНО-СКЛАДАЛЬНОГО ОСНАЩЕННЯ ЛІТАЛЬНИХ АПАРАТІВ

І.Б. Сіроджа, О.А. Бабушкин

Запропоновано формалізацію процесу комп'ютерної підтримки прийняття рішень при проектуванні стапельно-складального оснащення літальних апаратів (СОЛА). Розроблено математичну схему прийняття рішень в ієрархічній системі підтримки прийняття рішень (СППР) при проектуванні СОЛА, на основі формалізації фундаментального принципу послідовного вирішення невизначеності з використанням ентропії рішень. Прийняття рішень розглянуте як ієрархічний процес цілеспрямованого перетворення поточної інформації про стан функціонування СППР в інформацію про найбільш раціональний шлях досягнення системою бажаного стану в майбутньому.

Ключові слова: підтримка прийняття рішень, база квантів знань, формальна схема підтримки рішень у СППР «СОЛА».

FORMALIZATION OF COMPUTER SUPPORT OF MAKING A DECISION AT PLANNING OF ASSEMBLING RIGGING AIRCRAFTS

I.B. Sirodzha, A.A. Babushkin

Formalization of process of computer support of making a decision is offered at planning of the assembling rigging of aircrafts (SOLA). The mathematical chart of making a decision is developed in the hierarchical system of support of making a decision (SPPR) at planning of SOLA, on the basis of formalization of fundamental principle of successive permission a vagueness with the use of энтропии of decisions. Making a decision is considered as a hierarchical process of purposeful transformation of current state information functioning of SPPR in information about the most rational way of achievement of the desirable state the system in the future.

Key words: support of making a decision, base of quanta of knowledges, formal chart of support of decisions in SPPR of «SOLA».

Сироджа Игорь Борисович – д-р техн. наук, проф., профессор кафедры инженерии программного обеспечения, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков, Украина.

Бабушкин Александр Анатольевич – ст. преподаватель кафедры финансов, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков, Украина.