УДК 621.746

Л.П. КЛИМЕНКО, В.И. АНДРЕЕВ, Л.М. ДЫХТА

Николаевский государственный гуманитарный университет имени Петра Могилы, Николаев, Украина

СТРУКТУРООБРАЗОВАНИЕ В ЧУГУНЕ ГИЛЬЗ ДВС ПРИ РАЗЛИЧНЫХ СКОРОСТЯХ ПРОХОЖДЕНИЯ ЭВТЕКТОИДНОГО ПРЕВРАЩЕНИЯ

С целью выравнивания эпюры износа гильзы цилиндра ДВС рассмотрены режимы охлаждения внутренней поверхности центробежной отливки в эвтектоидном интервале температур, а именно — для получения литейной мелкопластинчатой перлитной структуры повышенной износостойкости в зоне верхнего бурта гильзы в 4...6 раз увеличивают интенсивность теплоотвода путем дифференцированной подачи жидкого хладагента. Металлическая матрица на рабочей поверхности гильзы состоит из сорбитообразного перлита, отдельных включений двойной фосфидной эвтектики, незначительных включений цементита и малых зерен феррита.

гильза цилиндра, чугун, центробежное литье, распределение графита, управляемое охлаждение, высокодисперсный перлит, износостойкость

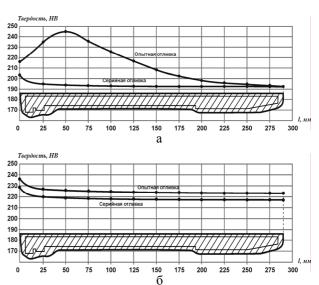
Введение

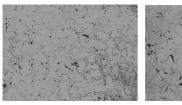
Гильза блока цилиндров двигателей внутреннего сгорания является ресурсоопределяющим элементом среди изнашиваемых деталей цилиндропоршневой группы. Наиболее важные параметры гильз достигаются использованием специальных высокотехнологичных видов производства, в том числе литейного [1, 2].

1. Формирование проблемы

В литейном комплексе ПО "Киев-трактородеталь" на центробежных установках с помощью системы принудительного охлаждения внутренней поверхности заготовок было отлито несколько опытных образцов гильз цилиндров различных типов двигателей, а именно – тракторных Д-240, СМД-60, СМД-18Н [3, 4].

В зависимости от массы заготовки время охлаждения изменялось от 25 с до 1 мин, а количество охлаждающей воды – от 0,5 до 1,5 кг на одну отливку. Варьируя массами воды, были отлиты гильзы цилиндров, имеющие твердость в районе ВМТ в пределах 200...250 НВ, а с высокой интенсивностью теплоотвода были получены заготовки с твердостью у верхнего бурта до 350 НВ (рис. 1).




Рис. 1. Показания твердости отливки 60.01102-11 на: а – внутренней поверхности; б – наружной поверхности

2. Решение проблемы

Для исследования микроструктуры чугуна из отливок гильз цилиндров тракторных дизелей вырезались образцы размером $20 \times 30 \times 15$ мм. Исследуемая плоскость шлифа соответствовала сечению отливки в районе ВМТ или составляла не менее 0,2 см². Сравнивались образцы из серийных отливок с твердостью 217 НВ и опытные образцы гильзы цилиндра с твердостью 285 НВ. Химический состав исследуемого чу-

гуна (% мас.): 3,23% C; 2,31% Si; 0,71% Mn; 0,48% Cr; 0,32% Cu; 0,19% Ni; 0,08% P; 0,05% S.

Металлографические исследования углерода в структуре чугуна проводились на микроскопе "Neophot". Включения графита имеют пластинчатую прямолинейную либо среднезавихренную форму (ПГф1-ПГф2) (рис. 2). Размер графитовых включений на шлифах находится в пределах от 20 мкм до 150 мкм (ПГд25-ПГд180). На опытном образце наблюдается равномерное распределение графита по площади шлифа (ПГр1), в то время как на серийной отливке распределение графитовых включений неравномерное (ПГр2), местами заметны колонии скоплений пластинчатого графита (ПГр3). Площадь включений графита - в пределах 8...12%. В результате увеличения периода первичной графитизации и "приглушения" вторичной графитизации в опытных гильзах преобладают более укрупненные пластины графита и весьма незначительное количество точечных включений.

а б Рис. 2. Графитовые включения в чугуне: а – заготовка без принудительного охлаждения, твердость 217 HB, х 100; б – заготовка с принудительным охлаждением, твердость 285 HB, х 100

Исследовали металлическую основу в трех образцах гильз цилиндров Д-240. Первый образец был вырезан из гильзы, отлитой центробежным способом в теплоизолированный кокиль без принудительного охлаждения. Скорость охлаждения 0,3...1 °С/с. Твердость образца 217 НВ. Охлаждение гильзы в эвтектоидном интервале температур, из которой был вырезан второй образец, проходило со скоростью 1...5 °С/с, за счет продувания ее сжатым воздухом. Твердость образца 241 НВ. Третий обра-

зец вырезался из гильзы, подверженной принудительному охлаждению водой. Скорость охлаждения – 15...20 °С/с. Твердость образца 305 НВ. Микроструктуры образцов представлены на рис. 3.

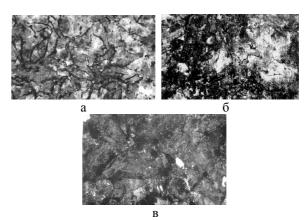


Рис. 3. Микроструктура серого чугуна (травление 4%-м раствором азотной кислоты в этиловом спирте) (х400): а – естественное охлаждение отливки; б – воздушное охлаждение отливки; в – водяное охлаждение отливки

При увеличении скорости охлаждения в эвтектоидном интервале температур значительно уменьшается площадь феррита на поверхности шлифа. Если в серийных образцах феррит находится в виде включений, занимающих 6...10% площади микрошлифа (П92 (Ф8)), то на опытных образцах площадь, занятая отдельными разрозненными включениями феррита, не превышает: 4% – для гильз, охлаждаемых воздухом (П96 (Ф4)), и 1% – для гильз, подверженных водяному охлаждению (П (Ф0)), что положительно сказывается на прочностных и износостойких свойствах гильз.

Анализ степени перлитизации структуры чугуна на серийном и опытных образцах, проведенный с применением электронного микроскопа (×1000), показал, что повышение скорости охлаждения отливки в эвтектоидном интервале температур существенно повышает дисперсность перлита. Если на микрошлифе серийного образца расстояние между пластинками цементита находится в пределах 0.5...0.8 мкм ($\Pi_{\rm Z}0.5$), то у образцов термообработан-

ных гильз цилиндров оно не превышает 0,3 мкм ($\Pi_{\rm д}$ 0,3), что играет важную роль в процессе улучшения антифрикционных качеств гильз цилиндров ДВС (рис. 4).

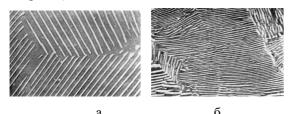


Рис. 4. Дисперсность перлита: а – серийной и б – опытной отливок (×1000)

Фосфидная эвтектика, наблюдаемая на опытных шлифах, по своему строению идентична той, которую мы видим на серийном микрошлифе, т.е. она тройная мелкозернистая или игольчатая (ФЭЗ-ФЭ4). Распределение ее на всех образцах равномерное или в виде разорванной сетки (ФЭр1-ФЭр2). Однако на микрошлифе серийной гильзы цилиндра заметно увеличение площади наибольших включений фосфидной эвтектики – до 4000 мкм² (ФЭп6000), в то время как на опытных образцах она не превышает 2000 мкм² (ФЭп2000). Это не снижает износостойкость чугуна, т.к. в данном случае роль фосфидной эвтектики не столь существенна, как для фосфористого чугуна.

Анализ твердости упрочненных отливок на внутренней поверхности в районе верхней мертвой точки проводился на больших (от 100 шт.) партиях заготовок. Твердость на внутренней поверхности в районе ВМТ в упрочненных заготовках стабильно превышает на 30...50 НВ твердость серийных отливок.

Заключение

Стабильно получаемая микроструктура чугуна гильз, подверженных принудительному охлаждению в интервале температур перлитного превращения, характеризуется следующими параметрами:

• цементит в структуре чугуна отсутствует или его содержание минимально (Ц2);

- пластинчатый перлит (Пт1) в металлической основе чугуна имеет максимально высокодисперсную структуру ($\Pi_{\Pi}0,3$);
- содержание феррита в структуре металла минимально (П96 (Ф4)) или полностью отсутствует (П);
- графитовые включения равномерно распределены и имеют пластинчатую прямолинейную либо среднезавихренную форму (ПГ10 ПГф1-2 ПГр1-2-3 (до 10%) ПГд25-180 (не более 150 мкм);
- фосфидная эвтектика в структуре металла тройная мелкозернистая, местами игольчатая; равномерно распределенная или в виде разорванной сетки; площадь включений ФЭп2000.

Литература

- 1. Абраменко Ю.В. Физико-химическая природа изнашивания чугунных гильз цилиндров ДВС // Двигателестроение. -1984. -№ 3. C. 38-40
- 2. Триботехника. Трибомеханика. Триботехнологии: В 3 т. / Под общ. ред. М.В. Чернеця, Л.П. Клименко. Т. 1. Механика трибоконтактного взаимодействия при скольжении. Николаев: НГГУ, 2006. 476 с.
- 3. Клименко Л.П. Повышение долговечности цилиндров ДВС на основе принципов переменной износостойкости / Под ред. В.В. Запорожца. Николаев: НФ НаУКМА, 2001. 294 с.
- 4. Андреев В.И., Клименко Л.П., Дыхта Л.М. Повышение ресурса автотракторных гильз цилиндров регулированием скорости охлаждения чугуна при центробежном литье // Проблеми трибології. Хмельницький: ХНУ. 2007. № 3 (45). С. 94-98.

Поступила в редакцию 22.05.2008

Рецензент: д-р техн. наук, проф. А.С. Каиров, Николаевский государственный университет имени Петра Могилы, Николаев.