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CRACKED BLADE DYNAMIC RESPONSE MODEL  

 
Simulation of the cracked blade dynamic response on periodically varying load is presented. Crack induced 
nonlinearity is taken into account by contact simulation between crack sides. Such approach allows simulating 
crack breathing process in accurate way. The problem of nonlinearity is solved by harmonic balance method ap-
plication. As nonlinear degrees of freedoms the relative displacements between crack sides are accepted that suf-
ficiently decrease time expenses during nonlinear solution process.  
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Introduction 
 
The aim of the presented study is to offer the model 

of the cracked blade behaviour which contains as much 

as possible information to describe realistically its iden-

tification process.  

Cracked blade identification is very important prob-

lem and can be divided in the following tasks: (I) under-

standing of the crack nature appearance and its subse-

quent propagation; (II) precision of the crack most 

probable location depending on particular external con-

ditions; (III) defining crack probable critical size that 

allows or forbids consequent operation of the damaged 

assembly; (IV) development of the appropriate cracked 

blade model; (V) application of the blade amplitude 

measurement methods with goal of cracked blade iden-

tification [3].  

The cracked blade model was created and involved 

introducing of the relative DOF between coinciding 

nodes of the crack location region. It was necessary to 

implement a reduction procedure to the cracked blade 

model for computational expenses decreasing, which 

are high at full solution, moreover, in the case of 

nonlinear solution methods requiring iteration proce-

dures. The reduction approach was applied using crack 

location as interface between two blade model parts. 

They were considered as sub-structures for subsequent 

fixed-interface method application [10]. 

The questions of crack nonlinear behaviour under 

periodically varying load were considered and the solu-

tion on the base of harmonic balance method application 

was proposed. Application of the nonlinear solution 

procedure depends on centrifugal forces forming initial 

gap. Such gap can result in always open crack case and 

thus in useless of crack nonlinearity simulation.  

 
1. Linear crack case 

 
The linear presentation of the cracked blade consists 

in simulation of the crack presence supposing the crack 

to be always open. Generally, crack influence on dy-

namic response is simulated by stiffness reduction when 

solving eigenvalues problem. The crack models used in 

these analyses are divided into two categories:  

− open crack models – linear statement; 

− opening and closing or breathing crack models – 

nonlinear statement [1, 2, 11].  

Most researchers use always open crack models in 

their studies and have claimed that the change in natural 

frequencies might be a parameter for crack presence 

detection. We see that eigenfrequencies magnitudes for 

all modes become smaller in comparison to uncracked 

blade case (Table 1). 

Let the blade dynamic behaviour be described by the 

equations of motion  

                  C K ,i te ω
ξ+ + =Mu u u F&& &                  (1) 
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where M, Cζ, and K are the symmetric mass, damping, 

and stiffness matrices of the disk model; F – amplitudes 

vector of external excitation force. Damping matrix was 

calculated on the base of structural damping ratio ξ  and 

stiffness matrix ζ = ξC K . 

 

 
a                                                                                       b 

Fig. 1: a – cracked blade model subjected to dynamic response analysis;  
b – cracked zone finite-elements representation 

Table 1 
 

Change of cracked blade eigenfrequencies due to crack presence 
Deviation from uncracked blade model, % 

Trailing edge Leading edge 

 
Crack 
location 
hc, mm 

 
Crack 
size a, 
mm 

1st 
mode 

2nd 
mode 

3rd 
mode 

4th 
mode 

1st 
mode 

2nd 
mode 

3rd 
mode 

4th 
mode 

2 0,0035    0,0203    0,0297    0,3186 0,3664 0,2729 0,1949 0,8465 
4 0,0247    0,1503    0,1781    2,1491 2,3357 1,7400 1,1844 5,1722 

 
10 

6 0,0776    0,4550    0,4649    5,4869 5,8197 4,4378 3,2373 12,8839 
 
Then, in the linear case we assume that system re-

sponse is steady-state and has the form 

( ) i tX t xe ω= that yields to the set of algebraic equations  

                            x =H F ,                                (2) 

where 2 i ξ= −ω + ωH K M C  is the impedance matrix at 

the excitation frequency ω . 

Application of external excitation forces is shown on 

fig. 2. Forces are applied in points of blade tip: at lead-

ing and trailing edges.  

 
2. Nonlinear crack case 

 
The assumption that crack is always open in vibra-

tion is not realistic because compressive loads may 

close the crack. The main results obtained through 

simulations or experimental studies were that the ob-

served decrease in the natural frequencies is not suffi-

cient to be described by a model of open crack [12]. So, 

the real changes in resonances can be calculated only on 

the base of nonlinear cracked blade dynamic model. 

Two approaches of crack breathing process simulation 

might be used: 

− periodical varying stiffness introduction [11]; 

− contact simulation between crack sides in the 

moment of crack closing [2]. 

In most cases analytical solutions of such dynamical 

systems are practically impossible to obtain. Thus re-

searchers and engineers turn to numerical techniques. 

Firstly, systems are discretized as a set of nonlinear 

ordinary differential equations with high dimension. 
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Then traditional direct time integration solution tech-

niques are then applied. However, this process is ex-

tremely time-consuming. Therefore, it seems to be nec-

essary to examine more efficient techniques to reduce 

the computational costs. One such technique is har-

monic balance (HB) method [5 – 9]. Earlier a simple 

mathematical model able to simulate such nonlinearity 

was created [2]. In such way it was possible to prove 

correctness of the method formulation by comparing its 

results with direct integration. Now this approach can be 

projected on more complex 3 dimensional cracked blade 

model.  

In nonlinear case system motion equation (1) is ex-

pressed by: 

C K ( ) ( ),nl u tξ+ + + =Mu u u F F&& &           (3) 

where Fnl – nonlinear force vector. 

 Then we are searching for the u(t) in the form of the 

truncates trigonometric series of k = 1, …, N harmonics: 

0
1 1

( ) cos sin ,
N N

k k
k k

u t a a k t b k t
= =

= + ω + ω∑ ∑          (4) 

where a0, ak, bk – Fourier series coefficients, ω – 

excitation frequency. 

 If we put equation (4) to (3) the last would be 

changed to: 

                          ( ) ,+ =Au b u C% %                              (5) 

where A is diagonally symmetric in block matrix: 
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where b – nonlinear member; C – external excitation 

force vector and u% – vector of Fourier series 

coefficients.    

Nonlinear solution requires taking into account 

system nonlinearity, in our case – nonlinear contact 

force between two nodes. The governing equation (5) of 

HB method represents by itself the system of nonlinear 

equations to that some linear transformation could be 

applied for a Newton-type iterative solver of nonlinear 

algebraic equations system implementation [2]. 

Nonlinear forces are calculated only for degrees of 

freedom (DOF) accepted as nonlinear. In our case they 

are relative vertical displacements between contact 

nodes. For the contact force determination the Lagrange 

multipliers or penalty methods could be utilized [1]. The 

easiest way is to use the penalty method to approximate 

these forces by the following expression: 

                  ,
2

nl nl
nl nl

u u
F k

⎛ ⎞+
= ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
                      (7) 

where knl – penalty stiffness and  unl –  nonlinear DOF 

displacement. Penalty stiffness value should be chosen 

to provide minimum penetration in the contact zone.  

It should be mentioned the disadvantage of such 

nonlinear force approximation when it crosses the zero. 

So then unl = 0, /nl nlF u∂ ∂ → ∞ . In order to pass up 

such problem the smoothing function should be applied. 

In the work [4] tangent function was used for 

smoothing.  We applied it with some modification and 

have gotten the next expression: 

           1 arctan( ) ,
2nl nl nl nlF k su uπ⎛ ⎞= −⎜ ⎟π ⎝ ⎠

         (8) 

where s – coefficient, the sufficiently high level of that 

is required to accurately represent force-displacement 

relationship smoothing. 

 
3. Results of harmonic balance method  

application to cracked blade model 
 

The presented above nonlinear model formulation of 

the cracked blade describes accurately enough the con-

tact interaction between crack sides. For the last one it is 

very important to have precise dynamic behavior model 

due to very small difference of the cracked blade re-

sponse with the relation to the unckacked one, even 

when passing through the resonance. Therefore, the 

frequency domain analysis should be accomplished for 

the diapason that covers minimum three or four first 

eigenfrequenciesy of vibration, which are often induced 

in gas-turbine engines.  

Due to model size and its higher level of flexibility 
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in comparison with 2d model the penalty contact stiff-

ness value was accepted to be the same for all contact 

pairs and equal to knl = 109N/m. For 3d model the num-

ber of contact pairs depends on crack length. With the 

purpose to be able to fill a difference of the eigenfre-

quencies changes with crack length and at the same time 

to ensure the number of finite elements (DOF) to be 

processed we accepted level of meshing as 1 line of 

contact pairs on each 2mm of crack length. And each 

line of contact pairs consisted of 2 contact pairs: blade 

face 1 contact pair and blade face 2 contact pair (fig. 1 

b). Consequently, for 2mm crack we had one contact 

pair and for 4mm crack – 2 contact pairs correspond-

ingly.  
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          a                                                                                         b 

Fig. 2. System response in time domain at “crack” point (a = 2 mm, ω = 3500 rad/sec):  
a – trailing edge crack; b – leading edge crack 
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a                                                                                         b 

Fig. 3. System response in time domain at “force” point (a = 2 mm, ω = 3550 rad/sec):  
a – trailing edge crack; b – leading edge crack 

 
The scheme of blade model loading is presented on 

Fig. 1, a. Two point forces with amplitude 0,2N are 

applied at two tip nodes normally to blade tip section. 

One force is applied at leading edge tip node and an-

other at trailing edge tip node. Next these two nodes are 

accepted as measurement points of blade tip deflection 

and their data will be used for frequency response func-

tion construction. The solutions of cracked blade linear 

and nonlinear models formulations in the time domain 

are reconstructed by inverse Fourier transformation on 

the base of equation (5) solution. Then they are shown 

for: relative vertical displacement between two coincid-

ing contact nodes – “crack point” (fig. 2 and 4) and 

excitation force application nodes horizontal displace-
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ment – “tip point” (fig. 3 and 5). 

From the results of cracked blade model solution in 

time domain with introduced crack of 2 mm length on 

trailing edge it is seen that the crack presence influence 

on blade tip response is almost invisible. It is also 

grounded by modal analysis results where such case has 

the minimum shift of the first eigenmode frequency 

(Table 1). For the case when crack is located on leading 

edge due to higher level of stiffness reduction we have 

visually detectable difference between both linear-

nonlinear solutions.  
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a                                                                                         b  

Fig. 4. System response in time domain at “crack” point (a = 4 mm, ω = 3500 rad/sec):  
a – trailing edge crack; b – leading edge crack 
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a                                                                                         b  

Fig. 5. System response in time domain at “force” point (a = 4 mm, ω = 3550 rad/sec):  
a – trailing edge crack; b – leading edge crack 

 

Analyzing results of cracked blade model response 

in time domain with the cracks of 4 mm it is evident that 

the influence of crack is stronger if to compare with 

2mm crack even for crack location at the trailing edge.  

The number of contact pairs through the crack thickness 

is 2 (external and internal). This allows more accurate 

describing of displacements between crack sides in 

dynamics. For 4mm crack relative vertical displace-

ments between contact nodes of external and internal 

pairs are nearly equal for trailing edge crack option 

whereas for leading edge crack the internal displace-

ments are approximately in 2 times less then external 

contact pair displacements (fig. 4).  

Also it is necessary to emphasize considerable dif-
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ference between nonlinear model solution and linear 

model solution for some crack location cases does not 

reflect real difference in amplitudes. Generally it is 

resulted by resonance shift because excitation frequency 

is not far from first eigenmode frequency of the linear 

model or nonlinear model. The contraposition in time-

history of relative displacements between crack sides 

for two blade faces is caused by excited natural mode. 

The frequency point of 3550 rad/sec is located in the 

range of the first blade flexural mode inducing such 

contrast difference. 

For all simulations in this chapter number of har-

monics retained for nonlinear analysis was equated to 5. 

In order to accelerate the analysis at frequency response 

function construction 2 harmonics were used as the y 

shown almost the same results at both “crack” and “tip” 

points. 

 
4. Frequency response function  

of the cracked blade model 
 

The frequency response function construction of the 

cracked blade model was performed for the same cases as 

system response simulation in time domain. Comparison 

of the frequency response was fulfilled between linear 

cracked, nonlinear cracked and linear uncracked blade 

models. Frequency range covered first three eigenmodes. 

As we did not know exactly the eigenfrequencies of the 

cracked blade model taking into account crack induced 

nonlinearity, the frequency discretisation was done 

around eigenmodes frequencies of the linear cracked and 

uncracked models. Due to this sometimes the resonances 

picks of the nonlinear model seem to be not smooth and 

with amplitude a bit lower as it would be.  

In the previous chapter we dealt with system solu-

tion in particular frequency point (in our case – 3550 

rad/sec) having initialized the nonlinear procedure by 

linear approximation. Such approach is suitable in the 

frequency diapasons situated far from a resonance, 

where difference between linear and nonlinear solutions 

is almost barely visible. Whereas in the resonance area 

such initialization can lead to longer convergence proc-

ess or even to its unconvergence. To tackle this problem 

during frequency response analysis as initialization for 

particular frequency point the nonlinear solution ob-

tained at the previous point was used. Another measure 

for problems of solution unconvergence avoiding deals 

with frequency continuation approaches [9] where next 

frequency point is seeked by prediction on the base of a 

polynomial approximation. 

Frequency response for the cracked blade with crack 

of 2mm reflects said in the previous chapter: such crack 

size can have visible influence only for leading crack 

case. When crack is located on trailing edge its effect 

became more or less observable for forth higher order 

eigenmodes (fig. 6). The results of such crack size can 

be nominated as the minimum crack size around which 

it will be almost impossible to identify crack presence in 

the blade. Such crack detectability could be possibly 

more affected when crack blade will be considered 

within frameworks of the bladed disk model. 

In the 4mm crack case the crack influence is evident 

at all modes for both leading and trailing edge crack 

locations. Blade tip amplitude of cracked blade shows 

sufficiently high difference with uncracked one even at 

trailing edge crack case. When crack is located at leading 

edge the crack presence detectability grows due to reso-

nance peaks shift. Such crack size as the most representa-

tive will be used in following studies in conjunction with 

tip-timing method simulation [3] and development of the 

bladed disk model containing cracked blade.  

 
Conclusions 

 
Frequency response function construction was the 

final stage of the cracked blade nonlinear dynamical 

model development. This model allows us cracked 

behavior describing at any loading amplitude and exci-

tation frequency. We can more or less accurately see 

crack influence on blade model dynamic behavior and 

we can derive from the developed model some very 

important factors which can be used for crack presence 

detection comparing them with uncracked blade:  

− eigenmode frequency reduction; 

− increase of the tip response amplitude; 
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All these factors are very important and can be ac-

cepted as diagnostics signs and used in tip-timing method 

simulation. By this method it is possible to reconstruct 

approximately a blade frequency response passing 

through engine rotational frequency range. But in reality 

it will not be so easy task, because we will meet all this 

parameters random spread caused by inequalities of indi-

vidual blades under investigation and at the same time 

spread of different external factors which imply on each 

blade dynamic behavior. The next stage of the study will 

deal with bladed disk dynamic model development con-

taining one or some cracked blade, able to take into ac-

count mistuning effect, excitation force frequency lag and 

cracked blade dynamic localization. 
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Fig. 6. Blade frequency response function (a = 2 mm): a – trailing edge crack; b – leading edge crack 
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Fig. 7. Blade frequency response function (a = 4mm): a – trailing edge crack; b – leading edge crack 
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